
TDDB68/TDDD47 - Lab 6

Felipe Boeira

February 2021

1 Goal

The goal of this assignment is to learn how to organize concurrent accesses by
multiple programs to the file system such that you preserve the data consistency
during read/write operations and do not corrupt the file system structure.

2 Overview

This assignment covers:

• Synchronization of files: concurrent access to the files in the file system
with read/write

• Synchronization of the file system: modification of the existing structure
with remove/create and access with open/close

2.1 User Programs

In the previous assignments (Labs 3-5), you implemented synchronization of
several user programs, however, the synchronization of files and the file sys-
tem was out of scope. In this assignment, you are supposed to implement the
readers-writers synchronization algorithm for performing reading and writing
operations on several files by several programs. Each file can be open by several
programs and even by the same program several times. Since the user programs
can concurrently modify not only files but the file system itself, you need to syn-
chronize the corresponding system calls (remove/create and open/close)
to preserve consistency of the file system.

2.2 System Calls to Provide Access to Files and the File
System

In this assignment, you will need to implement four new systems calls:

• seek - sets position in a file for read and write system calls.

1



Lab 6 TDDB68/TDDD47

• tell - returns the position in a file.

• filesize - returns the file size.

• remove - removes a file from the file system.

You will also need to provide synchronization to the following system calls
implemented in the previous labs:

• read - reads from a file or the console (the keyboard).

• write - writes to a file or the console (the monitor).

• open - opens a file.

• close - closes an open file.

• create - creates a new file.

All these system calls will allow to perform the majority of file operations.
Note that the file size is still considered to be fixed in this lab for the sake of
simplicity.

3 Preparations

Pintos File System is a Unix-like file system, which is close to one described with
the Virtual File System (VFS) interface. So, read Chapter 21.7.1 ”The Virtual
File System” of the course book. Pintos uses the same concept of inodes, open
files, superblocks and dentry objects. The two last ones correspond to disk and
directory in Pintos.

The synchronization of concurrent access to files (reading/writing) is one of
the basic issues in operating system design. Usually, it is called ”readers-writers
problem”. The problem with the possible solutions is described in Chapter 6.6.2
”The Readers-Writers Problem” of the course book.

The directory is a special file, which contains file names and file locations on
the disk. In other words, it associates the file name with the actual file placement
on the disk. Since the kernel and multiple user programs can access the directory
concurrently (while creating, removing and opening files) it also needs to be
synchronized. Moreover, the operating system keeps track of currently free disk
sectors. Creation and removal of files change the map of free disk sectors, which
also requires synchronization.

4 Preparatory Questions

Before you begin doing your lab assignment, you have to answer the following
set of questions to ensure that you are ready to continue:

Page 2



Lab 6 TDDB68/TDDD47

• One may synchronize access to files by locking the whole file while read-
ing/writing. Think about why it is not a good idea.

• What is the readers/writers problem? Which modifications of readers-
writers synchronization algorithm exist? Find pseudo code for the algo-
rithm that prioritizes readers.

• Think of a scenario where the concurrent access to a file system with no
synchronization causes a problem such as inconsistency or corruption of
the file system.

• What is the difference between the inode and the file object?

• Consider the following set of actions, which are provided in the following
chronological order. What will student.txt contain?

Process A: create(student.txt, 1000)
Process A: fd = open(student.txt)
Process B: remove(student.txt)
Process C: create(student.txt, 1000)
Process C: fd = open(student.txt)
Process C: write(fd, ”AAA”, 3)
Process A: write(fd, ”BBB”, 3)
Process A: close(fd)
Process C: close(fd)

4.1 Source Code

You will need to use the functions and the structures provided in filesys/file.[h|c]
and filesys/filesys.[h|c]. So, clear understanding of what those func-
tions are doing is essential for completing this lab assignment. You will also
need to have a look into filesys/directory.[h|c] in order to get some
ideas how the directory is implemented.

Implementation of the Pintos File System is already done in the following
set of files:
filesys/file.[h|c] - operations on files. A file object represents an open
file. Read the description and understand the major steps at least of the follow-
ing functions: file open, file read, file read at, file write, file write at, file length,
file seek, file tell, and file close.
filesys/filesys.[h|c] - operations on the file system. Read the de-
scription and understand the major steps at least of the following functions:
filesys open, filesys create, and filesys remove.
filesys/directory.[h|c] - operations on directories. It is required to
have some understanding of the functions dir open root, dir lookup, dir close,
dir remove and dir add in directory.c that are called from filesys open, filesys create

Page 3



Lab 6 TDDB68/TDDD47

and filesys remove. You should have a clear picture of how the file entry is added
to and removed from the directory.
filesys/inode.[h|c] - the most important part of the implementation re-
lated to the file system. An inode object represents an individual file. Un-
derstand when and why the open cnt counter (property of inode structure) is
increased and decreased in inode open and inode close. When we want to delete
the inode, it is first marked as ”to be deleted” with inode remove and then it
is deleted in inode close when open cnt becomes 0. The inode functions are
called by the wrapper functions implemented in filesys/directory.[h—c], filesys/-
file.[h—c], and filesys/filesys.[h—c].
devices/disk.[h|c] - implementation of the low-level access to the disk-
drive. You should not use these functions directly in your code.
filesys/free-map.[h|c] - implementation of the map of free disk sectors.
Read the specification of free map allocate and free map release (reading the
implementation of these functions is not required).

Before you proceed to the implementation part of this lab assignment, answer
on the following control questions:

• What is the difference between file open and filesys open?

• Which functions from inode.c are called when you call filesys remove,
filesys open, file close, file read, and file write?

• When you remove the file, what is removed first, the file name from the
directory or the file content from the disk? How and when is the file
content removed?

• What happens if you attempt to remove an open file?

• How can you keep track of the position in a file?

• Can you open a file, on which filesys remove has been called?

• Find where free map allocate and free map release are used in inode.c.

• There are few levels where you can add your implementation of the readers-
writers problem: system calls, files, and inodes. Think about advantages
and disadvantages of each approach. Which level is the most appropriate?
Motivate your answer.

• Find the places in the code, where the disk is accessed outside
read/write/open/close/create/remove system calls. Reconsider
your motivation for the previous question.

Page 4



Lab 6 TDDB68/TDDD47

5 Assignment in Detail

The main part of this assignment is to implement (or extend) the following sys-
tem calls:

int read (int fd, void *buffer, unsigned size)
Reads size bytes from the file with identifier fd into buffer. Returns the number
of bytes actually read (0 at end of file), or -1 if the file could not be read (due
to a condition other than end of file). Fd 0 reads from the keyboard. Several
readers should be able to read from a file at the same time. However, reading
should be forbidden if the file content is being changed by the writer.

int write (int fd, const void *buffer, unsigned size)
Writes size bytes from buffer to the open file fd. Returns the number of bytes
actually written or -1 if the file could not be written. Writing past end-of-file
would normally extend the file, but the file growth will not be implemented.
When fd=1 then the system call should write to the console. Only one writer
can write to a file at the same time. The writer must not write if at least one
reader is reading from the file.

int open (const char *file)
Opens the file called file. Returns a nonnegative integer handle called a ”file
descriptor” (fd), or -1 if the file could not be opened.

Within each process, every call to open returns a unique ID (even for the
same file) and associates a distinct position for reading/writing.

It should not be possible to open the file, on which remove has been called
but the actual deletion has not been done yet (for more details, look into the
description of remove system call). This part of functionality is already imple-
mented in Pintos (look into filesys/inode.[h|c]).

void close (int fd)
Closes file descriptor fd.

void seek (int fd, unsigned position)
Sets the current position in the open file fd to position. If the position exceeds
the file size, it should be set to the end of file.

unsigned tell (int fd)
Returns the current position in the open file fd.

int filesize (int fd)
Returns the file size of the open file fd.

bool create (const char *file, unsigned initial size)
Creates a new file called file initially initial size bytes in size. Returns true if
successful, false otherwise.

Page 5



Lab 6 TDDB68/TDDD47

bool remove (const char *file name)
Removes the file with the name file name. Returns true if successful, false
otherwise.

Note that the open files must not be deleted from the file system before
they are closed. All the processes, which have this file opened when remove is
called, can work with the file as usual until they close it. The operating system
should wait until the file is closed by all processes, which have already opened
it, and only then perform the actual deletion of the file content. In case the
file has to be deleted but the actual deletion is postponed, no process can open
this file. This part of functionality is already implemented in Pintos (look into
filesys/inode.[h|c]).

Hint: Make sure that the relevant synchronization primitives for the readers-
writers problem will be shared among all current and coming open instances of
the particular file.

6 Test Programs

The following tests should pass if your implementation is correct in addition to
the tests from previous labs:

tests/filesys/base/lg-create
tests/filesys/base/lg-full
tests/filesys/base/lg-random
tests/filesys/base/lg-seq-block
tests/filesys/base/lg-seq-random
tests/filesys/base/sm-create
tests/filesys/base/sm-full
tests/filesys/base/sm-random
tests/filesys/base/sm-seq-block
tests/filesys/base/sm-seq-random
tests/filesys/base/syn-read
tests/filesys/base/syn-remove
tests/filesys/base/syn-write
tests/userprog/close-twice
tests/userprog/read-normal
tests/userprog/multi-recurse
tests/userprog/multi-child-fd

In order to run the tests you need to do the following:

Copy this Make.tests to src/tests/userprog.
Copy this Make.vars to src/userprog.
Go to src/userprog.

Page 6

https://www.ida.liu.se/~TDDB68/labs/Make.tests
https://www.ida.liu.se/~TDDB68/labs/Make.vars


Lab 6 TDDB68/TDDD47

Clean up everything with make clean.
Run make.
Go to src/userprog/build.
Create a new simulated disk by following the instructions from Lab 1.
Run make check.
All 66 tests should pass if the implementation is correct.

For testing your readers-writers algorithm, we provide the following user pro-
grams: pfs, pfs reader, pfs writer. These programs run several readers
and writers accessing the same file. In order to run these programs, you should
run the start pfs.sh script in src/userprog.

Our ultimate concurrency test is the recursor ng test. This recursively cre-
ates children and waits for them, check the source code in src/examples for more
details. To run it, execute the start recursor.sh script in src/userprog.

In case you are using the Virtual Machine, make sure you pull the latest
changes from the original repo or add the ’-v’ flag to the pintos commands in
the test scripts. If any of the pfs or recursor ng tests fail, you will get errors
printed to the console.

7 Helpful Information

Code directory: src/userprog, src/filesys, src/devices, src/threads,
src/lib, src/lib/kernel
Textbook chapters: Chapter 10: File System
Chapter 11: Implementing File-Systems
Chapter 6.2: The Critical-Section Problem
Chapter 6.7: Classic Problems of Synchronization
Chapter 16.7.1 The Virtual File System
Documentation: Pintos documentation related to Project 2

(Always remember that the TDDB68 lab instructions always have
higher precedence)

8 Acknowledgement

This document is based on previous content from the TDDB68 website.

Page 7

http://www.scs.stanford.edu/07au-cs140/pintos/pintos_3.html##SE

	Goal
	Overview
	User Programs
	System Calls to Provide Access to Files and the File System

	Preparations
	Preparatory Questions
	Source Code

	Assignment in Detail
	Test Programs
	Helpful Information
	Acknowledgement

