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Lecture 6:
Deadlocks 

Klas Arvidsson

Slides by Adrian Pop and Mikael Asplund

Thanks to Simin Nadjm-Tehrani and Christoph Kessler for much of the material behind these slides.
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General info

⚫ Teams! Ask questions there!

⚫ Swap lab partner?

− Good to work with someone on the same 
level/ambition!

⚫ Office availability

⚫ Read lab pm for lab 3 (and skim 4) before 
lesson on friday!
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Synch example

Synch a bounded buffer i C with

⚫ lock_aquire, lock_release

and

− sema_down, sema_up

or

− cond_wait, cond_signal
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Reading guidelines

⚫ Silberschatz et al., 

− 9th edition: chapter 7 Deadlocks

− 10th edition: chapter 8 Deadlocks

⚫ Worth checking out:

− https://deadlockempire.github.io/

− https://github.com/angrave/SystemProgramming/wiki
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Consider interleaving the following

Process A

while true {

print(A)

print(K)

}

Process B

while true {

  print(T)

  print(C)

}

   





Correctness properties

⚫ Safety properties

− Something bad will not happen

⚫ Liveness properties

− Something good will happen (eventually)

⚫ More on this way of reasoning in the Software 
Verification course!

⚫ Ability to understan and reason about code very 
important for concurrent programming.



Progress

⚫ A form of liveness

⚫ Mathematically defined within a given system model

− Can be defined on system or process level

− Typically ensures that if system is in some state s, then 
it will reach some other state s' where some property P 
holds.

⚫ Implies freedom from:

− Deadlock

− Livelock

− (Starvation depending on the model)



Deadlock

Deadlock occurs when a group of processes are locked 
in a circular wait (more on this soon).



Livelock

1. Free 
passage

2. Start
driving

3. Passage 
blocked

4. Back
off

Livelock occurs when a group of processes are stuck in 
a loop of actions where they stop each other from 
progressing



⚫ Freedom from deadlock is fundamental to any 
concurrent system

⚫ Necessary but not sufficient for progress!

⚫ Topic for the rest of this lecture

Deadlock-freedom



Earlier

⚫ Mutual exclusion and condition synchronization 

− Semaphores

− Locks and condition variables

− Concurrent data structures

⚫ Worked well for single resource

⚫ What about multiple resources?



Process P1:

wait(S2)

wait(S1)

...

signal(S1)

signal(S2)

Simple deadlock situation

⚫ Two semaphores

− S1 for resource R1

− S2 for resource R2

Process P2:

wait(S1)

wait(S2)

...

signal(S2)

signal(S1)



Coffman conditions

Four necessary conditions for deadlock:

1. Mutual exclusion

Access to a resource is limited to one (or a 
limited number of) process(es) at a time

2. Hold & wait

A process may hold a resource and wait for 
another resource at the same time



Coffman conditions continued

3. Voluntary release  

Resources can only be released by a process
voluntarily 

4. Circular wait

There is a chain of processes where each 
process holds a resource that is required by 
another process 



Resource-Allocation Graph

Process

Resource type 

with 4 instances

Pi requests an

instance of Rj

Pi is holding an

instance of Rj Pi

Pi

Rj

Rj



S1

P1

P2

S2

Process P1:

wait(S2)

wait(S1)

...

signal(S1)

signal(S2)

Process P2:

wait(S1)

wait(S2)

...

signal(S2)

signal(S1)

Example



Which of these have a deadlock?

A B C

URL: www.menti.com 
Code: 5135 6077

http://www.menti.com/


Basic Facts

⚫ Graph contains no cycles   no deadlock.

⚫ Graph contains a cycle  

− if only one instance per resource type, then 

deadlock.

− if several instances per resource type, possibility 

of deadlock.



Deadlock elimination 

Four approaches:

⚫ Deadlock prevention

⚫ Deadlock avoidance

⚫ Deadlock detection and treatment

⚫ Ignore the problem



State transition 
(in terms of resources)

Resource is 
acquired or 
released







Deadlock prevention:
Ensure that at least one of the Coffman conditions 

can never occur

No execution path can lead to deadlock!



Prevent mutual exclusion (ME)

⚫ ME is needed only for limited shared 

resources

⚫ Example: Read-only-file access by arbitrarily 

many readers

− Readers-writer lock



Prevent Hold & Wait

⚫ Whenever a process requests a resource, it 

cannot hold any other resources.

⚫ Request all resources at once

− Dining philosopher solution

⚫ Low resource utilization; starvation possible; 

not flexible.



Prevent Voluntary release

⚫ Ensure preemption

⚫ Force another process to release its resources

⚫ Preempted resources are added to the list of 

resources for which the process is waiting.

⚫ Process will be restarted only when it can 

regain its old resources, as well as the new 

ones that it is requesting.



Prevent circular wait

⚫ Impose a total ordering of all resources

− requests must be performed in this order.

⚫ Priorities of processes and resources 

− e.g., Immediate Ceiling Protocol in Real-time 

scheduling



Tools to eliminate circular wait

⚫ Windows driver verifier

⚫ Linux lockdep tool

⚫ Static analysis tools

− Cbmc for pthreads 
(http://www.cprover.org/deadlock-detection/)





Deadlock avoidance

⚫ We allow for some execution paths that can 
lead to deadlock.

⚫ We stay clear of all paths that looks the least 
suspisios. (Even some that could turn up 
alright)



Safe state

System is in safe state if there exists a safe 
sequence (i.e., completion sequence) of all
processes.



Safe states and deadlocks

⚫ If a system is in safe state  no deadlocks 

⚫ If a system is in unsafe state  possibility of 

deadlock.

⚫ Avoidance:

ensure that a system will 

never enter an unsafe 

state. 

grant request



Assumptions

⚫ Requires a priori knowledge of needed 
resources

⚫ Assume that each process declare the amount
of resources needed



Deadlock Avoidance Algorithms

Avoidance Algorithms for 2 Cases:

⚫ Case 1:   All resource types have 1 instance 

only

− Resource Allocation Graph Algorithm

⚫ Case 2:   Multiple instances per resource type

− Banker’s Algorithm



Banker’s algorithm

⚫ Multiple instances of each resource

⚫ Upon each process request

− Check that the request is within the maximum limit 
for that process

− Check that the new state is safe



Rejecting a request

⚫ When allocating a request does not lead to a 
new “safe” state:

− Refuse to grant 

⚫ The request can be repeated in some future 
state and get granted



Inputs and outputs of Banker's

⚫ Input: 

− Matrix Max

− Vector Available

− Matrix Allocation

− Request[i] for some process i 

⚫ Output:

− Yes + new state, or

− No  + unchanged state (Request[i]  can not be 
allocated now)



Data structures

Available: Vector of length m. If Available[j] = k, there are k

instances of resource type Rj available

Max: n x m matrix.  If Max [i,j] = k, then process i may 

request at most k instances of resource type Rj, Max[i]

denotes the i'th row.

Allocation:  n x m matrix.  If Allocation[i,j] = k then i is 

currently allocated k instances of Rj, Allocation[i] denotes the 

i'th row.

Need:  n x m matrix. If Need[i,j] = k, then i may need k more 

instances of Rj to complete its task, Need[i] denotes the i'th 

row.

Let n = number of processes, and m = number of resources types. 



Banker’s algorithm

1. Need := Max – Allocation
Check that Request[i] <= Need[i]

2. Check whether Request[i] <= Available
if not, return ”No”

3. Pretend that resources in Request are to be allocated, 
compute new state:
Allocation’ := Allocation + Request
Need’ := Need – Request
Available’ := Available – Request[i]

4. Test whether the new state is deadlock-avoiding 
(denoted safe), in which case return ”Yes”. 
Otherwise, return ”No” - roll back to the old state. 



Testing for safe state 

⚫ Start with a given Allocation’ and check if it is 
safe (avoids future deadlocks) according to the 
3-step algorithm.



Safety algorithm data structures

Finish: n vector with Boolean values (initially 
false) 

Work : m vector denotes the changing resource 
set as the processes become ready and release 
resources (initially  Work := Available’)



1. Check if there is some process i for which 
Finish[i] = false and for which Need’[i] <= 
Work. 
If there is no such process i, go to step 3.

2. Free the resources that i has used to get 
finished:

3. Work := Work + Allocation’[i]
Finish[i] := true
continue from step 1.

4. If Finish[i] = true for all i then the initial state is 
deadlock-avoiding, otherwise it is not.

Safety algorithm



Remember

⚫ Banker’s algorithm:

− 4 step algorithm

− 4th step is a 3-step iterative safety algorithm



Example problem

Consider the following resource allocation problem in a system with 
3 resources (R1-R3), and 4 processes (P1-P4). The table 
indicates the currently allocated resources and in parenthesis 
the maximum possible demand.

R1 R2 R3

P1 1 (5) 3 (6) 0 (0)

P2 1 (3) 0 (0) 0 (0)

P3 3 (6) 0 (0) 1 (1)

P4 2 (4) 0 (1) 3 (4)

The currently available resources are: [2, 4, 1].
Use Banker's algorithm to determine if the request [1, 0, 0] from 
Process P4 should be granted.



Running Banker’s algorithm (1-3)

1. Need := Max – Allocation =

[[4 3 0] [2 0 0] [3 0 0] [2 1 1]]

Check that Request[P4] <= Need[P4] 

– OK!

2. Check Request[P4] <= Available  

if not, return ”No” 

- OK!

3. Pretend that resources in Request are to be allocated, compute new state:

Allocation’ := Allocation + Request = [[1 3 0] [1 0 0] [3 0 1] [3 0 3]]

Need’ := Need – Request = [[4 3 0] [2 0 0] [3 0 0] [1 1 1]]

Available’ := Available – Request[P4] = [1 4 1]

R1 R2 R3

P1 1 (5) 3 (6) 0 (0)

P2 1 (3) 0 (0) 0 (0)

P3 3 (6) 0 (0) 1 (1)

P4 2 (4) 0 (1) 3 (4)

Available: [2, 4, 1]     Request[P4]: [1, 0, 0]  



Initial finish vector = [False, False, False. 

False]

Initial work vector = Available’ = [1, 4, 1]

Can finish process: P4

Work vector: [4 4 4]

Finish vector: [False, False, False, True]

Could finish process: P1

Work vector: [5 7 4]

Finish vector: [True, False, False, True]

Could finish process: P2

Work vector: [6 7 4]

Finish vector: [True, True, False, True]

Could finish process: P3

Work vector: [9 7 5]

Finish vector: [True, True, True, True]

Running Safety algorithm (step 4)

1. Check if there is some process i for which 

Finish[i] = false and for which Need’[i] <= 

Work. If there is no such process i, go to step 3.

2. Free the resources that i has used to get 

finished:

Work := Work + Allocation’[i]

Finish[i] := true

continue from step 1.

3. If Finish[i] = true for all i then the initial state is 

deadlock-avoiding, otherwise it is not

Allocation’= [[1 3 0] [1 0 0] [3 0 1] [3 0 3]]

Need’ = [[4 3 0] [2 0 0] [3 0 0] [1 1 1]]

Available’ = [1 4 1]



Running Bankers algorithm (result)

⚫ The outcome of the Safety algorithm is that the 
new state is safe

⚫ Result: The request [1, 0, 0] from P4 can be 
granted!



Weaknesses of Banker's algorithm?



Weaknesses of the Banker’s 

Algorithm

⚫ Assumes a fixed number of resources

− not realistic – number of resources can vary over time

⚫ Assumes a fixed population of processes

− not realistic for interactive systems

⚫ Assumes that processes state maximum needs in advance

− often not known 
(depend e.g. on input data or user commands)

⚫ Waiting for completion of one or several processes may take 
very long / unpredictable time before a request is granted



Deadlock Detection and Recovery

⚫ Allow system to enter deadlock state 

⚫ Detection algorithm

− Single instance of each resource type

− Multiple instances

⚫ Recovery scheme



Exam question...

Which of the following statements are true about 

deadlocks?:

A. If there is only a single instance of every resource, a cycle in 

the resource allocation graph means that there is a deadlock.

B. All four Coffman conditions must be met for there to be a 

deadlock.

C. Banker’s algorithm is used to detect and remove deadlocks.

D. Banker’s algorithm guarantees freedom from starvation.





Deadlock detection with single instance 
resources



Search for cycle in wait-for graph

⚫ Maintain wait-for graph

− Nodes are processes.

− Pi → Pj  

iff Pi is waiting for Pj.

⚫ Periodically invoke an algorithm 

that searches for a cycle in the graph.



Resource-Allocation Graph
Corresponding 

wait-for graph

Transformation RAG-WFG



Deadlock detection with multiple instance 
resources



Deadlock Detection Algorithm

⚫ Available:  vector of length m 

indicates the number of available resources of each type.

⚫ Allocation:  n x m matrix 

defines the number of resources of each type currently 

allocated to each process.

⚫ Request:  n x m matrix 

indicates the currently pending requests of each process. 

Request [i, j] = k  iff  Pi is requesting k more instances of 

Rj.



Detection Algorithm   [Coffman et al. 1971]

1.   Vectors  Work[1..m], Finish[1..n]  initialized by:

   Work = Available

   for i = 1,2, …, n,    if Allocationi  0  then Finish[i] = false

                           otherwise                   Finish[i] = true

2. Find an index i such that both:

   (a) Finish[i] == false

   (b) Requesti  Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

go to step 2.

4. If Finish[i] == false, for some i, 1  i   n, 

     then the system is in deadlock state. 

Specifically, if Finish[i] == false, then Pi is deadlocked.



Difference to Banker's algorithm

⚫ What is a safe state?

− Consider the actual request (optimistically), 
not the maximum needs

⚫ Reason: We compute if there is a deadlock 
now, not if one may happen later.



Detection-Algorithm Usage

⚫ When, and how often, to invoke depends on:

− How often a deadlock is likely to occur?

− How many processes will need to be rolled back?

⚫ one for each disjoint cycle

⚫ Invocation at every resource request?

− Too much overhead

⚫ Occasional invocation?

(e.g., once per hour, or whenever CPU utilization below 
40%)



Recovery from Deadlock: 
Process Termination

⚫ Abort all deadlocked processes.

⚫ Abort one process at a time until the deadlock 

cycle is eliminated.

⚫ In which order should we choose to abort?

− Priority of the process.

− How long process has computed, 

and how much longer to completion.

− Resources the process has used.

− Resources the process needs to complete.

− How many processes will need to be terminated.



Recovery from Deadlock: 
Resource Preemption

⚫ Selecting a victim 

− minimize cost

⚫ Rollback

− return to some safe state, 

restart process for that state.

⚫ Starvation

− same process may always be picked as victim, 

include number of rollbacks in cost factor.



Summary
⚫ Deadlock characterization

− 4 necessary conditions (Coffman)

− Resource allocation graph

⚫ Deadlock prevention

− Prohibit one of the four necessary conditions

⚫ Deadlock avoidance

− 1 instance-resources:  Resource allocation graph algorithm

− Banker’s algorithm  (state safety,  request granting)

⚫ Deadlock detection and recovery

− 1 instance-resources:  Find cycles in Wait-for graph

− Several instances:  Deadlock detection algorithm

⚫ Do nothing – lift the problem to the user / programmer



Next

⚫ Lesson 2: Lab 2-4

⚫ Lecture 7: Memory management I
Ch. 9, 10.1-1.3
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