TDDB68 + TDDEA47

Lecture 6:
Deadlocks

Klas Arvidsson

Slides by Adrian Pop and Mikael Asplund

Thanks to Simin Nadjm-Tehrani and Christoph Kessler for much of the material behind the

General info

« Teams! Ask questions there!

« Swap lab partner?

~ Good to work with someone on the same
level/ambition!

» Office availability

« Read lab pm for lab 3 (and skim 4) before
lesson on friday!

Synch example

Synch a bounded buffer i C with
« lock _aquire, lock release

and
- sema_down, sema_up
or
- cond_walit, cond_signal

Reading guidelines

« Silberschatz et al.,

- 9th edition: chapter 7 Deadlocks
- 10th edition: chapter 8 Deadlocks

« Worth checking out:
- https://deadlockempire.github.io/
- https://github.com/angrave/SystemProgramming/wiki

Consider interleaving the following

Process A Process B
while true { while true {
print(A) print(T)
print(K) print(C)

) }

Program execution

ATCT
ATC
/’) \;
o/ /
A _—
/ ’
/7 \i /‘r
~__ A \; -
T \ AKT

=k

, _—
TA \ TAK .
\A

TACK

TAC
TACKT

Correctness properties

» Safety properties
- Something bad will not happen

. Liveness properties
- Something good will happen (eventually)

« More on this way of reasoning in the Software
Verification course!

o Ability to understan and reason about code very
important for concurrent programming.

Progress

« A form of liveness

. Mathematically defined within a given system model
- Can be defined on system or process level

- Typically ensures that if system is in some state s, then

it will reach some other state s' where some property P
holds.

« Implies freedom from:
- Deadlock
- Livelock
- (Starvation depending on the model)

Deadlock

Deadlock occurs when a group of processes are locked
in a circular wait (more on this soon).

Livelock

1. Free 2. Start 3. Passage 4. Back
passage driving blocked off

<«

Livelock occurs when a group of processes are stuck in
a loop of actions where they stop each other from
progressing

Deadlock-freedom

« Freedom from deadlock is fundamental to any
concurrent system

« Necessary but not sufficient for progress!

« Topic for the rest of this lecture

Earlier

« Mutual exclusion and condition synchronization
- Semaphores
- Locks and condition variables
- Concurrent data structures

« Worked well for single resource

« What about multiple resources?

Simple deadlock situation

« TWO semaphores
—- S1 for resource R1
~ S2 for resource R2

Process P1: Process P2:
walt (S2) walt (S1)
walt (S1) walt (S2)

signal (S1) signal (S2)
signal (S2) signal (S1)

Coffman conditions

Four necessary conditions for deadlock:

1. Mutual exclusion

Access to a resource is limited to one (or a
limited number of) process(es) at a time

2. Hold & wait

A process may hold a resource and wait for
another resource at the same time

Coffman conditions continued

3. Voluntary release

Resources can only be released by a process
voluntarily

4. Circular wait

There is a chain of processes where each
process holds a resource that is required by
another process

Resource-Allocation Graph

Process Q

Resource type
with 4 instances

P: requests an ‘_»
instance of R, G

P; is holding an

instance of Rj

oo
oo

OO
oo

oh
oo

X

Example

Process P1: Process P2:
walt (S2) walt (S1)
walt (S1) walt (S2)

signal (S1) signal (S2)
signal (S2) signal (S1)

S1

S2

Which of these have a deadlock?

URL:
Code: 5135 6077

° ° o o R
\ \ N N -
®
P) (R ()) () (P i
P
¥ \V A,
° ® o ° N
° 5 o)

R R T
A B C

http://www.menti.com/

Basic Facts

» Graph contains no cycles = no deadlock.

« Graph contains a cycle =

- If only one instance per resource type, then
deadlock.

- If several instances per resource type, possibility
of deadlock.

Deadlock elimination

Four approaches:

« Deadlock prevention
« Deadlock avoidance

« Deadlock detection and treatment
« Ignore the problem

State transition
(in terms of resources)

Resource is
acquired or
released

Program execution with deadlock

/ ”
S
/.
/ ’
\A

/ ’
~.
\¢

-
\i
N

/
.,
™~

Deadlock prevention

/ 7
A
s
/
__ \ -
\) * /
\A } /"r
* \

I

Deadlock prevention:
Ensure that at least one of the Coffman conditions
can never occur

No execution path can lead to deadlock!

Prevent mutual exclusion (ME)

« ME is needed only for limited shared
resources

« Example: Read-only-file access by arbitrarily
many readers

- Readers-writer lock

Prevent Hold & Wait

« Whenever a process requests a resource, it
cannot hold any other resources.

« Request all resources at once
- Dining philosopher solution

« Low resource utilization; starvation possible;
not flexible.

Prevent Voluntary release

Ensure preemption

Force another process to release its resources

Preempted resources are added to the list of
resources for which the process is waiting.

Process will be restarted only when it can
regain its old resources, as well as the new
ones that it is requesting.

Prevent circular wait

« Impose a total ordering of all resources
- requests must be performed in this order.

« Priorities of processes and resources

- e.g., Immediate Ceiling Protocol in Real-time
scheduling

Tools to eliminate circular wait

« Windows driver verifier
« Linux lockdep tool

» Static analysis tools

- Cbmc for pthreads
(http://www.cprover.org/deadlock-detection/)

Deadlock avoidance

e

/?
N

;i\A

/?
\i

/
.
I

,,)g/
-
>R
N

I

Deadlock avoidance

« We allow for some execution paths that can
lead to deadlock.

« We stay clear of all paths that looks the least
suspisios. (Even some that could turn up
alright)

Safe state

System is in safe state if there exists a safe
sequence (i.e., completion sequence) of all
Processes.

Safe states and deadlocks

. If a system is in safe state = no deadlocks

. If a system is in unsafe state = possibility of

deadlock.

d

eadlock N\

« Avoidance:
ensure that a system will
never enter an unsafe
state.

unsafe

Assumptions

« Requires a priori knowledge of needed
resources

« Assume that each process declare the amount
of resources needed

Deadlock Avoidance Algorithms

Avoidance Algorithms for 2 Cases:

« Case 1. All resource types have 1 instance
only

- Resource Allocation Graph Algorithm

. Case 2. Multiple instances per resource type
- Banker’s Algorithm

Banker’s algorithm

« Multiple instances of each resource

« Upon each process request

- Check that the request is within the maximum limit
for that process

— Check that the new state is safe

Rejecting a request

« When allocating a request does not lead to a
new “safe” state:

- Refuse to grant

« The request can be repeated in some future
state and get granted

Inputs and outputs of Banker's

o Input:
- Matrix Max
- Vector Available
- Matrix Allocation
- Request|i] for some process i

« Output:
- Yes + new state, or

- No + unchanged state (Request[i] can not be
allocated now)

Data structures

Let n = number of processes, and m = number of resources types.

Available: Vector of length m. If Available[j] = k, there are k
instances of resource type R; available

Max: n x m matrix. If Max [i,j] = k, then process i may

request at most k instances of resource type R;, Max([i]
denotes the i'th row.

Allocation: n x m matrix. If Allocation]i,j] = k then iis

currently allocated k instances of R, Allocation[i] denotes the
I'th row.

Need. n x m matrix. If Need|i,] = k, then i may need k more

instances of R;to complete its task, Need[i] denotes the i'th
row.

Banker's algorithm

. Need := Max — Allocation
Check that Request[i] <= Need]]]

. Check whether Request[i] <= Available
if not, return "No”

. Pretend that resources in Request are to be allocated,
compute new state:

Allocation’ := Allocation + Request

Need’ := Need — Request

Available’ := Available — Request]i]

. Test whether the new state is deadlock-avoiding
(denoted safe), in which case return "Yes”.
Otherwise, return "No” - roll back to the old state.

Testing for safe state

. Start with a given Allocation’ and check if it is
safe (avoids future deadlocks) according to the
3-step algorithm.

Safety algorithm data structures

Finish: n vector with Boolean values (initially
false)

Work : m vector denotes the changing resource
set as the processes become ready and release
resources (initially Work := Available’)

Safety algorithm

1. Check if there is some process i for which
Finish[i] = false and for which Need’[i] <=
Work.

If there is no such process i, go to step 3.

2. Free the resources that | has used to get
finished:

3. Work := Work + Allocation’|[i]
Finish[i] := true
continue from step 1.

4. If Finish[i] = true for all i then the initial state is
deadlock-avoiding, otherwise it is not.

Remember

» Banker’s algorithm:
- 4 step algorithm
- 4th step is a 3-step iterative safety algorithm

Example problem

Consider the following resource allocation problem in a system with
3 resources (R1-R3), and 4 processes (P1-P4). The table
Indicates the currently allocated resources and in parenthesis
the maximum possible demand.

1(3) 0 (0) 0 (0)

2(4) 0(1) 3(4)

The currently available resources are: [2, 4, 1].
Use Banker's algorithm to determine if the request [1, O, 0] from
Process P4 should be granted.

Running Banker’s algorithm (1-3)
]

1. Need := Max — Allocation = ----

[430][200][300][211]] 1 3) 0(0) 0(0)
Sheck fhat RequestlPd] <= Reed] ----
— OK! 2 (4) 0 (1) 3 (4)

2. Check Request[Pd] <= Available i oble: 2.4, 1] Request[P4]: [1, 0, 0]
if not, return "No”
- OK!
3. Pretend that resources in Request are to be allocated, compute new state:
Allocation’ ;= Allocation + Request=[[130][100][30 1][3 0 3]]
Need’ := Need — Request=[[430][200][300][111]]

Available’ ;= Available — Request[P4] =[1 4 1]

Running Safety algorithm (step 4)

Initial finish vector = [False, False, False.

False]
Initial work vector = Available’ = [1, 4, 1]

Can finish process: P4
Work vector: [4 4 4]
Finish vector: [False, False, False, True]

Could finish process: P1
Work vector: [5 7 4]
Finish vector: [True, False, False, True]

Could finish process: P2
Work vector: [6 7 4]
Finish vector: [True, True, False, True]

Could finish process: P3
Work vector: [9 7 5]
Finish vector: [True, True, True, True]

1. Check if there is some process i for which
Finishl[i] = false and for which Need’[i] <=

Work. If there is no such process i, go to step 3.

2. Free the resources that i has used to get
finished:
Work := Work + Allocation’[i]
Finish[i] := true
continue from step 1.

3. If Finish[i] = true for all i then the initial state is

deadlock-avoiding, otherwise it is not

Allocation’=[[1 3 0] [100][30 1][3 0 3]]
Need’ =[[430][200][300][111]]
Available’ = [1 4 1]

Running Bankers algorithm (result)

« T'he outcome of the Safety algorithm is that the
new state is safe

« Result: The request [1, 0, 0] from P4 can be
granted!

Weaknesses of Banker's algorithm?

Weaknesses of the Banker’s
Algorithm

Assumes a fixed number of resources
- not realistic — number of resources can vary over time

Assumes a fixed population of processes
- not realistic for interactive systems

Assumes that processes state maximum needs in advance

- often not known
(depend e.g. on input data or user commands)

Waiting for completion of one or several processes may take
very long / unpredictable time before a request is granted

Deadlock Detection and Recovery

« Allow system to enter deadlock state

« Detection algorithm
- Single instance of each resource type
- Multiple instances

« Recovery scheme

Exam question...

Which of the following statements are true about
deadlocks?:

A. If there is only a single instance of every resource, a cycle in
the resource allocation graph means that there is a deadlock.

B. All four Coffman conditions must be met for there to be a
deadlock.

C. Banker’s algorithm is used to detect and remove deadlocks.

D. Banker’s algorithm guarantees freedom from starvation.

Deadlock detection
-
7
.
/
/
\
\

\\l

/7
\A

.
\l
N

Deadlock detection with single instance
resources

Search for cycle in wait-for graph

« Maintain wait-for graph
- Nodes are processes.

- P> P,
iff P; is waiting for P,

» Periodically invoke an algorithm
that searches for a cycle in the graph.

Transformation RAG-WFG

[

- B R, R,
> el @
) (Lo«
HQ RS
(a) (b)

Corresponding
wait-for graph

Resource-Allocation Graph

Deadlock detection with multiple instance
resources

Deadlock Detection Algorithm

« Available: vector of length m
indicates the number of available resources of each type.

o Allocation: n x m matrix

defines the number of resources of each type currently
allocated to each process.

« Request: n x m matrix

indicates the currently pending requests of each process.

Request [i, j]] = k iff P;is requesting kK more instances of
R.

i

DeteCtion AlgO”thm [Coffman et al. 1971]

1. Vectors Work[1..m], Finish[1..n] initialized by:
Work = Available

fori=1,2,...,n, if Allocation;# 0 then Finish[i] = false
otherwise Finishli] = true

2. Find an index i/ such that both:
(a) Finish[i] == false
(b) Request; < Work
If no such i/ exists, go to step 4.

3. Work = Work + Allocation,;
Finishl[i] = true
go to step 2.
4. |If Finish[i] == false, forsome i, 1 <i< n,

then the system is in deadlock state.
Specifically, if Finish[i] == false, then P, is deadlocked.

Difference to Banker's algorithm

. What is a safe state?

- Consider the actual request (optimistically),
not the maximum needs

« Reason: We compute if there is a deadlock
now, not if one may happen later.

Detection-Algorithm Usage

« When, and how often, to invoke depends on:
- How often a deadlock is likely to occur?

- How many processes will need to be rolled back?
. one for each disjoint cycle

« Invocation at every resource request?
- Too much overhead

« Occasional invocation?

(e.g., once per hour, or whenever CPU utilization below
40%)

Recovery from Deadlock:
Process Termination

« Abort all deadlocked processes.

« Abort one process at a time until the deadlock
cycle is eliminated.

« In which order should we choose to abort?
~ Priority of the process.

- How long process has computed,
and how much longer to completion.

- Resources the process has used.
- Resources the process needs to complete.

- How many processes will need to be terminated.

Recovery from Deadlock:
Resource Preemption

« Selecting a victim

— minimize cost

o Rollback

- return to some safe state,
restart process for that state.

o Starvation

- same process may always be picked as victim,
include number of rollbacks in cost factor.

Summary

Deadlock characterization
- 4 necessary conditions (Coffman)
- Resource allocation graph
Deadlock prevention
- Prohibit one of the four necessary conditions
Deadlock avoidance
- 1instance-resources: Resource allocation graph algorithm
- Banker’s algorithm (state safety, request granting)
Deadlock detection and recovery
- 1 instance-resources: Find cycles in Wait-for graph
- Several instances: Deadlock detection algorithm

Do nothing — lift the problem to the user / programmer

Next

« Lesson 2: Lab 2-4

» Lecture 7: Memory management |
Ch. 9, 10.1-1.3

	Bild 1
	Bild 2: General info
	Bild 3: Synch example
	Bild 4: Reading guidelines
	Bild 5: Consider interleaving the following
	Bild 6
	Bild 7: Correctness properties
	Bild 8: Progress
	Bild 9: Deadlock
	Bild 10: Livelock
	Bild 11: Deadlock-freedom
	Bild 12: Earlier
	Bild 13: Simple deadlock situation
	Bild 14: Coffman conditions
	Bild 15: Coffman conditions continued
	Bild 16
	Bild 17: Example
	Bild 18
	Bild 20: Basic Facts
	Bild 21: Deadlock elimination
	Bild 22: State transition (in terms of resources)
	Bild 23
	Bild 24
	Bild 25
	Bild 26: Prevent mutual exclusion (ME)
	Bild 27: Prevent Hold & Wait
	Bild 28: Prevent Voluntary release
	Bild 29: Prevent circular wait
	Bild 30: Tools to eliminate circular wait
	Bild 31
	Bild 32: Deadlock avoidance
	Bild 33: Safe state
	Bild 34
	Bild 35: Assumptions
	Bild 36: Deadlock Avoidance Algorithms
	Bild 41: Banker’s algorithm
	Bild 42: Rejecting a request
	Bild 43: Inputs and outputs of Banker's
	Bild 44: Data structures
	Bild 45: Banker’s algorithm
	Bild 46: Testing for safe state
	Bild 47: Safety algorithm data structures
	Bild 48: Safety algorithm
	Bild 49: Remember
	Bild 50: Example problem
	Bild 51: Running Banker’s algorithm (1-3)
	Bild 52: Running Safety algorithm (step 4)
	Bild 53: Running Bankers algorithm (result)
	Bild 54
	Bild 55: Weaknesses of the Banker’s Algorithm
	Bild 56: Deadlock Detection and Recovery
	Bild 57: Exam question...
	Bild 58
	Bild 59
	Bild 60: Search for cycle in wait-for graph
	Bild 61: Transformation RAG-WFG
	Bild 62
	Bild 63
	Bild 64
	Bild 65: Difference to Banker's algorithm
	Bild 68
	Bild 69: Recovery from Deadlock: Process Termination
	Bild 70: Recovery from Deadlock: Resource Preemption
	Bild 71: Summary
	Bild 72: Next

