COMPILER CONSTRUCTION
$eminar 03 — TDDEG6 2025

Adrian Pop (adrian.pop@liu.se)
Martin Sjolund (martin.sjolund@liu.se)
Mahder Gebremedhin (mahder.gebremedhin@liu.se)

Department of Computer and Information Science
Linkoping University

mailto:adrian.pop@liu.se
mailto:martin.sjolund@liu.se
mailto:mahder.gebremedhin@liu.se

\ LABS

Lab 5 Optimization

Lab 6 Intermediary code generation (quadruples)

Lab 7 Code generation (assembly) and
memory management

TDDE66 Compiler Construction - Tutorial 3

PHASES OF A COMPILER

Lab 2 Symtab -
administrates the
symbol table

Source Program

1 1

Lexical Analysis

1 1

Syntax Analyser

Symbol Table
Manager

| |

Semantic Analyzer

Error
Handler

| |

Code Optimizer

1 1

Intermediate
Code Generator

| |

Code Generator

| |

Target Program

Lab 1 Scanner — manages lexical
analysis

Lab 3 Parser — manages syntactic
analysis, build internal form

Lab 4 Semantics — checks static
semantics

Lab 5 Optimizer — optimizes the
internal form

Lab 6 Quadruples — generates
quadruples from the internal form

Lab 7 Codegen — expands
quadruples to assembly

TDDE66 Compiler Construction - Tutorial 3

LAB 5
OPTIMIZATION

TDDE66 Compiler Construction - Tutorial 3

COMPILER OPTIMIZATION

Optimization is the process of improving the
code produced by the compiller.

The resulting code is “seldom” optimal but is
rather better than it would be without the
applied “improvements”.

Many different kind of optimizations are
possible and they range from the simple to
the extremely complex.

TDDE66 Compiler Construction - Tutorial 3

TYPES OF OPTIMIZATION

Three basic types of optimization:

 The “code” in question might be the abstract syntax
tree in which case machine independent optimization
IS being performed.

 The code in question may be the intermediate form
code in which case machine Iindependent
optimization is being performed.

* The code might also be assembly/machine code in
which case machine dependent optimization is done.

TDDE66 Compiler Construction - Tutorial 3

COMPENSATION

Many of the optimizations are done to
compensate for the compiler rather than
programmer deficiencies.

It is simply convenient to let the compiler
do “stupid” things early on and then fix
them later.

TDDE66 Compiler Construction - Tutorial 3

OTHER OPTIMIZATION TYPES

Other taxonomies of optimization divide
things up differently:

* Inter-procedural optimization considering the
whole program as a routine.

® Global optimization within a procedure.
® | ocal optimizations within a basic block.

®* Peephole optimizations considering only a small
sequence of instructions or statements.

TDDE66 Compiler Construction - Tutorial 3

MACHINE INDEPENDENT

Machine __independent optimization Is
typically done using the intermediate form
as a base.

* Don’t consider any details of the target
architecture when making optimization
decisions.

* This optimization tends to be very general
In nature.

TDDE66 Compiler Construction - Tutorial 3

MACHINE DEPENDENT

Machine dependent optimization performed
on assembly or machine code.

* Target the specifics of the machine
architecture.

* Machine dependent optimizations are
extremely specific.

TDDE66 Compiler Construction - Tutorial 3

MACHINE DEPENDENT

* Peephole optimization of assembly code:

LD A, RO INC A, RO

ADD 1, RO . (removed)
ST RO, A (removed)
LD A, RO LD A, RO

TDDE66 Compiler Construction - Tutorial 3

CONSTANT FOLDING

Expressions with constant operands can be
evaluated at compile time, thus improving
run-time performance and reducing code size
by avoiding evaluation at compile-time.

TDDE66 Compiler Construction - Tutorial 3

CONSTANT FOLDING

* In the code example, the function £ : integer;
expression 's + 3'can be beglnt .
replaced with 's' at reruEn /

. . end
compile time. 1

* This makes the compiled function £ : integer;
program run faster, since begin
fewer instructions are return 8;
generated to run this

end

piece of code.

TDDE66 Compiler Construction - Tutorial 3

CONSTANT FOLDING

* Constant folding is a relatively simple
optimization.

* Programmers generally do not write
expressions such as 's + 3' directly, but
these expressions are relatively common
after macro expansion; or other
optimization such as constant propagation.

TDDE66 Compiler Construction - Tutorial 3

CONSTANT FOLDING

* All C compilers can fold integer constant
expressions that are present after macro

expansion (ANSI C requirement).

* Most C compilers can fold integer constant
expressions that are introduced after other
optimizations.

TDDE66 Compiler Construction - Tutorial 3

CONSTANT FOLDING

* Some environments support several
floating-point rounding modes that can be
changed dynamically at run time.

* In these environments, expressions such
as '(1.0 / 3.0); must be evaluated at
run-time if the rounding mode is not known
at compile time.

TDDE66 Compiler Construction - Tutorial 3

CONSTANT FOLDING

DIESEL code optimized DIESEL code
if (a > 2) then if (a > 2) then
a :=2 + 3; a :=5;
end; end;

oo 2

TDDE66 Compiler Construction - Tutorial 3

CONSTANT PROPAGATION

Constants assigned to a variable can be
propagated through the flow graph and
substituted at the use of the variable.

TDDE66 Compiler Construction - Tutorial 3

CSE

An expression is a Common Sub-expression
(CS) if the expression is:

1) previously computed

2)the values of the operands have not
changed since the previous computation

Re-computing can then be avoided by using
the previous value.

TDDE66 Compiler Construction - Tutorial 3

CONSTANT PROPAGATION

Below, the second computation of the
expression 'x + y' can be eliminated:
i :=x+vy + 1;

J = x + vy

After CSE Elimination, the code
fragment is rewritten as follows:

tl (= x + vy;
i = t1 + 1;
] tl;

TDDE66 Compiler Construction - Tutorial 3

DEAD CODE ELIMINATION

Code that is unreachable or that does not
affect the program (e.g. dead stores) can be
eliminated directly.

TDDE66 Compiler Construction - Tutorial 3

DEAD CODE ELIMINATION

var
global : integer;
procedure f£f;
var
i : integer;
begin
i = 1; { dead store }
global := 1; { dead store }
global := 2;
return;
global := 3; { unreachable }
end;

* The value assigned to i is never used
* The first assignment to global is dead
* The third assignment to global is unreachable

TDDE66 Compiler Construction - Tutorial 3

DEAD CODE ELIMINATION

After elimination of dead code
the fragment is reduced to:

var
global : integer;
procedure f;
begin
global := 2;
return;
end;

TDDE66 Compiler Construction - Tutorial 3

EXPRESSION SIMPLIFICATION

Some expressions can be simplified by
replacing them with equivalent expressions
that are more efficient.

TDDE66 Compiler Construction - Tutorial 3

EXPRESSION SIMPLIFICATION

The code:
i ={ ...} ;
a[0] :=1 + 0;
al[l] =i * 0;
al[2] = i - 1i;
al[3] =1+ i+ 1;
can be simplified to:
i = { .}
a[0] := 1i;
al[l] := 0;
a[2] := 0;
al[3] = 2 4+ 1i;

TDDE66 Compiler Construction - Tutorial 3

EXPRESSION SIMPLIFICATION

Programmers generally do not write
expressions like 'i + o' directly, but these
expressions can appear after optimizations.

TDDE66 Compiler Construction - Tutorial 3

FORWARD STORES

Stores to global variables in loops can be
moved out of the loop to reduce memory
bandwidth requirements.

TDDE66 Compiler Construction - Tutorial 3

FORWARD STORES

Below the Joad and sfore to the global
variable sum can be moved out of the loop
by computing the summation in a register
and then storing the result to sum outside
the loop:

int sum;
void £ (void)

{

int 1i;

sum = O0;
for (i = 0; i < 100; i++)
sum += a[i];

}

TDDE66 Compiler Construction - Tutorial 3

FORWARD STORES

After forward store optimization the code
looks like this:

int sum;
void £ (void)
{
int 1i;
register int t;
t =0;
for (i = 0; i < 100; i++)
t += al[i];
sum = t;

TDDE66 Compiler Construction - Tutorial 3

IMPLEMENTATION

* In this lab you are to implement the constant
folding algorithm as described earlier.

* You will optimize the abstract syntax tree (AST).

* The tree traversal will be done using recursive
method calls, similar to the type checking in the
last lab.

* You will start from the root and then make
optimize () calls that will propagate down the
AST and try to identify sub-trees eligible for
optimization.

TDDE66 Compiler Construction - Tutorial 3

IMPLEMENTATION

Requirements:

Must be able to handle optimizations of all operations
derived from ast_binaryoperation.

Need only optimize subtrees whose leaf nodes are
instances of ast real, ast integer or ast id
(constant).

No need to optimize ast cast nodes, but feel free to
Implement this.

No need to optimize binary relations, but feel free to
Implement this.

Your program must preserve the code structure, i.e. the
destructive updates must not change the final result of
running the compiled program in any waly.

Optimization should be done one block at a time (local
optimization).

TDDE66 Compiler Construction - Tutorial 3

FILES OF INTEREST

* Files you will need to modify

— optimize.hh and optimize.cc contains optimizing code for
the AST nodes as well as the declaration and implementation of
the ast optimizer class. These are the files you will edit in
this lab.

* Other files of interest

(All these files are the same as in the last lab, except that you need to activate the
do_optimize() call in parser.y.)

— ast.hh: contains (part of) the implementations of the AST nodes.
— ast.cc: contains (part of) the implementations of the AST nodes.
— parser.y: the function do_optimize () is called from here.

— error.hh, error.cgc, symtab.hh, symbol.cc,
symtab.cc, scanner.l: use your versions from earlier labs.

— Makefile and diesel use the same files as in the last lab.

TDDE66 Compiler Construction - Tutorial 3

LAB 6
QUADRUPLES

TDDE66 Compiler Construction - Tutorial 3

INTERMEDIATE CODE

* |Is closer to machine code without being
machine dependent

* Can handle temporary variables

* Means higher portability, intermediary code
can easily be expanded to assembler

TDDE66 Compiler Construction - Tutorial 3

INTERMEDIATE CODE

Various types of intermediary code are:
* |Infix notation
* Postfix notation
* Three address code
- Triples
- Quadruples

TDDE66 Compiler Construction - Tutorial 3

INTERMEDIATE LANGUAGE

Why use intermediate languages?

* Retargeting - Build a compiler for a new machine by
attaching a new code generator to an existing front-
end

* Optimization - reuse intermediate code optimizers in
compilers for different languages and different
machines

 Code generation for different source languages can
be combined

TDDE66 Compiler Construction - Tutorial 3

INTERMEDIATE LANGUAGE

Syntax Tree
Graphical representation.

DAG

Common sub-expressions eliminated
from syntax tree.

Three-address code
Close to target assembly language.

TDDE66 Compiler Construction - Tutorial 3

THREE-ADDRESS SYSTEM

A popular form of intermediate code used in
optimizing compilers is three-address statements
(or variations, such as quadruples)

Advantages of using Three-Address Code:

* Three-address operands should be simple to implement on
the target machine.

* Rich enough to allow compact representation of source
statements.

* Statements should be easy to rearrange for optimization.

TDDE66 Compiler Construction - Tutorial 3

THREE-ADDRESS SYSTEM

Source statement:

X = a + b * c + d4d;

Three address statements with
temporaries t1 and t2:

tl := b * c;
t2 := a + tl;
x := t2 + d;

TDDE66 Compiler Construction - Tutorial 3

QUADRUPLES

You will use Quadruples as intermediary
code where each instructions has four fields:

operator operandl operand2 result

TDDE66 Compiler Construction - Tutorial 3

QUADRUPLES

(A + B) * (C+ D) - E
operator |operandl |operand2 |result
+ A B T1
+ C D T2
* T1 T2 T3
- T2 E T4

TDDE66 Compiler Construction - Tutorial 3

QUADRUPLES

6 q_iplus 10 11 13

q_idiv 13 12 14
Q 0 q_assign 14 0 9

The numbers are indexes in the symbol table

9 10 11 12 13 14
A B C D Tl T2

TDDE66 Compiler Construction - Tutorial 3

QUADRUPLES

Another example:

The DIESEL statement af[a[l]] := a[2]; will generate:
q_iload 2 0 10
q_irindex 9 10 11
q iload 1 0 12
q_irindex 9 12 13
q_lindex 9 13 14
q_istore 11 0 14

The numbers are indexes in the symbol table
9 10 11 12 13 14
A Tl1 T2 T3 T4 T5

TDDE66 Compiler Construction - Tutorial 3

QUADRUPLES

Another example:

The DIESEL statement foo(a, bar(b), c); will generate:

q_param 11 0 0
q_param 10 0 0
q call 13 1 14
q_param 14 0 0
q_param 9 0 0
q _call 12 3 0

The numbers are indexes in the symbol table
9 10 11 12 13 14
A B C FOO BAR T1

TDDE66 Compiler Construction - Tutorial 3

QUADRUPLES

* In the lab temporary variables will be stored together
with the local variables on the stack. (This is to avoid
register allocation. The goal is not to create a good
code generator, but something that works.
Temporary variables regardless if they are needed
or not)

* Operations are typed. There are Dboth
q rdivide and q_idivide. The operation to
select depends on the node type if it is an
arithmetic operation but on the children's types if
it is a relational operation.

TDDE66 Compiler Construction - Tutorial 3

HANDLING REAL NUMBERS

* When generating assembly code all real
numbers are stored in 64 bits.

* We do this by storing real numbers as integers in
the IEEE format.

* Use the symbol table method ieee (). It takes a
double number and returns an integer
representation in the 64-bit IEEE format.

* SO0 when you are generating a quadruple

representing or treating a real number call:
sym tab->ieee (value);

TDDE66 Compiler Construction - Tutorial 3

IMPLEMENTATION

* In this lab, you will write the routines for
converting the internal form we have been
working with so far into quadruples/quads.

* The quadruple generation is started from
parser.y Wwith a call to do quads (). This
function will call generate quads () which
propagates down the AST. This is done one
block at a time.

* The final result is a quad list containing the
quadruples generated while traversing the AST.

TDDE66 Compiler Construction - Tutorial 3

IMPLEMENTATION

* Complete the empty generate method bodies in
quads.cc.

* In file symtab.cc, complete the empty method body
gen_ temp var(). It takes a sym index to a type as
argument. It should create and install a temporary
variable (of the given type) in the symbol table. Give your
temporary variables “unique” names that are not likely to
collide with the user variable names. (Hint: if you want to
match the traces generated by the master tool, generate
names that match this, including spaces)

TDDE66 Compiler Construction - Tutorial 3

FILES OF INTEREST

Files you will need to modify

— quads.cc, quads.hh: contains quad generation code for the
AST nodes as well as the declaration and implementation of the
quadruple, quad list, quad list element and
quad_list_ iterator Classes These are the files you will edit
in this lab.

— symtab. cc : You will need to complete one more method in this
lab.

Other files of interest

— ast.hh : contains the definitions of the AST nodes.
— ast.cc : contains (part of) the implementations of the AST nodes.
— parser.y : the function do_quads () is called from here.

— error.hh, error.cc, symtab.hh, symbol.cc,
symtab.cc, scanner.l, optimize.hh, optimize.cc:
use your versions from earlier labs.

TDDE66 Compiler Construction - Tutorial 3

LAB 7
ASSEMBLER

TDDE66 Compiler Construction - Tutorial 3

CODE GENERATION

Once the source code has been
1) scanned

2) parsed

3) semantically analyzed

4) quads are generated and optimized

code generation might be performed.

TDDE66 Compiler Construction - Tutorial 3

CODE GENERATION

Code generation is the process of creating
assembly/machine language statements
which will perform the operations specified by
the source program when they run.

TDDE66 Compiler Construction - Tutorial 3

CODE GENERATION

In addition, other code is also produced:

* Typically assembler directives are produced,
e.g. storage allocation statements for each
variable and literal in the program.

TDDE66 Compiler Construction - Tutorial 3

CODE GENERATION

Un-optimized code generation is relatively
straightforward:

*Simple mapping of intermediate code
constructs to assembly/machine code
sequences.

* Resulting code Is quite poor though,
compared to manual coding.

TDDE66 Compiler Construction - Tutorial 3

CODE GENERATION FOR INTEL

* We are going to use a simple method which
expands each quadruple to one or more
assembler instructions.

* Intel has a number of general purpose 64-bit
registers. Only some will be used.

* For the real number operations we will use the
floating point unit (FPU), which is a stack.

* More about this in the lab compendium.

TDDE66 Compiler Construction - Tutorial 3

MEMORY MANAGEMENT

* Static _memory _management. In certain
programming languages recursion and dynamic
data allocation is forbidden and the size must be
known at compile time. No run-time support
needed and all data can be referenced using
absolute addresses. (FORTRAN).

* Dynamic_memory management: Other languages
such as Pascal, C++ and Java allow recursion
and dynamic memory allocation.

TDDE66 Compiler Construction - Tutorial 3

DYNAMIC MEMORY MANAGEMENT

All data belonging to a function/procedure is
gathered into an Activation Record (AR). An AR is
created when the function/procedure is called and
memory is allocated on a stack.

TDDE66 Compiler Construction - Tutorial 3

ACTIVATION RECORD

* Local data

* Temporary data

* Return address

* Parameters

* Pointers to the previous activation record (dynamic link).

* Static link or display to find the right reference to non-local
variables.

* Dynamically allocated data (dope-vectors).

* Possibly space for return values (applies to functions, not
procedures).

* Place to save register contents.

TDDE66 Compiler Construction - Tutorial 3

ACTIVATION RECORD

Higher addresses A

Lower addresses y

Display area <

Local variables
and temporaries

Argument area

Previous frame's RBP (A)

Main's RBP

A's RBP

B's RBP

Variable X

$1

$2

Argument 5

Argument X

<— RBP

<—— RSP

TDDE66 Compiler Construction - Tutorial 3

ACTIVATION RECORD

An example:

procedure fum(i : integer);

begin

if i <> 0 then

fum(i - 1); fum

end; Fum fum Fum
end; fie fie fie fie fie
procedure fie; foo foo foo faoo foo foo foo
begin

fum (1) ; >

end; time
procedure foo;
begin

fie();
end;

TDDE66 Compiler Construction - Tutorial 3

ACTIVATION RECORD

Static versus Dynamic link:

program main;

procedure pl;
procedure p2;
procedure p3;
begin
pl(); { (1) }
end;
begin
p3 (), Call chain

On return from

. pl we continue
end ’ with p3 .,

begin

pP2();
end;

begin

pl();
end.

Dynamic

Static

link

— -

in |

link

]

p2

p3

Textual
environment

TDDE66 Compiler Construction - Tutorial 3

DISPLAY

program main;

procedure p2;
procedure p3;
begin

{ (2) }

end;

begin
p3();

end;

procedure pl;
begin

p2(); { (1)
end;

begin

pl();
end.

Dynamic
link

Call chain

On return from

pl we continue

with the main program

Dynamic
link

main

Display

level

pl

main

level

Display

pl

p2

Call chain
On return from
pd we continue with p2

B3

T—

T

level

level .

lewvel !

TDDE66 Compiler Construction - Tutorial 3

Intel x87 Floating Point Unit

Recall postfix code and stack machines

fld argl # Push argl on the stack
fld arg2 # Push arg2 on the stack
faddp # Add the top 2 elements together

fstp res # Pop stack into res

NOTE: Floating point constants cannot be loaded
iInto the FPU using f£1d as an immediate value, nor
from a register. There exists instructions to load 0.0,
1.0, 1, log210, etc. You need to find a way to load
constants into the FPU stack in fetch float.

TDDE66 Compiler Construction - Tutorial 3

IMPLEMENTATION

* In this lab, you will write certain routines that help
expanding quadruples into assembler, as well as
some routines for handling creating and releasing
activation records.

* The assembly code generation is done by
traversing a quad list, expanding each quad to
assembler as we go. The expansion is started from
parser.y with a call generate assembler () to
a code generator class.

TDDE66 Compiler Construction - Tutorial 3

IMPLEMENTATION

Complete the prologue () method (used when
entering a block).

Complete the epilogue () method (used when
leaving a block).

Write the f£ind() method which given a
sym index returns the display register level
and offset for a variable, array or parameter to
the symbol table.

Write the fetch () method that retrieves the
value of a variable, parameter or constant from
memory and stores it into a given register.

TDDE66 Compiler Construction - Tutorial 3

IMPLEMENTATION

* Write the fetch float () method that pushes
the value of a variable, parameter or constant to
the FPU. Note that this method will never
generate code for constant integers but will for
constant reals.

* Write the store () method which stores the
value of a register in a variable or parameter.

* Write the store float () method which pops
the FPU stack and stores the value in a variable
or parameter.

TDDE66 Compiler Construction - Tutorial 3

IMPLEMENTATION

* Write the array address() method which
retrieves the base address of an array to a
register.

* Write the frame address() method which,
given a lexical level and a register, stores the
base address of the corresponding frame from
the display area.

* Complete the expand() method which
translates a quad list to assembler code using
the methods above. You will need to write code
for expanding g param and q_call quads.

TDDE66 Compiler Construction - Tutorial 3

FILES OF INTEREST

* Files you will need to modify
* codegen.hh, codegen.cc : contains assembler generation

code for the Intel assembler. These are the files you will edit in this
lab.

* QOther files of interest

parser.y : is the input file to bison.
ast.hh contains the definitions for the AST nodes.
ast.cc contains (part of) the implementations of the AST nodes.

error.hh, error.cgc, symtab.hh, symbol.cc,
symtab.cc, scanner.l, semantic.hh, semantic.cc,
optimize.hh, optimize.cc, quads.hh, quads.cc use
your versions from the earlier labs.

main.cc this is the compiler wrapper, parsing flags and the like.
Same as in the previous labs.

Makefile and diesel use the same files as in the last lab.

TDDE66 Compiler Construction - Tutorial 3

Thank youl!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

