
TDDB68/TDDE47

Lab 1: Basic system calls

Felipe Boeira

January 2022

These lab instructions are based on the original Pintos documentation as
well as the instructions developed within the course over several years.

1 Goal

In this assignment you are supposed to learn about user programs, system calls
and memory layout. The main goal is to clearly understand systems calls and
argument passing in user programs by implementing a set of system calls in
Pintos.

2 Overview

This assignment covers:

• An introduction to user programs in Pintos.

• System calls.

• Layout of the user memory and the kernel memory in Pintos.

• Input/output management.

User Programs

An operating system must be able to run user programs, each with their own
memory space. Starting from this assignment you will be using real user land
programs and run them under Pintos. Here are the features and limitations of
Pintos user programs:

• They should be written in C.

• Floating point operations cannot be used because Pintos does not save
the corresponding information during process switch.

1



Lab 1 TDDB68/TDDE47

• Multithreaded processes are not supported, therefore we will use the words
thread and process interchangeably (although it might not be the case for
other operating systems).

• Pintos user programs can use only those system calls which you will im-
plement in this and the following labs.

• The necessary system call for dynamic memory allocation, e.g. with
malloc is not implemented and it will not be implemented in terms of
these labs. Hence, you cannot use dynamic data structures inside a user
program. (Bear in mind that you will still use malloc in kernel code!)

• A user program needs to be copied to simulated disk used by Pintos. How
to do it is discussed later.

System Calls

The communication between the user program and the kernel is done by
system calls. System calls can be seen as special functions, called from the
user program and performed by the kernel. Usually computers use interrupts
to accomplish that switch from user code to system code, and so does the x86-
machine.

When the programmer wants to invoke a system call in a user program, he or
she calls one of the functions defined in src/lib/user/syscall.h. Those
functions are implemented in src/lib/user/syscall.c and do nothing ex-
cept placing function’s arguments with the respective system call number on
the stack and raising an internal (software) interrupt (0x30). The raised inter-
rupt makes the processor temporarily stop the user program, change from the
user to the system mode and jump to the interrupt handler syscall handler
defined in the kernel (userprog/syscall.c).

The interrupt handler is the entrance to the kernel. All communications
with the kernel via system calls must go through it. The interrupt handler
must then determine what system call it is and handle it properly. Look into
threads/interrupt.[h|c] and clearly understand the main structures and
main functions of the interrupt handler in Pintos. Pay attention especially on
intr frame structure and stack pointer into it. You will need to use this stack
pointer in order to access system call arguments.

Note, that there are two different pairs of files with the same names:
src/lib/user/syscall.[h|c] and src/userprog/syscall.[h|c].
The first pair is visible from the user program side and is merely a wrapper to
raise an interrupt, while the second one is having the real implementation of
the system calls. Currently, the interrupt handler contains no useful code and
forces the calling program to exit.

In this assignment you will write the OS code to implement a number of sys-
tem calls as well as some simple user programs to test your implementation. You
can find names of system calls in Pintos by looking into lib/syscall-nr.h.

Examples of system calls are:

Page 2



Lab 1 TDDB68/TDDE47

• create - creates a file.

• open - opens a file.

• close - closes a file.

• read - reads from a file or the console (the keyboard).

• write - writes to a file or the console (the monitor).

• halt - halts the processor.

• exit - Terminates a program and deallocates resources occupied by the
program, for example, closes all files opened by the program.

The following are also system calls, which you will continue implementing
in the following labs where you will have to handle several processes in memory
at the same time.

• exec - Loads a program into memory and executes it in its own thread or
process.

• wait - Waits for a child process to exit and returns its exit status.

3 Preparation

3.1 System Calls

Get familiar with the code in userprog/syscall.[h|c], threads/interrupt.[h|c],
lib/syscall-nr.h, and src/lib/user/syscall.[h|c] files. The latter
files contain some assembler code, which just puts arguments and the respective
system call number to registers and raises the interrupt 0x30. You should get
the clear image of the system call architecture in Pintos after studying those
files and reading the documentation:

• Interrupt Handling

• System Call Details

• Accessing User Memory Section

Preparatory question 0:
(a) What is the idea behind system calls?
(b) Why cannot the code of the system calls be available simply as a library
to user processes? (Tip: you may look at an article in Wikipedia for the answer).

Page 3

http://www.scs.stanford.edu/07au-cs140/pintos/pintos_6.html##SEC104
http://www.scs.stanford.edu/07au-cs140/pintos/pintos_3.html##SEC52
http://www.scs.stanford.edu/07au-cs140/pintos/pintos_3.html##SEC39


Lab 1 TDDB68/TDDE47

Preparatory question 1:
Pintos uses one interrupt (0x30) for all system calls, so there is only one inter-
rupt handler syscall handler to be called for different system calls.
(a) How it is possible to distinguish in syscall handler which system call it is?
(b) Where are the arguments of a system call stored (if there are any) and how
can you access them?

Memory Issues and Argument Passing
Read about Pintos virtual memory layout in the corresponding section of the
Pintos documentation.

Preparatory question 2:
(a) Where are the user-mode stack and the kernel-mode stack of a process lo-
cated?
(b) How can you address the user-mode stack in the kernel code, particularly,
in an interrupt handler?
(c) What is the reason of having two stacks instead of one?

Preparatory question 3:
When a user program executes a system call like open(), an address to a string
containing the file name is provided as an argument.
(a) In which memory is this string stored, and (b) how can we access it in the
kernel code?
(c) Specify the situations when accessing the data via that pointer can lead to
problems.
(d) What can be done about it?

3.2 Making user programs

You already have a number of simple user programs in src/examples. You
can compile them by issuing make in that directory. Modify src/examples/Makefile
whenever you wish to compile your own user programs (you will find instructions
inside the Makefile). Write all your test programs in the src/examples di-
rectory.

Simulated Disk

Before running user programs first you have to create a simulated disk, for-
mat it and copy user programs there.

Go to userprog and run make. Then, go to userprog/build and issue
the command:

pintos-mkdisk fs.dsk 2

Page 4



Lab 1 TDDB68/TDDE47

This will create a file fs.dsk with a 2MB simulated disk in the directory.
Format the disk with the command:

pintos --qemu -- -f -q

Copy Pintos user programs to the simulated disk with the command: (Re-
member to copy already compiled programs (binaries), not the source code files.)

pintos --qemu -p programname -a newname -- -q

Most probably you will copy user program from the src/examples direc-
tory. Then the command will look like this:

pintos --qemu -p ../../examples/programname -a programname
-- -q

If you need to copy a file from the simulated disk, use the command:

pintos --qemu -g filename -- -q

or

pintos --qemu -g filename -a newname -- -q

As you see, the only difference is in the switch: -p is used to put files to the disk
and -g to get a file from the disk. If you need to run a user program that has
been already copied:

pintos --qemu -- run programname

Furthermore you can also list files with ls, remove files with rm and print
contents of a file with cat. Several of these commands can be run on the same
line, e.g.:

pintos --qemu -- ls rm a rm b ls

will list files, delete the files a and b and then list files again.

3.3 File System

The current distribution contains a very simple but complete file system. Get
acquainted with file system interface (which is available only in the kernel code!)
in the filesys/filesys.[h|c] files. You do not have to modify that code
in this lab, so it is enough if you have a look at the available functions and read
their documentation. The same concerns the files filesys/file.[h|c]. It

Page 5



Lab 1 TDDB68/TDDE47

is good to look into other files in the filesys directory, although it is not strictly
necessary to complete this lab.

Read about file system limitations in the corresponding section of the Pintos
documentation. Although the access to files are not synchronized in the current
implementation of the file system, you should not worry about it at this point.

Preparatory question 4:
Why can a user program not simply call functions in filesys directly instead of
performing system calls?

Preparatory question 5:
When a file is opened, a file id is returned to the user program, which is used to
refer to a specific opened file when doing file operations. Explain how to gen-
erate file identifiers and map them to struct file pointers that are created
in the kernel.

4 Assignment

Before you start with this lab, you have to do these makeshift fixes (just
a reminder, you should have done it to complete the GDB exercise): Find
setup stack() in userprog/process.c and change

*esp = PHYS BASE; to

*esp = PHYS BASE - 12;

If you do not do this, then you will get a page fault when you try to run user
programs. The reason for this is that argument passing is not yet implemented.
Find process wait() in the same file and change its implementation to an
infinite loop. The problem is that the kernel powers off immediately since it is
supposed to wait for the first process to exit, but this functionality is not yet
implemented.
The assignment is to implement the following system calls:

void halt (void)
Shuts down the whole system. Use power off() for that (declared in threads/init.h).
Do not use this system call to terminate your user program!

bool create (const char *file, unsigned initial size)
Creates a new file called file initially initial size bytes in size. Returns true
if successful, false otherwise.

int open (const char *file)
Opens the file called file. Returns a non negative integer handle called a ”file
descriptor” (fd), or -1 if the file could not be opened. File descriptors numbered

Page 6



Lab 1 TDDB68/TDDE47

0 and 1 are reserved for the console: fd 0 (STDIN FILENO) is standard input, fd
1 (STDOUT FILENO) is standard output. You do not have to open the standard
input and output before using them.

Each process has an independent set of file descriptors. A user program
should be able to have up to 128 files open at the same time. File descriptors
are not inherited by child processes. Note that pintos does not manage file
descriptors yet, you need to implement this feature yourself.

When a single file is opened more than once, whether by a single process
or different processes, each open returns a new file descriptor. Different file
descriptors for a single file are closed independently in separate calls to close
and they do not share a file position.

If you add code inside the ”threads” directory, protect it with the following
(to make lab 2 work later on):

1 #i f d e f USERPROG
2 . .
3 #end i f

void close (int fd)
Closes file descriptor fd. Exiting or terminating a process implicitly closes all
its open file descriptors, as if by calling this function for each one.

int read (int fd, void *buffer, unsigned size)
Reads size bytes from the file open as fd into buffer. Returns the number of
bytes actually read, or -1 if the file could not be read (due to a condition other
than end of file). Fd 0 reads from the keyboard using input getc() (defined
in devices/input.h).

int write (int fd, const void *buffer, unsigned size)
Writes size bytes from buffer to the open file fd. Returns the number of bytes
actually written or -1 if the file could not be written.

Writing past end-of-file would normally extend the file, but file growth is
not implemented by the basic file system. The expected behavior is to write as
many bytes as possible up to end-of-file and return the actual number written
or -1 if no bytes could be written at all.

When fd=1 then the system call should write to the console.

void exit (int status)
Terminates the current user program, returning status to the kernel (you don’t
have to worry about status for Lab 1, it will be covered in the following labs).
Conventionally, a status of 0 indicates success and nonzero values indicate errors.
Remember to free all the resources (e.g., closing the files of the process) that will
be not needed anymore. You may free the resources within the thread exit
function as pintos will call it to kill the thread in some cases (e.g., the thread
attempted to access invalid memory).

This system call will be improved in the following labs. Tip: The system

Page 7



Lab 1 TDDB68/TDDE47

call name and the arguments you can get from stack with a stack pointer. Some
pointer arithmetics will be useful to go up and down in the stack.

System call handler function will be used a lot in this and the following
assignments s”o you should think about structuring your code in an organized
and clear way to make reading it and performing future expansion easier.

You may need to implement some additional functions and data structures
that are not specified here, and which you must think of yourself. This is part
of the assignment.

4.1 What you do not need think about (yet)

For now, you may assume that only one user program can run at a time (indeed,
exec system call is not implemented in this lab). Therefore, synchronization of
any thread-unsafe code can be delayed until the next labs.

Another simplification you may do in this laboration is to assume that all
pointers passed to the kernel from the user program are valid, i.e. do not worry
about page faults.

Do not worry, we will fix these two limitations of your operating system in
the next lab.

5 Test program

An example test program for testing your system calls is examples/lab1test2.c.
This test program replaces the old test file lab1test.c, thanks to Patrik Sletmo
for the updated variant. Don’t use the graphical qemu terminal for keyboard
input (it behaves strangely). Instead, use the terminal from which you start
pintos.

Often when you encounter a bug in your operating system, the best way to
analyze it is to make a minimal user program which activates this bug. So you
will probably also need to make your own user programs. You can check in the
examples directory how other programs are created.

6 Helpful Information

Code directory: src/userprog, src/lib/, src/lib/kernel
Textbook chapters: Chapter 2.3: System Calls
Chapter 2.4: Types of System Calls
Chapter 8.4: Paging
Documentation:
Pintos documentation related to Project 2

(Always remember that our lab instructions have higher precedence)

Page 8

http://www.scs.stanford.edu/07au-cs140/pintos/pintos_3.html##SE

	Goal
	Overview
	Preparation
	System Calls
	Making user programs
	File System

	Assignment
	What you do not need think about (yet)

	Test program
	Helpful Information

