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Reading guidelines

● Silberschatz, Galvin and Gagne, Operating 
System Concepts
– 9th edition: Chapter 6.1-6.9

– 10th edition: Chapter 6.1-6.7 + 7.1-7.3

● Hint
– Deadlock empire: https://deadlockempire.github.io/

– Vinjett for TDDE47 

https://deadlockempire.github.io/
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Recall from lecture 3 (processes)

● Inter-process communication
– Shared variables

– Message passing

● Message passing is clean but gives high 
overhead

● What about Shared variables?



Basic operation 
● Communication using shared variables

P1 P2

Variable X

Writes to X Reads from X



Sharing variables

● Often requires atomicity
● Consider the two processes using a shared 

variable x initialised at 0:
● What is the outcome of running them both to 

completion?

P1 {
x = x + 1;

}

P0 {
x = x + 1;

}



Machine instructions

x = x+1 is really:

LD R, x  // load register R from x

INC R    // increment register R

ST R, x  // store register R to x 
● The program will be compiled, and the 

compiler may optimize for a specific 
architecture

● What can you assume about the compiler, 
the runtime environment and the 
architecture? (Nothing, or read the specs!)



Non-atomic operations

Can become:
P0: LD R, x  
P0: INC R

P1: LD R, x
P1: INC R

P0: ST R, x
P1: ST R, x 

P1 {

x = x + 1;

}

P0 {

x = x + 1;

}



How?
// Example of events that may couse this 

interleaving
P0: LD R, x  
P0: INC R
// Timer interrupt, P0 time slice run out, P1 

scheduled
P1: LD R, x
P1: INC R
// Device interrupt, long handling, P1 time slice run 

out, P0 scheduled
P0: ST R, x
// P0 completed, P1 scheduled
P1: ST R, x 
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P1 {

x = x + 1;

}

P0 {

x = x - 1;

}

What are the possible results after both 
thread run once? X start at 255. Select all 
possible results.

● 254

● 255

● 256

● 510



Shared data
● Primitive data types

– Atomic access often supported by hardware

– May not require special protection (read the 
specs!), but the compiler must be made aware of 
atomic intentions!

● Composite data types
– E.g., update date, time and stock value

– Atomic access needs to be implemented in 
software



Shared data example

M = [

 ('A', 4),

 ('F', 0),

 ('K', 7),

 ('X', 1),

];



Shared data example

● Task to run in thread A and thread B:

– Check if C in M, memorize position

– If so, increment value of memorized pos

– If not, add C to M with value 1
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Shared data example

● Alternate task to run in thread B:

– Check if C in M, memorize position

– If so, decrement value at memorized pos

– If decr. value == 0, remove pos from M



Live performance!

– Thread A:
● Check if 'G' in M, memorize position

– Thread B:
● Check if 'G' in M, memorize position
● If so, increment value of memorized pos
● If not, add 'G' to M with value 1

– Thread A:
● If so, increment value of memorized pos
● If not, add 'G' to M with value 1



Live performance!

– Thread B:
● Check if 'F' in M, memorize position
● If so, decrement value at memorized pos

– Thread A:
● Check if 'F' in M, memorize position
● If so, increment value of memorized pos
● If not, add 'G' to M with value 1

– Thread B:
● If decr. value == 0, remove pos from M



Race condition

If the order of operations performed by 
multiple processes can affect the outcome of 
the computation, and if this is unintended, 
then the system suffers from a race 
condition
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Critical section

● Consider n processes that need to exclude concurrent 
execution of some parts of their code      

     Process Pi {

     entry-protocol

     critical-section

     exit-protocol

     non-critical-section

   }

● Fundamental problem to design entry and exit 
protocols for critical sections 



Critical-Section Problem

● Mutual Exclusion

● Progress

● Bounded waiting



Mutual Exclusion

If process P is executing in critical section C, 
then no other processes can be executing in C 
(accessing the same shared data/resource).

Note: Several code sections may be labelled C if 
they touch the same shared data/resource. Ony 
one process should be allowed in any section C.



Progress

If no process is executing in critical section C 
and there exist some processes that wish to 

enter C, then the selection of the process that 
will enter C next cannot be postponed 

indefinitely.

Note: It's about making sure someone is entering 
the section if no-one is working there, making 

progress on the work in the section.



Bounded waiting

A bound must exist on the number of times that 
other processes are allowed to enter critical 
section C after a process has made a request 
to enter C and before that request is granted.

● Assume that each process executes at a nonzero speed 
● No assumption concerning relative speed of the N 

processes

Note: Progress is not enough, we need to avoid 
starvation!



Solutions for critical section problem

● Software-only solutions 

● Solutions with hardware support

● Synchronization primitives



Software-only solutions
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Dijkstras mutual exclusion (1965)

Process P1 
while (true) {
  flag1 = up
  while (flag2 == up) {
    // do nothing  
  }
  critical section
  flag1 = down
  non-critical section
}

Process P2 
while (true) {
  flag2 = up
  while (flag1 == up) {
    // do nothing  
  }
  critical section
  flag2 = down
  non-critical section
}
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Second attempt

Process P1 
while (true) {

while (flag2 == up) {
  //do nothing 

  }
  flag1 = up
  critical section
  flag1 = down
  non-critical-section
}

Process P2 
while (true) {

while (flag1 == up) {
  //do nothing 

  }
  flag2 = up
  critical section
  flag2 = down
  non-critical-section
}
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Third attempt

Process P1 

while (true) {

  while (turn == 2) {

    //do nothing (busy waiting)

  }
  critical section

  turn = 2

  non-critical-section

}

Process P2 

while (true) {

  while (turn == 1) {

    //do nothing (busy waiting)

  }
  critical section

  turn = 1

  non-critical-section

}
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Peterson’s algorithm

Process P1

while (true) {

flag1 = up // P1 want to enter

Turn = 2   // let P2 go first

while (flag2 == up) and

         (turn == 2) { 

     //do nothing, wait for P2

}

critical section

flag1 = down // P1 leaves

non-critical-section

}

Process P2

while (true) {

  flag2 = up // P2 want to enter

  Turn = 1   // let P1 go first

  while (flag1 == up) and 

        (turn == 1) { 

    //do nothing, wait for P1

  }

  critical section

  flag2 = down // P2 leaves

  non-critical-section

}

● What assumptions about compiler and 
hardware must hold true?
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Hardware support



Hardware Atomic Support for 
Synchronization

● TestAndSet: test memory word and set value 
atomically

● Swap: swap contents of two memory words atomically

● CompareAndSwap: compare memory and set 
atomically

● https://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-
Builtins.html

If multiple atomic instructions 
are executed simultaneously (each on a different 
CPU in a multiprocessor), then they take effect 

sequentially in some arbitrary order.



Definition in pseudocode:

         boolean TestAndSet (boolean *target) {
          boolean old_value = *target

          *target = true

          return old_value

       }

TestAndSet Instruction 
Atomic: state only 
observable after all 

instructions are done (or 
none of them).



CS Solution using TestAndSet

lock = false //shared variable

while (true) {
  while (TestAndSet (&lock)) {    
      // do nothing (busy waiting)
  }
  critical section
  lock = false
  non-critical section 
} 



Swap Instruction

● Definition in pseudocode:

      void Swap (boolean *a, boolean *b) {
               boolean save_a = *a

               *a = *b

               *b = save_a

          }



CS Solution using Swap
lock = false    //shared variable

while (true) {

    tmp = true;   //local variable (not shared)

    while ( tmp == true) {

      swap (&lock, &tmp );    // busy waiting…

    }

    critical section

    lock = false;

    non-critical section

  }



CompareAndSwap Instruction

● Definition in pseudocode:

   int CompareAndSwap (int *ptr, int cmp, int new) {
           int old = *ptr

           if ( *ptr == cmp )

               *ptr = new

           return old

     }



Synchronization primitives
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Programming language support

● Would be useful to have support from an 
operating system or a programming language 

● Modern programming languages have explicit 
support:
– java.util.concurrency provides good support.

– Ada: built-in run-time support with explicit task 
synchronisation entry points (Rendezvous)

– Python: threading import *

– C: pthreads, C++: std::thread
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Synchronization primitives

● Abstraction layer
– Easier to use, but must be implemented

● Do not solve all synchronization problems
● Examples:

– Semaphores

– Locks

– Condition variables

– Monitors
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Semaphores

● A semaphore S is a non-negative integer 
variable on which only two atomic operations 
wait and signal can be performed

wait(S):

wait until S > 0

    S = S-1 

signal(S):

S = S+1
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CS solution with semaphore

semaphore S = 1

while (true) {
  wait(S)
  critical section
  signal(S)
  non-critical section
}
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Atomicity of semaphore implementation must be 
provided by the supporting environment 
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Implementation considerations
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Spin locks

● All entry protocols so far (including semaphore 
wait) uses a busy wait loop – called a spin lock

● Sometimes necessary (kernel-level 
programming)

● Wasteful for synchronization of user processes
● Ok for short waits when thread on other core is 

expected to complete fast (real hw 
concurrency)



Eliminate Busy Waiting 

● With each semaphore there is an associated 
waiting queue. Each entry in a waiting queue 
contains:
– Process table index, e.g. pid

– Pointer to next entry

● Two operations:
– block – place the process invoking the operation on 

the      appropriate waiting queue.

– wakeup – remove one of processes in the waiting 
queue and place it in the ready queue.

                        



Samaphore datastructure with a queue

typedef struct { 
    int value; 
    struct process *wqueue; 
} semaphore;



Wait implementation w/o busy waiting

void wait ( semaphore *S ) {
  S->value--;
   if (S->value < 0) { 

        add this process to S->wqueue;
        block();  // I release the lock on the critical
     }            // section for S and release the CPU
   }

 

● This code is in itself a critical section, what if 
two threads read value == 1 “simultaneous”?



Signal Implementation w/o busy waiting

void signal ( semaphore *S ) { 
     S->value++;
     if (S->value <= 0) { 
       remove a process P from S->wqueue;

    wakeup (P);  // append P to ready queue
     }
   }
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Counting semaphores

● When more than one instance of a resource is 
available, e.g. print servers

● Processes can use up to max available but no 
more

● The semaphore can be initialised to provide 
access for n processes

● Keeps track of available resources
● Good for time sync – make sure X happend in 

thread A before performing Y in thread B
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Semaphore initialization

● Crutial to determine the semantics of the 
semaphore

● Must be stated in your exam answers!
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A semaphore with maximum value 1 is called a 
binary semaphore, useful to implement lock.
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Locks

● Binary semaphore

● Operations often called
– Acquire (instead of wait)

– Release (instead of signal)

● Only the thread that acquired the lock can 
release it – built in error checks!
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Complex data structures



52

Complex data structures

● Data is often structured 
– Lists

– Objects

– Structs

● Consistency requirements 
– cannot change one part of the data structure but not 

the other part
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Two options

● One big lock
– Safe (no synchronization problems)

– Slow (reduces concurrency of solution)

● Multiple synchronization primitives
– Fast (allows higher degree of synchronization)

– Potentiall dangerous (introduces new concurrency 
problems)



Multiple synchronization primitives
● Conditional action

– Purpose is to avoid busy waiting

– Examples:
● Compute the interest when all transactions have been 

processed
● Book a flight seat only if seats are available

● Mutual exclusion
– Purpose is to avoid errors

– Example:
● Two customers shall not be booked on the same seat



Deadlock and starvation
● Deadlock – two or more processes are waiting 

indefinitely for an event that can be caused 
only by some of the waiting processes. But 
they can not cause the event when waiting...

● Starvation  – indefinite blocking.  Other 
threads keep getting priority to a resource 
resulting in one thread waiting indefinitly.
– A process may never be removed from the 

semaphore queue in which it is suspended.



Focus on the resource (data)!

● Non-shared data does not need protecting
– Automatic (stack, local) variables

● Same resource must be protected with the 
same synchronization primitive

● Consistency requirements and access patterns 
determine the granularity of synchronization



Hints

● Identify all shared variables/data/resources
● Understand the purpose of the code, what is 

the intentions, and what data states should be 
possible/impossible?

● Identify where knowledge of data is built up in 
the local thread (result of calculation or check 
base on the shared data)

● Strive to place synch primitives with the data to 
protect for most paralellism (global synch 
primitives lead poor parallelism)



Common mistakes
● Omitting wait (mutex) or signal (mutex) (or 

both) 
● wait (mutex)  ….  wait (mutex)
● wait (mutex1) …. signal (mutex2) 
● Multiple semaphores with different orders of 

wait() calls 
– Example: Each philosopher first grabs the 

chopstick to its left    risk for deadlock!

● Not counting available resources



Two more useful synchronization 
primitives

● Condition variables

● Monitors (in lecture 9)



Example: bounded buffer

P1 P2

Writes to buffer Reads from buffer

Finite buffer



Issues
● Writing to full buffer (conditional action)

● Reading from empty buffer (conditional 
action)

● Two write operations to the same element 
(mutual exclusion)
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Condition variables

● Declared as special synchronisation variables:

condition X;
● With two designated operations:

wait: suspend the calling process (releasing lock!)

signal/notify: if there are suspended processes on 
this variable, wake one up

● Wait will always wait, signal may have nothing 
to wake up – Very different from semaphore 
semantics!
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Examples in Progviz!

On lab computer:
/courses/TDDE47/progviz.sh

At home:
https://storm-lang.org/index.php?q=01-Introduction%2F01-Downloads

(Progvis created by Filip Strömbäck)

https://storm-lang.org/index.php?q=01-Introduction%2F01-Downloads
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Final remarks

● Concurrency is hard! 
And thus worthwhile to be an expert in!

● Get some practice
– Pintos labs

– Deadlock empire

– Exam synchronization question 
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