
1

TDDB68 + TDDE47

Lecture 5:
Synchronisation

Klas Arvidsson

Slides based on work by Mikael Asplund and Adrian Pop

Copyright Notice:
Thanks to Christoph Kessler and Simin Nadjm-Tehrani for some of the material behind these slides.

2

Reading guidelines

● Silberschatz, Galvin and Gagne, Operating
System Concepts
– 9th edition: Chapter 6.1-6.9

– 10th edition: Chapter 6.1-6.7 + 7.1-7.3

● Hint
– Deadlock empire: https://deadlockempire.github.io/

– Vinjett for TDDE47

https://deadlockempire.github.io/

3

Recall from lecture 3 (processes)

● Inter-process communication
– Shared variables

– Message passing

● Message passing is clean but gives high
overhead

● What about Shared variables?

Basic operation
● Communication using shared variables

P1 P2

Variable X

Writes to X Reads from X

Sharing variables

● Often requires atomicity
● Consider the two processes using a shared

variable x initialised at 0:
● What is the outcome of running them both to

completion?

P1 {
x = x + 1;

}

P0 {
x = x + 1;

}

Machine instructions

x = x+1 is really:

LD R, x // load register R from x

INC R // increment register R

ST R, x // store register R to x
● The program will be compiled, and the

compiler may optimize for a specific
architecture

● What can you assume about the compiler,
the runtime environment and the
architecture? (Nothing, or read the specs!)

Non-atomic operations

Can become:
P0: LD R, x
P0: INC R

P1: LD R, x
P1: INC R

P0: ST R, x
P1: ST R, x

P1 {

x = x + 1;

}

P0 {

x = x + 1;

}

How?
// Example of events that may couse this

interleaving
P0: LD R, x
P0: INC R
// Timer interrupt, P0 time slice run out, P1

scheduled
P1: LD R, x
P1: INC R
// Device interrupt, long handling, P1 time slice run

out, P0 scheduled
P0: ST R, x
// P0 completed, P1 scheduled
P1: ST R, x

Menti.com 6214 8470

P1 {

x = x + 1;

}

P0 {

x = x - 1;

}

What are the possible results after both
thread run once? X start at 255. Select all
possible results.

● 254

● 255

● 256

● 510

Shared data
● Primitive data types

– Atomic access often supported by hardware

– May not require special protection (read the
specs!), but the compiler must be made aware of
atomic intentions!

● Composite data types
– E.g., update date, time and stock value

– Atomic access needs to be implemented in
software

Shared data example

M = [

 ('A', 4),

 ('F', 0),

 ('K', 7),

 ('X', 1),

];

Shared data example

● Task to run in thread A and thread B:

– Check if C in M, memorize position

– If so, increment value of memorized pos

– If not, add C to M with value 1

Menti.com 6214 8470

Shared data example

● Alternate task to run in thread B:

– Check if C in M, memorize position

– If so, decrement value at memorized pos

– If decr. value == 0, remove pos from M

Live performance!

– Thread A:
● Check if 'G' in M, memorize position

– Thread B:
● Check if 'G' in M, memorize position
● If so, increment value of memorized pos
● If not, add 'G' to M with value 1

– Thread A:
● If so, increment value of memorized pos
● If not, add 'G' to M with value 1

Live performance!

– Thread B:
● Check if 'F' in M, memorize position
● If so, decrement value at memorized pos

– Thread A:
● Check if 'F' in M, memorize position
● If so, increment value of memorized pos
● If not, add 'G' to M with value 1

– Thread B:
● If decr. value == 0, remove pos from M

Race condition

If the order of operations performed by
multiple processes can affect the outcome of
the computation, and if this is unintended,
then the system suffers from a race
condition

17

Critical section

● Consider n processes that need to exclude concurrent
execution of some parts of their code

 Process Pi {

 entry-protocol

 critical-section

 exit-protocol

 non-critical-section

 }

● Fundamental problem to design entry and exit
protocols for critical sections

Critical-Section Problem

● Mutual Exclusion

● Progress

● Bounded waiting

Mutual Exclusion

If process P is executing in critical section C,
then no other processes can be executing in C
(accessing the same shared data/resource).

Note: Several code sections may be labelled C if
they touch the same shared data/resource. Ony
one process should be allowed in any section C.

Progress

If no process is executing in critical section C
and there exist some processes that wish to

enter C, then the selection of the process that
will enter C next cannot be postponed

indefinitely.

Note: It's about making sure someone is entering
the section if no-one is working there, making

progress on the work in the section.

Bounded waiting

A bound must exist on the number of times that
other processes are allowed to enter critical
section C after a process has made a request
to enter C and before that request is granted.

● Assume that each process executes at a nonzero speed
● No assumption concerning relative speed of the N

processes

Note: Progress is not enough, we need to avoid
starvation!

Solutions for critical section problem

● Software-only solutions

● Solutions with hardware support

● Synchronization primitives

Software-only solutions

24

Dijkstras mutual exclusion (1965)

Process P1
while (true) {
 flag1 = up
 while (flag2 == up) {
 // do nothing
 }
 critical section
 flag1 = down
 non-critical section
}

Process P2
while (true) {
 flag2 = up
 while (flag1 == up) {
 // do nothing
 }
 critical section
 flag2 = down
 non-critical section
}

25

Second attempt

Process P1
while (true) {

while (flag2 == up) {
 //do nothing

 }
 flag1 = up
 critical section
 flag1 = down
 non-critical-section
}

Process P2
while (true) {

while (flag1 == up) {
 //do nothing

 }
 flag2 = up
 critical section
 flag2 = down
 non-critical-section
}

26

Third attempt

Process P1

while (true) {

 while (turn == 2) {

 //do nothing (busy waiting)

 }
 critical section

 turn = 2

 non-critical-section

}

Process P2

while (true) {

 while (turn == 1) {

 //do nothing (busy waiting)

 }
 critical section

 turn = 1

 non-critical-section

}

27

Peterson’s algorithm

Process P1

while (true) {

flag1 = up // P1 want to enter

Turn = 2 // let P2 go first

while (flag2 == up) and

 (turn == 2) {

 //do nothing, wait for P2

}

critical section

flag1 = down // P1 leaves

non-critical-section

}

Process P2

while (true) {

 flag2 = up // P2 want to enter

 Turn = 1 // let P1 go first

 while (flag1 == up) and

 (turn == 1) {

 //do nothing, wait for P1

 }

 critical section

 flag2 = down // P2 leaves

 non-critical-section

}

● What assumptions about compiler and
hardware must hold true?

28

Hardware support

Hardware Atomic Support for
Synchronization

● TestAndSet: test memory word and set value
atomically

● Swap: swap contents of two memory words atomically

● CompareAndSwap: compare memory and set
atomically

● https://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-
Builtins.html

If multiple atomic instructions
are executed simultaneously (each on a different
CPU in a multiprocessor), then they take effect

sequentially in some arbitrary order.

Definition in pseudocode:

 boolean TestAndSet (boolean *target) {
 boolean old_value = *target

 *target = true

 return old_value

 }

TestAndSet Instruction
Atomic: state only
observable after all

instructions are done (or
none of them).

CS Solution using TestAndSet

lock = false //shared variable

while (true) {
 while (TestAndSet (&lock)) {
 // do nothing (busy waiting)
 }
 critical section
 lock = false
 non-critical section
}

Swap Instruction

● Definition in pseudocode:

 void Swap (boolean *a, boolean *b) {
 boolean save_a = *a

 *a = *b

 *b = save_a

 }

CS Solution using Swap
lock = false //shared variable

while (true) {

 tmp = true; //local variable (not shared)

 while (tmp == true) {

 swap (&lock, &tmp); // busy waiting…

 }

 critical section

 lock = false;

 non-critical section

 }

CompareAndSwap Instruction

● Definition in pseudocode:

 int CompareAndSwap (int *ptr, int cmp, int new) {
 int old = *ptr

 if (*ptr == cmp)

 *ptr = new

 return old

 }

Synchronization primitives

36

Programming language support

● Would be useful to have support from an
operating system or a programming language

● Modern programming languages have explicit
support:
– java.util.concurrency provides good support.

– Ada: built-in run-time support with explicit task
synchronisation entry points (Rendezvous)

– Python: threading import *

– C: pthreads, C++: std::thread

37

Synchronization primitives

● Abstraction layer
– Easier to use, but must be implemented

● Do not solve all synchronization problems
● Examples:

– Semaphores

– Locks

– Condition variables

– Monitors

38

Semaphores

● A semaphore S is a non-negative integer
variable on which only two atomic operations
wait and signal can be performed

wait(S):

wait until S > 0

 S = S-1

signal(S):

S = S+1

39

CS solution with semaphore

semaphore S = 1

while (true) {
 wait(S)
 critical section
 signal(S)
 non-critical section
}

40

Atomicity of semaphore implementation must be
provided by the supporting environment

41

Implementation considerations

42

Spin locks

● All entry protocols so far (including semaphore
wait) uses a busy wait loop – called a spin lock

● Sometimes necessary (kernel-level
programming)

● Wasteful for synchronization of user processes
● Ok for short waits when thread on other core is

expected to complete fast (real hw
concurrency)

Eliminate Busy Waiting

● With each semaphore there is an associated
waiting queue. Each entry in a waiting queue
contains:
– Process table index, e.g. pid

– Pointer to next entry

● Two operations:
– block – place the process invoking the operation on

the appropriate waiting queue.

– wakeup – remove one of processes in the waiting
queue and place it in the ready queue.

Samaphore datastructure with a queue

typedef struct {
 int value;
 struct process *wqueue;
} semaphore;

Wait implementation w/o busy waiting

void wait (semaphore *S) {
 S->value--;
 if (S->value < 0) {

 add this process to S->wqueue;
 block(); // I release the lock on the critical
 } // section for S and release the CPU
 }

● This code is in itself a critical section, what if
two threads read value == 1 “simultaneous”?

Signal Implementation w/o busy waiting

void signal (semaphore *S) {
 S->value++;
 if (S->value <= 0) {
 remove a process P from S->wqueue;

 wakeup (P); // append P to ready queue
 }
 }

47

Counting semaphores

● When more than one instance of a resource is
available, e.g. print servers

● Processes can use up to max available but no
more

● The semaphore can be initialised to provide
access for n processes

● Keeps track of available resources
● Good for time sync – make sure X happend in

thread A before performing Y in thread B

48

Semaphore initialization

● Crutial to determine the semantics of the
semaphore

● Must be stated in your exam answers!

49

A semaphore with maximum value 1 is called a
binary semaphore, useful to implement lock.

50

Locks

● Binary semaphore

● Operations often called
– Acquire (instead of wait)

– Release (instead of signal)

● Only the thread that acquired the lock can
release it – built in error checks!

51

Complex data structures

52

Complex data structures

● Data is often structured
– Lists

– Objects

– Structs

● Consistency requirements
– cannot change one part of the data structure but not

the other part

53

Two options

● One big lock
– Safe (no synchronization problems)

– Slow (reduces concurrency of solution)

● Multiple synchronization primitives
– Fast (allows higher degree of synchronization)

– Potentiall dangerous (introduces new concurrency
problems)

Multiple synchronization primitives
● Conditional action

– Purpose is to avoid busy waiting

– Examples:
● Compute the interest when all transactions have been

processed
● Book a flight seat only if seats are available

● Mutual exclusion
– Purpose is to avoid errors

– Example:
● Two customers shall not be booked on the same seat

Deadlock and starvation
● Deadlock – two or more processes are waiting

indefinitely for an event that can be caused
only by some of the waiting processes. But
they can not cause the event when waiting...

● Starvation – indefinite blocking. Other
threads keep getting priority to a resource
resulting in one thread waiting indefinitly.
– A process may never be removed from the

semaphore queue in which it is suspended.

Focus on the resource (data)!

● Non-shared data does not need protecting
– Automatic (stack, local) variables

● Same resource must be protected with the
same synchronization primitive

● Consistency requirements and access patterns
determine the granularity of synchronization

Hints

● Identify all shared variables/data/resources
● Understand the purpose of the code, what is

the intentions, and what data states should be
possible/impossible?

● Identify where knowledge of data is built up in
the local thread (result of calculation or check
base on the shared data)

● Strive to place synch primitives with the data to
protect for most paralellism (global synch
primitives lead poor parallelism)

Common mistakes
● Omitting wait (mutex) or signal (mutex) (or

both)
● wait (mutex) …. wait (mutex)
● wait (mutex1) …. signal (mutex2)
● Multiple semaphores with different orders of

wait() calls
– Example: Each philosopher first grabs the

chopstick to its left  risk for deadlock!

● Not counting available resources

Two more useful synchronization
primitives

● Condition variables

● Monitors (in lecture 9)

Example: bounded buffer

P1 P2

Writes to buffer Reads from buffer

Finite buffer

Issues
● Writing to full buffer (conditional action)

● Reading from empty buffer (conditional
action)

● Two write operations to the same element
(mutual exclusion)

62

Condition variables

● Declared as special synchronisation variables:

condition X;
● With two designated operations:

wait: suspend the calling process (releasing lock!)

signal/notify: if there are suspended processes on
this variable, wake one up

● Wait will always wait, signal may have nothing
to wake up – Very different from semaphore
semantics!

63

Examples in Progviz!

On lab computer:
/courses/TDDE47/progviz.sh

At home:
https://storm-lang.org/index.php?q=01-Introduction%2F01-Downloads

(Progvis created by Filip Strömbäck)

https://storm-lang.org/index.php?q=01-Introduction%2F01-Downloads

64

Final remarks

● Concurrency is hard!
And thus worthwhile to be an expert in!

● Get some practice
– Pintos labs

– Deadlock empire

– Exam synchronization question

	Sida 1
	Sida 2
	Sida 3
	Slide84
	Slide152
	Slide153
	Slide154
	Sida 8
	Sida 9
	Slide85
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Slide162
	Mutual exclusion
	Sida 18
	Requirements on a Solution to the Critical-Section Problem
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	First attempt
	Second attempt
	Third attempt
	Sida 27
	Sida 28
	Hardware Support for Synchronization
	TestAndSet Instruction
	Solution using TestAndSet
	Swap Instruction
	Solution using Swap
	Sida 34
	Sida 35
	Programming language support
	Next: more support
	Semaphores
	Sida 39
	Sida 40
	Sida 41
	Originally: Spin locks
	Sida 43
	Sida 44
	Sida 45
	Sida 46
	Counting semaphores
	Sida 48
	Sida 49
	Sida 50
	Sida 51
	Sida 52
	Sida 53
	Slide150
	Sida 55
	Sida 56
	Sida 57
	Pitfalls with Semaphores
	Sida 59
	Slide86
	Slide87
	Condition variables
	Sida 63
	Sida 64

