
1

TDDB68/TDDE47 Concurrent programming
and operating systems

Lecture:
CPU Scheduling

Klas Arvidsson

Slides by Adrian Pop and Mikael Asplund

Copyright Notice:
Thanks to Christoph Kessler and Simin Nadjm-Tehrani for much of the material behind these slides.

The lecture notes are partly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System Concepts”, 7th ed., Wiley, 2005). No part of
the lecture notes may be reproduced in any form, due to the copyrights reserved by Wiley. These lecture notes should only be used for internal

teaching purposes at the Linköping University.

Reading

● Silberschatz et al. 9th and 10th editions
– Chapter 5.1-5.5, 5.8

● Lab notice 2024:
– The function “poweroff” mentioned in lab material

has been renamed in the Pintos codebase.

– The new name is “shutdown” and it resides in
“devices/shutdown.h”

Scheduling

● A form of resource allocation

● Resources
– CPU

– Bus

– Router

– ...

● Demand exceeds resources

Related problems

Non-preemptive vs preemptive

Examples:
Network transmissions
I/O operations
Atomic operations

Examples:
Multitasking

Static vs dynamic scheduling

• Static (off-line)
– complete a priori knowledge of the task set and its

constraints is available
– hard/safety-critical system

• Dynamic (on-line)
– partial taskset knowledge, runtime predictions
– firm/soft/best-effort systems, hybrid systems

Recall: Process states

Scheduler

● Resides in the kernel
– Operating system is responsible for managing

processes

● Periodically called by a timer interrupt

● Length of timer determines how frequent
context switching can occur

Burstiness

Consequence of burstiness

● Processes can in some cases be treated as a
set of bursts (jobs)

● Each job has a certain execution time (burst
time)

● CPU-bound vs IO-bound

menti.com 3513 0716

Burst time Interactive Waited

1 5ms Y 1ms

2 10ms N 20ms

3 2ms N 10ms

4 15ms Y 15ms

5 10ms N 40ms

Which job shuld run first?

2023 & 2022

2024

Which job would run?

What is a good scheduler?

General scheduling Criteria
● CPU utilization

– keep the CPU as busy as possible

● Throughput

– # of processes that complete their execution per time unit

● Deadlines met?

– in real-time systems

● Energy usage

– Mobile and cloud-based computing

– In particular for multi-core

Time-based Scheduling Criteria
● Turnaround time

time to execute a particular job

● Waiting time

the time a process has been waiting in the ready
queue

● Response time

time it takes from when a request was submitted
until the first response is produced (until it start)

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

● Suppose that the processes arrive in the order: P1 , P2 , P3

P1 P2 P3

24 27 300

The Gantt Chart for the schedule is:

FCFS Performance

P1 P2 P3

24 27 300

Waiting time Pi = start time Pi – time of arrival for Pi

FCFS Performance

● Waiting time for P1 = 0; P2 = 24; P3 = 27

● Average waiting time: (0 + 24 + 27) / 3 = 17

● Average turnaround time: (24 + 27 + 30) / 3= 27

P1 P2 P3

24 27 300

Waiting time Pi = start time Pi – time of arrival for Pi

FCFS normally used for non-preemptive batch
scheduling, e.g. printer queues

(i.e., burst time = job size)

Can we do better?

Yes!
Suppose that the processes arrive in the order P2 , P3 , P1

● The Gantt chart for the schedule is:

● Waiting time for P1 = 6; P2 = 0, P3 = 3

● Average waiting time: (6 + 0 + 3)/3 = 3 - much better!

● Average turnaround time: (3 + 6 + 30) / 3) = 13

P1P3P2

63 300

Convoy effect

● Short process behind long process
● IO-bound process delayed by CPU-bound

process limits use of IO-devices

● Idea: shortest job first?

Shortest-Job-First (SJF) Scheduling
● Associate with each process the length of its

next CPU burst.

● Use these lengths to schedule the shortest
ready process

● SJF is optimal
– gives minimum average waiting time for a given

set of processes

Two variants of SJF
● nonpreemptive SJF – once CPU given to the

process, it cannot be preempted until it
completes its CPU burst

● preemptive SJF – preempt if a new process
arrives with CPU burst length less than
remaining time of current executing process.
– Also known as Shortest-Remaining-Time-First

(SRTF)

Process Arrival Time Burst Time

 P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

● with non-preemptive SJF:

● Average waiting time = (0 + 6 + 3 + 7) / 4 = 4

● Average turnaround time = (7 + 10 + 4 + 11) /4 = 8

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

Example of Preemptive SJF
Process Arrival Time Burst Time

 P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4
● with preemptive SJF:

● Average waiting time = (9 + 1 + 0 +2) / 4 = 3
● Average turnaround time = (16 + 5 + 1 + 6) /4 = 7

P1 P3P2

42 110

P4

5 7

P2 P1

16

Predicting Length of Next Burst
● Need to estimate!
● Based on length of previous CPU bursts,

using exponential averaging:

1. t n=actual length of nth CPU burst
2 . τn+1= predicted value for the next CPU burst
3 . α , 0≤α≤1
4 . Define: τ n+1=α tn+(1−α) τn .

+

 =0.5

Extreme cases

● =0

– n+1 = n

– New data does not count

● =1

– n+1 = tn

– Only the latest CPU burst counts

τ n+1=α tn+(1−α)τn .

Exponential Averaging
All other cases

● Expand the formula:

n+1 = tn + (1 -) tn-1 + …

 +(1 -)j tn-j + …

 +(1 -)n +1 0

● Since both and (1 -) are less than 1,
each successive term has less weight than its
predecessor

SJF is a special case of priority scheduling

Priority Scheduling
● A priority value (integer) is associated with each

process

● The CPU is allocated to the process with the highest
priority (often smallest integer highest priority)
– preemptive

– nonpreemptive

● Allows giving high priority to important jobs
– What are important jobs?

Challenge for Priority Scheduling
● Problems:

– Starvation – low-priority processes may never
execute

– Long jobs, even if delayed will monopolize the
CPU

● Solution:
– Aging – as time progresses increase the priority of

waiting(ready) processes

● How to balance age and priority?

What if we make aging the main scheduling
factor?

Round Robin (RR)
● Each process gets a small unit of CPU time:

– time quantum, usually 10-100 milliseconds.

● After this time has elapsed, the process is
preempted and added to the end of the ready
queue.

Round Robin performance
● Assume n processes in the ready queue and

time quantum q

● Each process gets 1/n of the CPU time in
chunks of at most q time units at once.

● No process waits more than (n-1)q time units.

Example: RR with Time Quantum q = 20
Process Burst Time

P1 53

 P2 17

 P3 68

 P4 24

● The Gantt chart is:

● Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Choice of time quantum (q)
● q very large FCFS

● q very small many context switches

● q must be large w.r.t. context switch time,
otherwise too high overhead

RR: Turnaround Time Varies With Time Quantum

Problems with RR and Priority Schedulers

● Priority based scheduling may cause starvation
for some processes.

● Round robin based schedulers are maybe too ”fair”...
we sometimes want to prioritize some processes.

● Solution: Multilevel queue scheduling ...?

Multilevel Queue
● Ready queue is partitioned into separate queues, e.g.:

– foreground (interactive)
– background (batch)

● Each queue can have its own scheduling algorithm
– foreground – RR
– background – FCFS

Inter-queue scheduling

Round Robin queue

FCFS queue

CPU
?

Inter-queue scheduling
● Fixed priority scheduling

– Serve all from foreground queue, then from background queue.

– Possibility of starvation.

● Time slice

– Each queue gets a certain share of CPU time
which it can schedule amongst its processes

– Example: 80% to foreground in RR, 20% to background in
FCFS

Multilevel Feedback Queue (MFQ)

● Example with three queues:
– Q0 – RR with q = 8 ms

– Q1 – RR with q = 16 ms

– Q2 – FCFS

high

low
priority

Multilevel Feedback Queue
● A process can move between the various

queues
– aging by moving to higher prio queue

– Higher prio to IO-bound

– Lower prio to CPU-bound

● Time-sharing among the queues in priority
order
– Processes in lower queues get CPU only if higher

queues are empty

Windows Scheduling

https://www.microsoftpressstore.com/articles/article.aspx?p=2233328

https://www.microsoftpressstore.com/articles/article.aspx?p=2233328

A more general concept

Proportional fairness

● Assume n long-running processes

● Give each process i a weight w
i

● During some time interval T, each process i is
given the following access time

w
i
 * T / (w

1
 + w

2
 + … + w

n
)

Generalized Processor Sharing

● Work conserving (CPU not
idle when there is work to do)

● Guarantees proportional
fairness (i.e., no starvation)

● Works as follows:
– Assign a logical queue for each

process / process group

– Serve an infinitesimal amount from
each queue

2

1

3

Implementing GPS

● Perfect implementation impossible due to
– Non-preemption

– Non-zero time quanta

– Not knowing when the next (high-priority) job
arrives

Problematic case, q = 5

Job Arrival time Length Prio

1 0 4 1 (low)

2 0 9 2 (medium)

3 5 9 3 (high)

Expected finish time at t=0: Job 1 at t=12, Job 2 at t=13
Expected finish time at t=4: Job 2 at t=13
Expected finish time at t=9: Job 2 at t=19, Job 3 at t=24

Approximations

● Networking:
– Weighted Fair Queuing (WFQ)

● CPU Scheduling in Linux
– Completely Fair Scheduler

● Basic idea: Schedule packets/jobs as if GPS
was running (don’t care about the future)

Multiprocessor Scheduling

Multiprocessor variants
● Multiprocessor (SMP)

– homogeneous processors, shared memory

● (homogeneous) Multi-core
processors
– cores share L2 cache and memory

● Simultaneous multithreading
– Take advantage of instruction-

level parallelism

CPUCPU CPUCPU CPUCPU

memorymemory

…

Common vs local queue

Processor-local ready queues

● Load balancing by task migration

● Push migration vs. pull migration (work stealing)
– Linux: Push-load-balancing every 200 ms,

pull-load-balancing whenever local task queue
is empty

Affinity-based Scheduling
● Migration should be avoided due to the cache

Cache Cache

Main Memory

CPU CPU

Why does the cache influence
scheduling?

● Cache contains copies of data recently
accessed by CPU

● If a process is rescheduled to a different CPU
(+cache):
– Old cache contents invalidated by new accesses

– Many cache misses when restarting on new CPU

 much bus traffic and many slow main memory
accesses

Affinity-based scheduling
● Policy: Try to avoid migration to other CPU if

possible.
● A process has affinity for the processor on

which it is currently running
– Hard affinity (e.g. Linux):

Migration to other CPU is forbidden

– Soft affinity (e.g. Solaris):
Migration is possible but undesirable

Scheduling Communicating Threads
● Frequently communicating threads / processes

(e.g., in a parallel program) should be scheduled
simultaneously on different processors to avoid idle times

CPU 0:

CPU 1:

A0

A1B0 A1

A0

B0

B1 B1 A0

B0

B1

A1

CPU 0:

CPU 1:

A0

A1 B0 A1

A0

B0

B1 B1 A0

B0

B1

A1

timeTime
quantum

Common ready queue

Supported by Linux, Solaris, Windows XP, Mac OS X

● Variants
– Job-blind scheduling (FCFS, SJF, RR – as above)

● schedule and dispatch one by one as any CPU gets available
– Affinity based scheduling

● guided by data locality (cache contents, loaded pages)
– Co-Scheduling / Gang scheduling for parallel jobs

Energy-aware scheduling

● Power consumption grows quadratically with
CPU “speed”
– Reduce frequency and voltage in cases of low load

● Turning off a core or a CPU allows even more
power saving
– Requires that the remaining cores run at a higher

speed

● Rotating which core to run on to reduce cooling
problems

Co-Scheduling / Gang Scheduling
 Tasks can be parallel (have >1 process/thread)

 Global, shared RR ready queue

 Execute processes/threads from the same job simultaneously
rather than maximizing processor affinity

 Example: Undivided Co-scheduling algorithm

 Place threads from same task in adjacent entries in the global queue

 Window on ready queue of size #processors

 All threads within same window execute in parallel for at most 1 time quantum

 RR fair (no indefinite postponement)

 Programs designed to run in parallel profit from multiprocessor env.

 May reduce processor affinity

A1 A2 A3 A4 B1 B2 B3 C1 C2 C3 C4 C5 …

Summary: CPU Scheduling
● Goals:

– Enable multiprogramming

– CPU utilization, throughput, ...
● Scheduling Algorithms

– Preemptive vs Non-preemptive scheduling

– RR, FCFS, SJF

– Priority scheduling

– Multilevel queue and Multilevel feedback queue
● Multiprocessor Scheduling

Next time

● Synchronization Ch. 6.1-6.7 + 7.1-7.3

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	CPU Scheduler
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Scheduling Criteria
	First-Come, First-Served (FCFS, FIFO) Scheduling
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	FCFS Scheduling (Cont.)
	Sida 23
	Shortest-Job-First (SJF) Scheduling
	Sida 25
	Example of Non-Preemptive SJF
	Example of Preemptive SJF
	Predicting Length of Next CPU Burst
	Sida 29
	Examples of Exponential Averaging
	Sida 31
	Sida 32
	Priority Scheduling
	Sida 34
	Sida 35
	Round Robin (RR)
	Sida 37
	Example: RR with Time Quantum q = 20
	Sida 39
	RR: Turnaround Time Varies With Time Quantum
	Problems with RR and Priority Schedulers
	Multilevel Queue
	Sida 43
	Sida 44
	Example of Multilevel Feedback Queue
	Multilevel Feedback Queue
	Sida 47
	Sida 48
	Sida 49
	Sida 50
	Sida 51
	Sida 52
	Sida 53
	Sida 54
	Sida 55
	Sida 56
	Sida 57
	Affinity-based Scheduling
	Sida 59
	Sida 60
	Scheduling Communicating Threads
	Sida 62
	Sida 63
	Co-Scheduling / Gang Scheduling
	Summary: CPU Scheduling
	Sida 66

