TDDEA47/TDDEGS
Lab 2: Basic system calls

Dag Jonsson

January 29, 2025

1 Goal

In this assignment you are supposed to learn about user programs and system
calls. The main goal is to clearly understand systems calls in user programs by
implementing a set of system calls in Pintos.

2 Overview
This assignment covers:

e An introduction to user programs in Pintos.
e System calls.
e Layout of the user memory and the kernel memory in Pintos.

¢ Input/output management.

User Programs

An operating system must be able to run user programs, each with their own
memory space. Starting from this assignment you will be using real user land
programs and run them under Pintos. Here are the features and limitations of
Pintos user programs:

e They should be written in C.

o Floating point operations cannot be used because Pintos does not save
the corresponding information during process switch.

o Multithreaded processes are not supported, therefore we will use the words
thread and process interchangeably (although it might not be the case for
other operating systems).



Lab 2: Basic system calls TDDE47/TDDEG8

¢ Pintos user programs can use only those system calls which you will im-
plement in this and the following labs.

e The necessary system call for dynamic memory allocation, e.g. with
malloc is not implemented and it will not be implemented in terms of
these labs. Hence, you cannot use dynamic data structures inside a user
program. (Bear in mind that you can still use malloc in kernel code!)

e A user program needs to be copied to simulated disk used by Pintos.

System Calls

The communication between the user program and the kernel is done by
system calls. System calls can be seen as special functions, called from the
user program and performed by the kernel. Usually computers use interrupts
to accomplish that switch from user code to system code, and so does the x86-
machine.

When the programmer wants to invoke a system call in a user program, he
or she calls one of the functions defined in 1ib/user/syscall.h. Those func-
tions are implemented in 1lib/user/syscall.c and do nothing except placing
function’s arguments with the respective system call number on the stack and
raising an internal (software) interrupt (0x30). The raised interrupt makes the
processor temporarily stop the user program, change from the user to the sys-
tem mode and jump to the interrupt handler syscall_handler defined in the
kernel (userprog/syscall.c).

The interrupt handler is the entrance to the kernel. All communications
with the kernel via system calls must go through it. The interrupt handler
must then determine what system call it is and handle it properly. Look into
threads/interrupt. [hlc] and clearly understand the main structures and
main functions of the interrupt handler in Pintos. Pay attention especially
on intr_frame structure and stack pointer into it. You will need to use this
stack pointer in order to access system call arguments.

Note, that there are two different pairs of files with the same names:
lib/user/syscall. [h|c] and userprog/syscall. [h]c].

The first pair is visible from the user program side and is merely a wrapper
to raise an interrupt, while the second one is having the real implementation of
the system calls. Currently, the interrupt handler contains no useful code and
forces the calling program to exit.

In this assignment you will write the OS code to implement a number of
system calls as well as some simple user programs to test your implementation.
You can find names of system calls in Pintos by looking into 1ib/syscall-nr.h.

Examples of system calls are:

e create - creates a file.

e open - opens a file.

Page 2



Lab 2: Basic system calls TDDE47/TDDEG8

e close - closes a file.

o read - reads from a file or the console (the keyboard).
o write - writes to a file or the console (the monitor).

e halt - halts the processor.

e sleep - pause the execution of a process for given time.

e exit - terminates a program and deallocates resources occupied by the
program, for example, closes all files opened by the program.

e seek - sets position in a file for read and write system calls.
o tell - returns the position in a file.
o filesize - returns the file size.

e remove - removes a file from the file system.

The following are also system calls, which you will continue implementing
in the following labs where you will have to handle several processes in memory
at the same time.

e exec - Loads a program into memory and executes it in its own thread or
process.

e wait - Waits for a child process to exit and returns its exit status.

3 Preparation

3.1 System Calls

Get familiar with the code in userprog/syscall. [hlc], threads/interrupt.
[hlc], 1ib/syscall-nr.h, and 1lib/user/syscall. [h]c] files. The latter files
contain some assembler code, which just puts arguments and the respective sys-
tem call number to registers and raises the interrupt 0x30. You should get the
clear image of the system call architecture in Pintos after studying those files
and reading the documentation:

e Interrupt Handling
e« System Call Details

e Accessing User Memory Section

Page 3


https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_6.html#SEC107
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_3.html#SEC52
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_3.html#SEC39

Lab 2: Basic system calls TDDE47/TDDEG8

Preparatory question 0:
(a) What is the idea behind system calls?

(b) Why cannot the code of the system calls be available simply as a library
to user processes? (Tip: you may look at an article in Wikipedia for the an-
Swer).

Preparatory question 1:
Pintos uses one interrupt (0x30) for all system calls, so there is only one inter-
rupt handler syscall handler to be called for different system calls.

(a) How it is possible to distinguish in syscall _handler which system call it
is?

(b) Where are the arguments of a system call stored (if there are any) and
how can you access them?

Memory Issues and Argument Passing
Read about Pintos virtual memory layout in the corresponding section of the
Pintos documentation.

Preparatory question 2:
(a) Where are the user-mode stack and the kernel-mode stack of a process lo-
cated?

(b) How can you address the user-mode stack in the kernel code, particu-
larly, in an interrupt handler?

(¢) What is the reason of having two stacks instead of one?

Preparatory question 3:
When a user program executes a system call like open(), an address to a string
containing the file name is provided as an argument.

(a) In which memory is this string stored, and (b) how can we access it in the
kernel code?

(c) Specify the situations when accessing the data via that pointer can lead
to problems.

(d) What can be done about it?

Page 4



Lab 2: Basic system calls TDDE47/TDDEG8

3.2 Making user programs

You already have a number of simple user programs in examples. You can
compile them by issuing make -j in that directory. Modify examples/Makefile
whenever you wish to compile your own user programs (you will find instructions
inside the Makefile), it’s also a good idea to modify the examples/.gitignore
to ignore the resulting binary. Write all your test programs in the examples
directory.

Simulated Disk
Before running user programs first you have to create a simulated disk, for-
mat it and copy user programs there.

Go to userprog and run make -j. Then, go to userprog/build and issue
the command:

pintos-mkdisk filesys.dsk --filesys-size=2

This will create a file filesys.dsk with a 2MB simulated disk in the direc-
tory. Format the disk with the command:

pintos -- -f —q

Copy Pintos user programs to the simulated disk with the command: (Re-
member to copy already compiled programs (binaries), not the source code files.)

pintos -p programname -a newname -- —q

Most probably you will copy user program from the examples directory. Then
the command will look like this:

pintos -p ../../examples/programname -a programname -- -—q

If you need to copy a file from the simulated disk, use the command:

pintos -g filename -- —q
or
pintos -g filename -a newname -- -q

As you see, the only difference is in the switch: -p is used to put files to the disk
and -g to get a file from the disk. If you need to run a user program that has
been already copied:

Page 5



Lab 2: Basic system calls TDDE47/TDDEG8

pintos -- run programname

Furthermore you can also list files with 1s, remove files with rm and print
contents of a file with cat. Several of these commands can be run on the same
line, e.g.:

pintos -- 1s rm a rm b 1s

will list files, delete the files a and b and then list files again.

3.3 File System

The current distribution contains a very simple but complete file system. Get
acquainted with file system interface (which is available only in the kernel code!)
in the filesys/filesys. [hlc] files. You do not have to modify that code in
this lab, so it is enough if you have a look at the available functions and read
their documentation. The same concerns the files filesys/file. [hl|c]. It is
good to look into other files in the filesys directory, although it is not strictly
necessary to complete this lab.

Read about file system limitations in the corresponding section of the Pintos
documentation. Although the access to files are not synchronized in the current
implementation of the file system, you should not worry about it at this point.

You can read more about the filesystem at the |3.1.2 Using the File Sys-
tem section.
Preparatory question 4:
When a file is opened, a file id (also know as file descriptor) is returned to the
user program, which is used to refer to a specific opened file when doing file
operations. Explain how to generate file identifiers and map them to struct
file pointers that are created in the kernel.

4 Assignment

The assignment is to implement the following system calls:
(Suggested order of implementation is the order of this list)

void sleep(int millis)

Makes the current process sleep for millis milliseconds. You can find some
useful functions in devices/timer.h. This system call will be used later in the
lab series.

Note: This system call does not currently exist in userspace, so you will also
have to modify 1ib/user/syscall. [h|c] and lib/syscall-nr.h to make it
possible for user programs to call sleep().

Page 6


https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_3.html#SEC35
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_3.html#SEC35

N

Lab 2: Basic system calls TDDE47/TDDEG8

void halt (void)

Shuts down the whole system. Use shutdown_power_off () for that (declared
in devices/shutdown.h). Do not use this system call to terminate your user
program!

bool create (const char *file, unsigned initial_size)
Creates a new file called file, initially initial_size bytes in size. Returns true
if successful, false otherwise.

int open (const char *file)

Opens the file called file. Returns a non negative integer handle called a "file
descriptor" (fd), or -1 if the file could not be opened. File descriptors numbered
0 and 1 are reserved for the console: fd 0 (STDIN_FILENO) is standard input, fd
1 (STDOUT_FILENO) is standard output. You do not have to open the standard
input and output before using them.

Each process has an independent set of file descriptors. A user program
should be able to have up to 128 files open at the same time. File descriptors
are not inherited by child processes. Note that Pintos does not manage file
descriptors yet, you need to implement this feature yourself.

When a single file is opened more than once, whether by a single process
or different processes, each open returns a new file descriptor. Different file de-
scriptors for a single file are closed independently in separate calls to close and
they do not share a file position.

If you add code outside the userprog directory, protect it with the following
(to make lab 3 work later on):

#ifdef USERPROG
. YOUR CODE

3 #endif

void close (int fd)
Closes file descriptor fd, freeing up any memory allocated in the kernel.

int write (int fd, const void *buffer, unsigned size)
Writes size bytes from buffer to the open file fd. Returns the number of bytes
actually written or -1 if the file could not be written.

Writing past end-of-file would normally extend the file, but file growth is not
implemented by the basic file system. The expected behavior is to write as
many bytes as possible up to end-of-file and return the actual number written
or -1 if no bytes could be written at all.

Fd 1 writes to standard out, which can be done with the putbuf () function
(declared in 1ib/kernel/stdio.h) .

Page 7



Lab 2: Basic system calls TDDE47/TDDEG8

int read (int fd, void *buffer, unsigned size)

Reads size bytes from the file open as fd into buffer. Returns the number of
bytes actually read, or -1 if the file could not be read (due to a condition other
than end of file).

Fd 0 reads from the keyboard using input_getc() (defined in devices/input.
h). The user should be able to see what characters have been entered.

bool remove (const char *file_name)
Removes the file with the name file_name. Returns true if successful, false
otherwise.

int filesize (int fd)
Returns the file length of the open file fd.

void seek (int fd, unsigned position)
Sets the current position in the open file fd to position. If the position exceeds
the file size, the position should be unchanged.

unsigned tell (int £fd)
Returns the current position in the open file fd.

void exit (int status)

Terminates the current user program, returning status to the kernel (you don’t
have to worry about status for Lab 2, it will be covered in the following labs).
Conventionally, a status of 0 indicates success and nonzero values indicate er-
rors.

Remember to free all the resources (e.g., closing the files of the process) that will
be not needed anymore. You may free the resources within the process_exit ()
function as Pintos will call it through the use of thread_exit()) to kill the
thread in some cases (e.g., the thread attempted to access invalid memory.

This system call will be improved in the following labs.

Tip: The system call name and the arguments you can get from the stack
with a stack pointer. Some pointer arithmetics will be useful to go up and down
in the stack.

In all of the above you need to check that the user is giving the system reason-
able values. If the values aren’t reasonable, and the call is expected to return
something, return the equivalent of "fail". Undefined behavior is not acceptable.

The system call handler function will be used a lot in this and the following
assignments so you should think about structuring your code in an organized
and clear way to make reading it and performing future expansion easier.

You may need to implement some additional functions and data structures that
are not specified here, and which you must think of yourself. This is part of the

Page 8



Lab 2: Basic system calls TDDE47/TDDEG8

assignment.

4.1 What you do not need think about (yet)

For now, you may assume that only one user program can run at a time (indeed,
the exec system call is not implemented in this lab). Therefore, synchronization
of any thread-unsafe code can be delayed until the next labs.

Another simplification you may do in this laboration is to assume that all
pointers passed to the kernel from the user program are valid, i.e. do not worry
about page faults.

Do not worry, we will fix these two limitations of your operating system in
the next lab.

5 Testing

An example test program for testing your system calls is examples/lab2test.c.

An alternative example can be found in examples/lab2test_new.c.
Try both and see if there are any issues in your solution.

Often when you encounter a bug in your operating system, the best way to
analyze it is to make a minimal user program which activates this bug. So you
will probably also need to make your own user programs. You can check in the
examples directory how other programs are created.

6 Helpful Information

Code directory: userprog, 1lib/, 1ib/kernel
Textbook chapters:

¢ Chapter 2.3: System Calls
o Chapter 9.3: Paging

Documentation:
Pintos documentation related to Project 2

(Always remember that the TDDE47/TDDEG68 lab instructions have
higher precedence)

7 Acknowledgement

Parts of this document contains material from the TDIU16 course at LiU, pre-

vious lab instructions found on the course web page, or from previous lab in-
structions written by Felipe Boeira.

Page 9


https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_3.html#SEC32

	Goal
	Overview
	Preparation
	System Calls
	Making user programs
	File System

	Assignment
	What you do not need think about (yet)

	Testing
	Helpful Information
	Acknowledgement

