
COMPILER CONSTRUCTION
Seminar 02 – TDDE66 2025

Adrian Pop (adrian.pop@liu.se)

Martin Sjölund (martin.sjolund@liu.se)

Department of Computer and Information Science

Linköping University

mailto:adrian.pop@liu.se
mailto:martin.sjolund@liu.se

TDDE66 Compiler Construction - Tutorial 2

LABS

Lab 3 LR parsing and abstract syntax tree
 construction using bison

Lab 4 Semantic analysis (type checking)

TDDE66 Compiler Construction - Tutorial 2

PHASES OF A COMPILER

Lab 1 Scanner – manages lexical
analysisLab 2 Symtab –

administrates the
symbol table

Lab 3 Parser – manages syntactic
analysis, build internal form

Lab 4 Semantics – checks static
semantics

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Intermediate
Code Generator

Code Optimizer

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error
Handler

Lab 5 Optimizer – optimizes the
internal form

Lab 6 Quads – generates quadruples
from the internal form

Lab 7 Codegen – expands
quadruples to assembler

TDDE66 Compiler Construction - Tutorial 2

LAB 3
PARSING

TDDE66 Compiler Construction - Tutorial 2

SYNTAX ANALYSIS

• The parser accepts tokens from the scanner and
verifies the syntactic correctness of the program
specification

• Along the way, it also derives information about
the program and builds a fundamental data
structure known as [abstract] syntax tree

• The syntax tree is an internal representation of
the program and augments the symbol table. The
parse tree is a concrete syntax tree and is not
produced by the parser

TDDE66 Compiler Construction - Tutorial 2

PURPOSE

• To verify the syntactic correctness of the
input token stream, reporting any errors
and to produce a syntax tree and certain
tables for use by later phases
– Syntactic correctness is judged by verification against a formal

grammar which specifies the language to be recognized

– Error messages are important and should be as meaningful as
possible

– Parse tree and tables will vary depending on compiler

TDDE66 Compiler Construction - Tutorial 2

METHOD

Match token stream using manually
or automatically generated parser

TDDE66 Compiler Construction - Tutorial 2

PARSING STRATEGIES

Two categories of parsers:
– Top-down parsers
– Bottom-up parsers

Within each of these broad categories are a
number of sub strategies depending on
whether leftmost or rightmost derivations are
used

TDDE66 Compiler Construction - Tutorial 2

TOP-DOWN PARSING

Start with a goal symbol and recognize it in
terms of its constituent symbols

Example: recognize a procedure in terms of
its sub-components (header, declarations,
and body)

The parse tree is then built from the top (root)
and down (leaves), hence the name

TDDE66 Compiler Construction - Tutorial 2

TOP-DOWN PARSING (cont'd)

:=

x *

+

a b

c

X := (a + b) * c;

TDDE66 Compiler Construction - Tutorial 2

BOTTOM-UP PARSING

Recognize the components of a program and
then combine them to form more complex
constructs until a whole program is recognized

Example: recognize a procedure from its sub-
components (header, declarations, and body)

The parse tree is then built from the bottom
and up, hence the name

TDDE66 Compiler Construction - Tutorial 2

BOTTOM-UP PARSING (cont'd)

:=

x *

+

a b

c

X := (a + b) * c;

TDDE66 Compiler Construction - Tutorial 2

PARSING TECHNIQUES

A number of different parsing techniques
are commonly used for syntax analysis,
including:

• Recursive-descent parsing
• LR parsing
• Operator precedence parsing
• Many more …

TDDE66 Compiler Construction - Tutorial 2

LR PARSING

A specific bottom-up technique

 LR stands for Left->right scan, Rightmost derivation
 Probably the most common & “popular” parsing technique
 yacc, bison, and many other parser generation tools

utilize LR parsing
 Great for machines, not so good for humans …

TDDE66 Compiler Construction - Tutorial 2

+ AND – FOR LR

 Advantages of LR:
• Accept a wide range of grammars/languages

• Well suited for automatic parser generation

• Very fast

• Generally easy to maintain

 Disadvantages of LR:
• Error handling can be tricky

• Difficult to use manually

TDDE66 Compiler Construction - Tutorial 2

bison AND yacc USAGE

bison is a general-purpose parser
generator that converts a grammar
description for an LALR(1) context-free
grammar into a C program to parse that
grammar

TDDE66 Compiler Construction - Tutorial 2

bison AND yacc USAGE

One of many parser generator packages

Yet Another Compiler Compiler
– Really a poor name, is more of a parser compiler

– Can specify actions to be performed when each construct
is recognized and thereby make a full fledged compiler
but its the user of bison that specify the rest of the
compilation process.

– Designed to work with flex or other automatically or
hand generated “lexers”

TDDE66 Compiler Construction - Tutorial 2

bison USAGE

Bison
Compiler

C
Compiler

a.out

Bison source
program

parser.y

y.tab.c

a.out

Parse tree

y.tab.c

Token
stream

TDDE66 Compiler Construction - Tutorial 2

bison SPECIFICATION

A bison specification is composed of 4 parts
%{

/* C declarations */
%}

/* Bison declarations */

%%

/* Grammar rules */

%%

/* Additional C code */

Looks like flex specification, doesn’t it?
Similar function, tools, look and feel

TDDE66 Compiler Construction - Tutorial 2

C DECLARATIONS

• Contains macro definitions and declarations of
functions and variables that are used in the actions
in the grammar rules

• Copied to the beginning of the parser file so that
they precede the definition of yyparse

• Use #include to get the declarations from a
header file. If C declarations isn’t needed, then the %
{ and %} delimiters that bracket this section can be
omitted

TDDE66 Compiler Construction - Tutorial 2

bison DECLARATIONS

• Contains declarations that define terminal and
non-terminal symbols, and specify precedence

TDDE66 Compiler Construction - Tutorial 2

GRAMMAR RULES

 Contains one or more bison grammar rules, and
nothing else

 There must always be at least one grammar rule,
and the first %% (which precedes the grammar
rules) may never be omitted even if it is the first
thing in the file

TDDE66 Compiler Construction - Tutorial 2

ADDITIONAL C CODE

 Copied verbatim to the end of the parser
file, just as the C declarations section is
copied to the beginning

 This is the most convenient place to put
anything that should be in the parser file
but isn’t need before the definition of
yyparse

 The definitions of yylex and yyerror
often go here

TDDE66 Compiler Construction - Tutorial 2

bison EXAMPLE

%{

#include <ctype.h> /* standard C declarations here */

}%

%token DIGIT /* bison declarations */

%%

/* Grammar rules */

line : expr ‘\n’ { printf { “%d\n”, $1 }; } ;

expr : expr ‘+’ term { $$ = $1 + $3; }

| term ;

term : term ‘*’ factor { $$ = $1 * $3; }

| factor ;

TDDE66 Compiler Construction - Tutorial 2

bison EXAMPLE

Note: bison uses yylex, yylval, etc - designed to be
used with flex

factor : ‘(‘ expr ’)’ { $$ = $2; }
| DIGIT ;

%%
/* Additional C code */

void yylex () {
 /* A really simple lexical analyzer */
 int c;
 c = getchar ();
 if (isdigit (c)) {
 yylval = c - ’0’ ;
 return DIGIT;
 }
 return c;
}

TDDE66 Compiler Construction - Tutorial 2

bison EXAMPLE

expr ::= term
 ::= expr + term
 ::= expr + term + term
 ::= term + ... + term + term + term

term ::= factor
 ::= term * factor
 ::= term * factor * factor
 ::= factor * ... * factor * factor * factor

factor ::= DIGIT
 ::= (expr)
 ::= (term + term + ... + term)
 ::= (factor * ... factor + term + ... term)
 ::= ...

DIGIT ::= [0-9]

TDDE66 Compiler Construction - Tutorial 2

bison EXAMPLE

|'(' '1' '*' '3' '+' '2' ')' '*' '5' '\n'

 line ::= |expr '\n'

TDDE66 Compiler Construction - Tutorial 2

bison EXAMPLE

 '('|'1' '*' '3' '+' '2' ')' '*' '5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= factor
factor ::= '('|expr ')'

TDDE66 Compiler Construction - Tutorial 2

bison EXAMPLE

 '(' '1'|'*' '3' '+' '2' ')' '*' '5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= factor
factor ::= '(' expr ')'
 expr ::= term
 term ::= factor
factor ::= DIGIT|

TDDE66 Compiler Construction - Tutorial 2

bison EXAMPLE

 '(' '1' '*'|'3' '+' '2' ')' '*' '5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= factor
factor ::= '(' expr ')'
 expr ::= term
 term ::= term '*'|factor

TDDE66 Compiler Construction - Tutorial 2

bison EXAMPLE

 '(' '1' '*' '3'|'+' '2' ')' '*' '5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= factor
factor ::= '(' expr ')'
 expr ::= term
 term ::= term '*' factor
factor ::= DIGIT|

TDDE66 Compiler Construction - Tutorial 2

bison EXAMPLE

 '(' '1' '*' '3' '+'|'2' ')' '*' '5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= factor
factor ::= '(' expr ')'
 expr ::= expr '+'|term
 term ::= term '*' factor

TDDE66 Compiler Construction - Tutorial 2

bison EXAMPLE

 '(' '1' '*' '3' '+' '2'|')' '*' '5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= factor
factor ::= '(' expr ')'
 expr ::= expr '+' term
 term ::= factor
factor ::= DIGIT|

TDDE66 Compiler Construction - Tutorial 2

bison EXAMPLE

 '(' '1' '*' '3' '+' '2' ')'|'*' '5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= factor
factor ::= '(' expr ')'|
 expr ::= expr '+' term
 term ::= factor

TDDE66 Compiler Construction - Tutorial 2

bison EXAMPLE

 '(' '1' '*' '3' '+' '2' ')' '*'|'5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= term '*'|factor
factor ::= '(' expr ')'

TDDE66 Compiler Construction - Tutorial 2

bison EXAMPLE

 '(' '1' '*' '3' '+' '2' ')' '*' '5'|'\n'

 line ::= expr '\n'
 expr ::= term
 term ::= term '*' factor
factor ::= DIGIT|

TDDE66 Compiler Construction - Tutorial 2

bison EXAMPLE

 '(' '1' '*' '3' '+' '2' ')' '*' '5' '\n'|

 line ::= expr '\n'|
 expr ::= term
 term ::= term '*' factor

TDDE66 Compiler Construction - Tutorial 2

USING bison WITH flex

bison and flex are obviously designed to
work together

bison produces a driver program called yylex() (actually
its included in the flex library -lfl)

 #include “lex.yy.c” in the third part of bison
specification

 this gives the program yylex access to bisons’
token names

TDDE66 Compiler Construction - Tutorial 2

USING BISON WITH FLEX
 Thus do the following:

 % flex scanner.l
 % bison parser.y
 % cc y.tab.c -ly -lfl

 This will produce an a.out which is a parser with an
integrated scanner included

TDDE66 Compiler Construction - Tutorial 2

ERROR HANDLING IN bison

Error handling in bison is provided by error
productions

An error production has the general form
non-terminal: error synchronizing-set

• non-terminal where did it occur
• error a keyword
• synchronizing-set possible empty subset of
tokens

When an error occurs, bison pops symbols off the
stack until it finds a state for which there exists an
error production which may be applied

TDDE66 Compiler Construction - Tutorial 2

FILES TO BE CHANGED

• parser.y is the input file to bison. This is the only file
you will do most of editing in.

• scanner.l needs a small, but important change. The file
scanner.hh is no longer needed since there is a file
parser.hh, which will contain (among other things) the
same declarations. parser.hh will be generated
automatically by bison.

• Add (in this order):
#include "ast.h"
#include "parser.hh"

and comment out
#include "scanner.hh"

at the top of scanner.l to reflect this.

TDDE66 Compiler Construction - Tutorial 2

OTHER FILES OF INTEREST
• error.h, error.cc, symtab.hh, symbol.cc,
symtab.cc Use your completed versions from the earlier
labs.

• ast.hh contains the definitions for the AST nodes. You’ll be
reading this file a lot.

• ast.cc contains the implementations of the AST nodes.

• semantic.hh and semantic.cc contain type checking
code.

• optimize.hh and optimize.cc contain optimization code.
• quads.hh and quads.cc contain quad generation code.
• codegen.hh and codegen.cc contain assembler

generation code.

TDDE66 Compiler Construction - Tutorial 2

OTHER FILES OF INTEREST

• main.cc this is the compiler wrapper, parsing flags and the
like.

• Makefile this is not the same as the last labs. It generates a
file called compiler which will take various arguments (see
main.cc for information). It also takes source files as
arguments, so you can start using diesel files to test your
compiler-in-the-making.

• diesel this is a shell script which works as a wrapper
around the binary compiler file, handling flags, linking, and
such things. Use it when you want to compile a diesel file.
At the top of this file is a list of all flags you can send to the
compiler, for debugging, printouts, symbolic compilation and
the like.

TDDE66 Compiler Construction - Tutorial 2

LAB 4
SEMANTICS

TDDE66 Compiler Construction - Tutorial 2

PURPOSE

To verify the semantic correctness of the program
represented by the parse tree, reporting any errors,
possibly, to produce an intermediate form and
certain tables for use by later compiler phases

 Semantic correctness the program adheres to the rules of the
type system defined for the language (plus some other rules)

 Error messages should be as meaningful as possible
 In this phase, there is sufficient information to be able to

generate a number of tables of semantic information
identifier, type and literal tables

TDDE66 Compiler Construction - Tutorial 2

METHOD

Ad-hoc confirmation of semantic rules

TDDE66 Compiler Construction - Tutorial 2

IMPLEMENTATION

• Semantic analyzer implementations are
typically syntax directed

• More formally, such techniques are based
on attribute grammars

• In practice, the evaluation of the attributes
is done manually

TDDE66 Compiler Construction - Tutorial 2

MATHEMATICAL CHECKS

Divide by zero
Zero must be compile-time determinable constant zero,
or an expression which symbolically evaluates to zero at
runtime

Overflow
Constant which exceeds representation of target
machine language arithmetic which obviously leads to
overflow

Underflow
Same as for overflow

TDDE66 Compiler Construction - Tutorial 2

UNIQUENESS TESTS

In certain situations it is important that particular
constructs occur only once

Declarations
within any given scope, each identifier must be declared only
once

Case statements
each case constant must occur only once in the “switch”

TDDE66 Compiler Construction - Tutorial 2

TYPE CONSISTENCY

Some times it is also necessary to ensure
that a symbol that occurs in one place occurs
in others as well.

Such consistency checks are required whenever matching is
required and what must be matched is not specified explicitly
(i.e as a terminal string) in the grammar

This means that the check cannot be done by the parser

TDDE66 Compiler Construction - Tutorial 2

TYPE CHECKS

These checks form the bulk of semantic
checking and certainly account for the
majority of the overhead of this phase of
compilation
In general the types across any given operator must be compatible

The meaning of compatible may be:

• the same

• two different sizes of the same basic type

TDDE66 Compiler Construction - Tutorial 2

TYPE CHECKS

Must execute the same steps as for expression
evaluation
Effectively we are ”executing” the expression at compile time for type
information only

This is a bottom-up procedure in the parse tree
We know

● the type of ”things” at the leaves of a parse tree corresponding to an
expression

● (associated types stored in literal table for literals and symbol table
for identifiers)

When we encounter a parse tree node corresponding to some operator if
the operand sub-trees are leaves we know their type and can check that
the types are valid for the given operator.

TDDE66 Compiler Construction - Tutorial 2

FILES TO BE CHANGED

• semantic.hh and semantic.cc contains type
checking code implementation for the AST nodes
as well as the declaration and implementation of
the semantic class. These are the files you're
going to edit in this lab. They deal with type
checking, type synthesizing, and parameter
checking.

TDDE66 Compiler Construction - Tutorial 2

OTHER FILES OF INTEREST

All these files are the same as in lab 3:

• parser.y is the input file to bison. This is the file you
edited in the last lab, and all you should need to do now is
uncomment a couple of calls to:

 do_typecheck().
• ast.hh contains the definitions for the AST nodes.
• ast.cc contains (part of) the implementations of the AST

nodes.

• optimize.hh and optimize.cc contains optimizing code.
• quads.hh and quads.cc contains quad generation code.
• codegen.hh and codegen.cc contains assembler

generation code.

TDDE66 Compiler Construction - Tutorial 2

OTHER FILES OF INTEREST

• error.hh, error.cc, symtab.hh, symbol.cc,
symtab.cc, scanner.l use your versions from the
earlier labs.

• main.cc this is the compiler wrapper, parsing flags and
the like.

• Makefile and diesel use the same files as in the last
lab.

	COMPILER CONSTRUCTION Seminar 02 – TDDB44
	LABS
	PHASES OF A COMPILER
	Slide 4
	SYNTAX ANALYSIS
	PURPOSE
	METHOD
	PARSING STRATEGIES
	TOP-DOWN PARSING
	TOP-DOWN PARSING (cont'd)‏
	BOTTOM-UP PARSING
	BOTTOM-UP PARSING (cont'd)‏
	PARSING TECHNIQUES
	LR PARSING
	+ AND – FOR LR
	bison AND yacc USAGE
	bison AND yacc USAGE
	bison USAGE
	bison SPECIFICATION
	C DECLARATIONS
	bison DECLARATIONS
	GRAMMAR RULES
	ADITIONAL C CODE
	bison EXAMPLE
	bison EXAMPLE
	bison EXAMPLE
	bison EXAMPLE
	bison EXAMPLE
	bison EXAMPLE
	bison EXAMPLE
	bison EXAMPLE
	bison EXAMPLE
	bison EXAMPLE
	bison EXAMPLE
	bison EXAMPLE
	bison EXAMPLE
	bison EXAMPLE
	USING bison WITH flex
	USING BISON WITH FLEX
	ERROR HANDLING IN bison
	FILES TO BE CHANGED
	OTHER FILES OF INTEREST
	OTHER FILES OF INTEREST
	Slide 44
	PURPOSE
	METHOD
	IMPLEMENTATION
	MATHEMATICAL CHECKS
	UNIQUENESS TESTS
	TYPE CONSISTENCY
	TYPE CHECKS
	TYPE CHECKS
	FILES TO BE CHANGED
	OTHER FILES OF INTEREST
	OTHER FILES OF INTEREST

