
1

TDDB68 + TDDE47

Lecture 6:
Deadlocks

Klas Arvidsson

Slides by Adrian Pop and Mikael Asplund

Thanks to Simin Nadjm-Tehrani and Christoph Kessler for much of the material behind these slides.

2

General info

⚫ Teams! Ask questions there!

⚫ Swap lab partner?

− Good to work with someone on the same
level/ambition!

⚫ Office availability

⚫ Read lab pm for lab 3 (and skim 4) before
lesson on friday!

3

Synch example

Synch a bounded buffer i C with

⚫ lock_aquire, lock_release

and

− sema_down, sema_up

or

− cond_wait, cond_signal

4

Reading guidelines

⚫ Silberschatz et al.,

− 9th edition: chapter 7 Deadlocks

− 10th edition: chapter 8 Deadlocks

⚫ Worth checking out:

− https://deadlockempire.github.io/

− https://github.com/angrave/SystemProgramming/wiki

5

Consider interleaving the following

Process A

while true {

print(A)

print(K)

}

Process B

while true {

 print(T)

 print(C)

}

Correctness properties

⚫ Safety properties

− Something bad will not happen

⚫ Liveness properties

− Something good will happen (eventually)

⚫ More on this way of reasoning in the Software
Verification course!

⚫ Ability to understan and reason about code very
important for concurrent programming.

Progress

⚫ A form of liveness

⚫ Mathematically defined within a given system model

− Can be defined on system or process level

− Typically ensures that if system is in some state s, then
it will reach some other state s' where some property P
holds.

⚫ Implies freedom from:

− Deadlock

− Livelock

− (Starvation depending on the model)

Deadlock

Deadlock occurs when a group of processes are locked
in a circular wait (more on this soon).

Livelock

1. Free
passage

2. Start
driving

3. Passage
blocked

4. Back
off

Livelock occurs when a group of processes are stuck in
a loop of actions where they stop each other from
progressing

⚫ Freedom from deadlock is fundamental to any
concurrent system

⚫ Necessary but not sufficient for progress!

⚫ Topic for the rest of this lecture

Deadlock-freedom

Earlier

⚫ Mutual exclusion and condition synchronization

− Semaphores

− Locks and condition variables

− Concurrent data structures

⚫ Worked well for single resource

⚫ What about multiple resources?

Process P1:

wait(S2)

wait(S1)

...

signal(S1)

signal(S2)

Simple deadlock situation

⚫ Two semaphores

− S1 for resource R1

− S2 for resource R2

Process P2:

wait(S1)

wait(S2)

...

signal(S2)

signal(S1)

Coffman conditions

Four necessary conditions for deadlock:

1. Mutual exclusion

Access to a resource is limited to one (or a
limited number of) process(es) at a time

2. Hold & wait

A process may hold a resource and wait for
another resource at the same time

Coffman conditions continued

3. Voluntary release

Resources can only be released by a process
voluntarily

4. Circular wait

There is a chain of processes where each
process holds a resource that is required by
another process

Resource-Allocation Graph

Process

Resource type

with 4 instances

Pi requests an

instance of Rj

Pi is holding an

instance of Rj Pi

Pi

Rj

Rj

S1

P1

P2

S2

Process P1:

wait(S2)

wait(S1)

...

signal(S1)

signal(S2)

Process P2:

wait(S1)

wait(S2)

...

signal(S2)

signal(S1)

Example

Which of these have a deadlock?

A B C

URL: www.menti.com
Code: 5135 6077

http://www.menti.com/

Basic Facts

⚫ Graph contains no cycles  no deadlock.

⚫ Graph contains a cycle 

− if only one instance per resource type, then

deadlock.

− if several instances per resource type, possibility

of deadlock.

Deadlock elimination

Four approaches:

⚫ Deadlock prevention

⚫ Deadlock avoidance

⚫ Deadlock detection and treatment

⚫ Ignore the problem

State transition
(in terms of resources)

Resource is
acquired or
released

Deadlock prevention:
Ensure that at least one of the Coffman conditions

can never occur

No execution path can lead to deadlock!

Prevent mutual exclusion (ME)

⚫ ME is needed only for limited shared

resources

⚫ Example: Read-only-file access by arbitrarily

many readers

− Readers-writer lock

Prevent Hold & Wait

⚫ Whenever a process requests a resource, it

cannot hold any other resources.

⚫ Request all resources at once

− Dining philosopher solution

⚫ Low resource utilization; starvation possible;

not flexible.

Prevent Voluntary release

⚫ Ensure preemption

⚫ Force another process to release its resources

⚫ Preempted resources are added to the list of

resources for which the process is waiting.

⚫ Process will be restarted only when it can

regain its old resources, as well as the new

ones that it is requesting.

Prevent circular wait

⚫ Impose a total ordering of all resources

− requests must be performed in this order.

⚫ Priorities of processes and resources

− e.g., Immediate Ceiling Protocol in Real-time

scheduling

Tools to eliminate circular wait

⚫ Windows driver verifier

⚫ Linux lockdep tool

⚫ Static analysis tools

− Cbmc for pthreads
(http://www.cprover.org/deadlock-detection/)

Deadlock avoidance

⚫ We allow for some execution paths that can
lead to deadlock.

⚫ We stay clear of all paths that looks the least
suspisios. (Even some that could turn up
alright)

Safe state

System is in safe state if there exists a safe
sequence (i.e., completion sequence) of all
processes.

Safe states and deadlocks

⚫ If a system is in safe state  no deadlocks

⚫ If a system is in unsafe state  possibility of

deadlock.

⚫ Avoidance:

ensure that a system will

never enter an unsafe

state.

grant request

Assumptions

⚫ Requires a priori knowledge of needed
resources

⚫ Assume that each process declare the amount
of resources needed

Deadlock Avoidance Algorithms

Avoidance Algorithms for 2 Cases:

⚫ Case 1: All resource types have 1 instance

only

− Resource Allocation Graph Algorithm

⚫ Case 2: Multiple instances per resource type

− Banker’s Algorithm

Banker’s algorithm

⚫ Multiple instances of each resource

⚫ Upon each process request

− Check that the request is within the maximum limit
for that process

− Check that the new state is safe

Rejecting a request

⚫ When allocating a request does not lead to a
new “safe” state:

− Refuse to grant

⚫ The request can be repeated in some future
state and get granted

Inputs and outputs of Banker's

⚫ Input:

− Matrix Max

− Vector Available

− Matrix Allocation

− Request[i] for some process i

⚫ Output:

− Yes + new state, or

− No + unchanged state (Request[i] can not be
allocated now)

Data structures

Available: Vector of length m. If Available[j] = k, there are k

instances of resource type Rj available

Max: n x m matrix. If Max [i,j] = k, then process i may

request at most k instances of resource type Rj, Max[i]

denotes the i'th row.

Allocation: n x m matrix. If Allocation[i,j] = k then i is

currently allocated k instances of Rj, Allocation[i] denotes the

i'th row.

Need: n x m matrix. If Need[i,j] = k, then i may need k more

instances of Rj to complete its task, Need[i] denotes the i'th

row.

Let n = number of processes, and m = number of resources types.

Banker’s algorithm

1. Need := Max – Allocation
Check that Request[i] <= Need[i]

2. Check whether Request[i] <= Available
if not, return ”No”

3. Pretend that resources in Request are to be allocated,
compute new state:
Allocation’ := Allocation + Request
Need’ := Need – Request
Available’ := Available – Request[i]

4. Test whether the new state is deadlock-avoiding
(denoted safe), in which case return ”Yes”.
Otherwise, return ”No” - roll back to the old state.

Testing for safe state

⚫ Start with a given Allocation’ and check if it is
safe (avoids future deadlocks) according to the
3-step algorithm.

Safety algorithm data structures

Finish: n vector with Boolean values (initially
false)

Work : m vector denotes the changing resource
set as the processes become ready and release
resources (initially Work := Available’)

1. Check if there is some process i for which
Finish[i] = false and for which Need’[i] <=
Work.
If there is no such process i, go to step 3.

2. Free the resources that i has used to get
finished:

3. Work := Work + Allocation’[i]
Finish[i] := true
continue from step 1.

4. If Finish[i] = true for all i then the initial state is
deadlock-avoiding, otherwise it is not.

Safety algorithm

Remember

⚫ Banker’s algorithm:

− 4 step algorithm

− 4th step is a 3-step iterative safety algorithm

Example problem

Consider the following resource allocation problem in a system with
3 resources (R1-R3), and 4 processes (P1-P4). The table
indicates the currently allocated resources and in parenthesis
the maximum possible demand.

R1 R2 R3

P1 1 (5) 3 (6) 0 (0)

P2 1 (3) 0 (0) 0 (0)

P3 3 (6) 0 (0) 1 (1)

P4 2 (4) 0 (1) 3 (4)

The currently available resources are: [2, 4, 1].
Use Banker's algorithm to determine if the request [1, 0, 0] from
Process P4 should be granted.

Running Banker’s algorithm (1-3)

1. Need := Max – Allocation =

[[4 3 0] [2 0 0] [3 0 0] [2 1 1]]

Check that Request[P4] <= Need[P4]

– OK!

2. Check Request[P4] <= Available

if not, return ”No”

- OK!

3. Pretend that resources in Request are to be allocated, compute new state:

Allocation’ := Allocation + Request = [[1 3 0] [1 0 0] [3 0 1] [3 0 3]]

Need’ := Need – Request = [[4 3 0] [2 0 0] [3 0 0] [1 1 1]]

Available’ := Available – Request[P4] = [1 4 1]

R1 R2 R3

P1 1 (5) 3 (6) 0 (0)

P2 1 (3) 0 (0) 0 (0)

P3 3 (6) 0 (0) 1 (1)

P4 2 (4) 0 (1) 3 (4)

Available: [2, 4, 1] Request[P4]: [1, 0, 0]

Initial finish vector = [False, False, False.

False]

Initial work vector = Available’ = [1, 4, 1]

Can finish process: P4

Work vector: [4 4 4]

Finish vector: [False, False, False, True]

Could finish process: P1

Work vector: [5 7 4]

Finish vector: [True, False, False, True]

Could finish process: P2

Work vector: [6 7 4]

Finish vector: [True, True, False, True]

Could finish process: P3

Work vector: [9 7 5]

Finish vector: [True, True, True, True]

Running Safety algorithm (step 4)

1. Check if there is some process i for which

Finish[i] = false and for which Need’[i] <=

Work. If there is no such process i, go to step 3.

2. Free the resources that i has used to get

finished:

Work := Work + Allocation’[i]

Finish[i] := true

continue from step 1.

3. If Finish[i] = true for all i then the initial state is

deadlock-avoiding, otherwise it is not

Allocation’= [[1 3 0] [1 0 0] [3 0 1] [3 0 3]]

Need’ = [[4 3 0] [2 0 0] [3 0 0] [1 1 1]]

Available’ = [1 4 1]

Running Bankers algorithm (result)

⚫ The outcome of the Safety algorithm is that the
new state is safe

⚫ Result: The request [1, 0, 0] from P4 can be
granted!

Weaknesses of Banker's algorithm?

Weaknesses of the Banker’s

Algorithm

⚫ Assumes a fixed number of resources

− not realistic – number of resources can vary over time

⚫ Assumes a fixed population of processes

− not realistic for interactive systems

⚫ Assumes that processes state maximum needs in advance

− often not known
(depend e.g. on input data or user commands)

⚫ Waiting for completion of one or several processes may take
very long / unpredictable time before a request is granted

Deadlock Detection and Recovery

⚫ Allow system to enter deadlock state

⚫ Detection algorithm

− Single instance of each resource type

− Multiple instances

⚫ Recovery scheme

Exam question...

Which of the following statements are true about

deadlocks?:

A. If there is only a single instance of every resource, a cycle in

the resource allocation graph means that there is a deadlock.

B. All four Coffman conditions must be met for there to be a

deadlock.

C. Banker’s algorithm is used to detect and remove deadlocks.

D. Banker’s algorithm guarantees freedom from starvation.

Deadlock detection with single instance
resources

Search for cycle in wait-for graph

⚫ Maintain wait-for graph

− Nodes are processes.

− Pi → Pj

iff Pi is waiting for Pj.

⚫ Periodically invoke an algorithm

that searches for a cycle in the graph.

Resource-Allocation Graph
Corresponding

wait-for graph

Transformation RAG-WFG

Deadlock detection with multiple instance
resources

Deadlock Detection Algorithm

⚫ Available: vector of length m

indicates the number of available resources of each type.

⚫ Allocation: n x m matrix

defines the number of resources of each type currently

allocated to each process.

⚫ Request: n x m matrix

indicates the currently pending requests of each process.

Request [i, j] = k iff Pi is requesting k more instances of

Rj.

Detection Algorithm [Coffman et al. 1971]

1. Vectors Work[1..m], Finish[1..n] initialized by:

 Work = Available

 for i = 1,2, …, n, if Allocationi  0 then Finish[i] = false

 otherwise Finish[i] = true

2. Find an index i such that both:

 (a) Finish[i] == false

 (b) Requesti  Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

go to step 2.

4. If Finish[i] == false, for some i, 1  i  n,

 then the system is in deadlock state.

Specifically, if Finish[i] == false, then Pi is deadlocked.

Difference to Banker's algorithm

⚫ What is a safe state?

− Consider the actual request (optimistically),
not the maximum needs

⚫ Reason: We compute if there is a deadlock
now, not if one may happen later.

Detection-Algorithm Usage

⚫ When, and how often, to invoke depends on:

− How often a deadlock is likely to occur?

− How many processes will need to be rolled back?

⚫ one for each disjoint cycle

⚫ Invocation at every resource request?

− Too much overhead

⚫ Occasional invocation?

(e.g., once per hour, or whenever CPU utilization below
40%)

Recovery from Deadlock:
Process Termination

⚫ Abort all deadlocked processes.

⚫ Abort one process at a time until the deadlock

cycle is eliminated.

⚫ In which order should we choose to abort?

− Priority of the process.

− How long process has computed,

and how much longer to completion.

− Resources the process has used.

− Resources the process needs to complete.

− How many processes will need to be terminated.

Recovery from Deadlock:
Resource Preemption

⚫ Selecting a victim

− minimize cost

⚫ Rollback

− return to some safe state,

restart process for that state.

⚫ Starvation

− same process may always be picked as victim,

include number of rollbacks in cost factor.

Summary
⚫ Deadlock characterization

− 4 necessary conditions (Coffman)

− Resource allocation graph

⚫ Deadlock prevention

− Prohibit one of the four necessary conditions

⚫ Deadlock avoidance

− 1 instance-resources: Resource allocation graph algorithm

− Banker’s algorithm (state safety, request granting)

⚫ Deadlock detection and recovery

− 1 instance-resources: Find cycles in Wait-for graph

− Several instances: Deadlock detection algorithm

⚫ Do nothing – lift the problem to the user / programmer

Next

⚫ Lesson 2: Lab 2-4

⚫ Lecture 7: Memory management I
Ch. 9, 10.1-1.3

	Bild 1
	Bild 2: General info
	Bild 3: Synch example
	Bild 4: Reading guidelines
	Bild 5: Consider interleaving the following
	Bild 6
	Bild 7: Correctness properties
	Bild 8: Progress
	Bild 9: Deadlock
	Bild 10: Livelock
	Bild 11: Deadlock-freedom
	Bild 12: Earlier
	Bild 13: Simple deadlock situation
	Bild 14: Coffman conditions
	Bild 15: Coffman conditions continued
	Bild 16
	Bild 17: Example
	Bild 18
	Bild 20: Basic Facts
	Bild 21: Deadlock elimination
	Bild 22: State transition (in terms of resources)
	Bild 23
	Bild 24
	Bild 25
	Bild 26: Prevent mutual exclusion (ME)
	Bild 27: Prevent Hold & Wait
	Bild 28: Prevent Voluntary release
	Bild 29: Prevent circular wait
	Bild 30: Tools to eliminate circular wait
	Bild 31
	Bild 32: Deadlock avoidance
	Bild 33: Safe state
	Bild 34
	Bild 35: Assumptions
	Bild 36: Deadlock Avoidance Algorithms
	Bild 41: Banker’s algorithm
	Bild 42: Rejecting a request
	Bild 43: Inputs and outputs of Banker's
	Bild 44: Data structures
	Bild 45: Banker’s algorithm
	Bild 46: Testing for safe state
	Bild 47: Safety algorithm data structures
	Bild 48: Safety algorithm
	Bild 49: Remember
	Bild 50: Example problem
	Bild 51: Running Banker’s algorithm (1-3)
	Bild 52: Running Safety algorithm (step 4)
	Bild 53: Running Bankers algorithm (result)
	Bild 54
	Bild 55: Weaknesses of the Banker’s Algorithm
	Bild 56: Deadlock Detection and Recovery
	Bild 57: Exam question...
	Bild 58
	Bild 59
	Bild 60: Search for cycle in wait-for graph
	Bild 61: Transformation RAG-WFG
	Bild 62
	Bild 63
	Bild 64
	Bild 65: Difference to Banker's algorithm
	Bild 68
	Bild 69: Recovery from Deadlock: Process Termination
	Bild 70: Recovery from Deadlock: Resource Preemption
	Bild 71: Summary
	Bild 72: Next

