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CISC vs. RISC
CISC
 Complex Instruction Set Computer
 Memory operands for arithmetic and 

logical operations possible
 M(r1+r2)  M(r1+r2) * M(r3+disp)

 Many instructions
 Complex instructions
 Few registers, not symmetric
 Variable instruction size
 Instruction decoding (often done in 

microcode) takes much silicon 
overhead

 Example:  80x86, 680x0

 RISC
 Reduced Instruction Set Computer
 Arithmetic/logical operations only on 

registers
 add r1, r2, r1

load (r1), r4
load r3+disp, r5
mul  r4, r5
store r5, (r1)

 Fewer, simple instructions
 Many registers, all general-purpose

typically  32 ... 256 registers
 Fixed instruction size and format
 Instruction decoding hardwired

 Example:  POWER, HP-PA RISC,
MIPS, ARM, SPARC
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Instruction-Level Parallel (ILP) architectures 
Single-Issue:    (can start at most one instruction per clock cycle)

 Simple, pipelined RISC processors
with one or multiple functional units
 e.g. ARM9E, DLX

Multiple-Issue:   (can start several instructions per clock cycle)

 Superscalar processors
 e.g. Sun SPARC, MIPS R10K, Alpha 21264, IBM Power2, Pentium 

 VLIW processors (Very Long Instruction Word)
 e.g. Multiflow Trace, Cydrome Cydra-5, Intel i860, 

HP Lx, Transmeta Crusoe; 
most DSPs, e.g. Philips Trimedia TM32, TI ‘C6x

 EPIC processors (Explicitly Parallel Instruction Computing)
 e.g. Intel Itanium family  (IA-64)
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Processors with/without Pipelining

Processor cycle no.

Instr. retrieval

Instr. decoding

Execution

Store result

#1

#1

#1

#1

#2

#2

#2

#2

#1#3

#3

Instr 1 Instr 2 Instr 3

1 2 3 4 6 7 8 9 10 115

Traditional processor without pipelining

One instruction takes 4 processor cycles, i.e.  0.25 instructions/cycle
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Processor with Simple Pipelining

An instruction takes 1 cycle on average with pipeline
i.e. 1 instruction/cycle

This pipeline achieves 4-way parallelism

Processor cycle no.

Instr. retrieval

Instr. decoding

Execution

Store result

#1

#1

#1

#1

#1#9

#9

1 2 3 4 6 7 8 9 10 11

Instr

#2

#2

#2

#2

#3

#3

#3

#3

#4

#4

#4

#4

#5

#5

#5

#5

#6

#6

#6

#6

#7

#7

#7

#7

#8

#8

#8

#8

5

  1
Instr
  2

Instr
  3

Instr
  4

Instr
  5
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Processor with Super-Pipelining
A new instruction can begin before the previous one is finished.

Thus you manage on average 3 instr/cycle when the pipeline is full.

Processor cycle no.

R= Instr. retrieval

D= Instr. decoding

E= Execution

S= Store result

R1

1 2 3 4 6 7 8 9 10 11

D1 E1 S1

5

R2 D2 E2 S2

R3 D3 E3 S3

R4 D4 E4 S4

R5 D5 E5 S5

R6 D6 E6 S6

Instruction 1 readyInstruction 1 starts
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A Processor with Parallel Pipelines

IF
i fetch i decode

ID

A1 A2 WB

add 1 add 2 write- 
back

EX ME WB

EX WB

M1 M2 M3

mult. 1 mult. 2 mult. 3
write 
back

WB

execute access

execute
write- 
back

Floating- 
point
mult.

Floating-point
add

Load/store
instructions

Integer
instructions

write- 
back
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Problems using Branch Instructions on 
Simple Pipelined Processors

Branch instructions force the pipeline to restart 
and thus reduce performance.

The diagram below shows execution of a branch 
(cbr = conditional branch) to instruction #3, which makes the pipeline restart.

The grey area indicates lost performance. 
Only 4 instructions start in 6 cycles instead of the maximum of 6.

Processor cycle no.

Instr. retrieval

Instr. decoding

Execution

Store result

#1

#1

#1

#1

1 2 3 4 6 7 8

#2 cbr

#2 cbr

#2 cbr

#2

#3

#3

 #3

#3

#4

#4

#4

5
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Summary Pipelined RISC Architectures
 A single instruction is issued per clock cycle
 Possibly several parallel functional units / resources
 Execution of different phases of subsequent instructions overlaps in time. 

This makes them prone to:
 data hazards (may have to delay op until operands ready),
 control hazards (may need to flush pipeline after wrongly predicted branch), 
 structural hazards (required resource(s)/ e.g. functional units, bus, register,  

must not be occupied)

 Static scheduling (insert NOPs to avoid hazards)
vs. Run-time treatment by pipeline stalling

IF
ID
EX

MEM/EX2
WB
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Reservation Table, Scheduling Hazards
(avoid hazards = resource collisions)

Reservation table
specifies required resource 
occupations

[Davidson 1975]
If we start add at t+2, the bus
write will appear at cycle t+5
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Comparison between Superscalar Processors 
and VLIW processors

PU PU PU PU

Instruction flow

PU PU PU PU

VLIW Processors
(Very Long Instruction Word)

Superscalar Processors

with multiple loading of instructions
(multi-issue)

Several processor units are loaded
simultaneously be different operations in 
the same instructions. 
E.g. the multiflow machine, 
1024 bits, 28 operations,
or specialized graphics processors
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Superscalar Processors
A superscalar processor has several function units that can work in parallel and 
which can load more than 1 instruction per cycle.
The word superscalar comes from the fact that the processor executes more 
than 1 instruction per cycle. 
The diagram below shows how a maximum of 4 units can work in parallel, which 
in theory means they work 4 times faster.
The type of parallelism used depends on the type of instruction and 
dependencies between instructions.
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Superscalar Processor

 Run-time scheduling by instruction dispatcher
 convenient (sequential instruction stream – as usual)
 limited look-ahead buffer to analyze dependences, reorder instr.
 high silicon overhead, high energy consumption

 Example:  Motorola MC 88110
2-way, in-order issue 
superscalar
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A Parallel Superscalar Pipeline

IF

i fetch

A1 A2 WB

add 1 add 2 write- 
back

EX ME WB

EX WB

M1 M2 M3

mult. 1 mult. 2 mult. 3
write 
back

WB

execute memory

execute
write- 
back

Floating- 
point
mult.

Floating-point
add

Load/store
instructions

Integer
instructions

write- 
back

i decode

i dec ode

i decode

i decode

ID

ID

ID

ID

instruction
dispatch

DS

IF
i fetch i decode

ID

A1 A2 WB

add 1 add 2 write- 
back

EX ME WB

EX WB

M1 M2 M3

mult. 1 mult. 2 mult. 3
write 
back

WB

execute access

execute
write- 
back

Floating- 
point
mult.

Floating-point
add

Load/store
instructions

Integer
instructions

write- 
back
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Branch Effects on Performance for Deeply 
Pipelined Superscalar Processors
Branch-instructions force the pipeline to restart and thus reduce 
performance. Worse on deeply pipelined superscalar processors.

Cycle no.

Instr. retr.

Instr. decode 1

Store

1 2 3 4 6 7 85

#1 #3
#2 cbr #4

#5
#6

#1 #3
#2 cbr #4

#5
#6

#1 #3
#2 cbr #4

#5
#6

#1 #3
#4
#5
#6

#1 #3
#2 cbr #4

#5
#6

Instr. decode 2

Execution 1

Execution 2

The diagram shows
execution of a branch 
(cbr = conditional 
branch) to instruction 
#3, which makes the 
pipeline restart.

The grey area 
indicates lost 
performance. 
Only 6 instructions 
start during 5 cycles 
instead of a 
maximum of 20.
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VLIW (Very Long Instruction Word) architectures

 Multiple slots for instructions in long instruction-word
 Direct control of functional units and resources – low decoding OH

 Compiler (or assembler-level programmer) 
must determine the schedule statically  
 independence, unit availability, packing into long instruction words 
 Challenging!  But the compiler has more information on the program 

than an on-line scheduler with a limited lookahead window.
 Silicon- and 

energy-efficient



18 TDDB44: Code Generation for RISC and ILP Processors

EPIC Architectures
(Explicitly Parallel Instruction Computing)

 Based on VLIW
 Compiler groups instructions to LIW’s (bundles)
 Compiler takes care of resource and latency constraints
 Compiler marks sequences of independent instructions
 Dynamic scheduler assigns resources and reloads new 

bundles as required

LIW 1 LIW 2 ...

LIW 2 cont LIW 3

Instr 1

Instr 2

etc.
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The Instruction Scheduling Problem
 Schedule the instructions in such an order that parallel 

function units are used to the greatest possible degree. 

 Input:
 Instructions to be scheduled
 A data dependency graph
 A processor architecture
 Register allocation has (typically) been performed

 Output:
 A scheduling of instructions which minimizes execution 

time
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Example Instructions to be Scheduled

1

2

3

4

5 6

7

8

9 10

11

mov    rax, 5
mov    rcx, [rbp-16]
mul    rax, 8
mov    [rcx-64], rax
push   4
call   L6
inc    [rbp-8]
dec    [rbp+8]
mov    rdx, [rsp-32]
mov    [rsp-40], rdx  
ret

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

Dependency graphInstructions
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Instruction Scheduling (1)
 Map instructions to time slots on issue units (and resources), 

such that no hazards occur
 Global reservation table,  resource usage map

 Example without data dependences:
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Instruction Scheduling (2)

 Data dependences imply latency constraints
 target-level data flow graph / data dependence graph

latency(mul) = 6 add

mul 6

6
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Instruction Scheduling
Generic Resource model
 Reservation table

Local Scheduling 
(f. Basic blocks / DAGs)

 Data dependences 
 Topological sorting
 List Scheduling 

(diverse heuristics)

Global Scheduling
 Trace scheduling, Region scheduling, ...
 Cyclic scheduling (Software pipelining)

There exist retargetable schedulers
and scheduler generators, e.g. for GCC since 2003
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Example of List Scheduling Algorithm
 The level of a task (i.e., 

instruction) node is the 
maximal number of nodes 
that are passed on the 
way to the final node, itself 
included.

 The algorithm:
 The level of each node 

is used as priority.
 When a 

processor/function unit 
is free, assign the 
unexecuted task which 
has highest priority
and which is ready to 
be executed. 

Example of Highest Level First algorithm on a
tree structured task graph, 3 processor units

task number

task execution time

task priority
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Example:  Topological Sorting (0)
According to Data Dependencies

d

a b c

e

Not yet considered

Data ready  (zero-in-degree set)

Already scheduled, still live

Already scheduled, no longer referenced
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Example:  Topological Sorting (1)
According to Data Dependencies

d

a b c

e

Not yet considered

Data ready  (zero-in-degree set)

Already scheduled, still live

Already scheduled, no longer referenced

a
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Example:  Topological Sorting (2)
According to Data Dependencies

d

a b c

e

Not yet considered

Data ready  (zero-indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

ba
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Example:  Topological Sorting (3)
According to Data Dependencies

d

a b c

e

Not yet considered

Data ready  (zero-indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

da    b
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Example:  Topological Sorting (4)
According to Data Dependencies

d

a b c

f

e

Not yet considered

Data ready  (zero-indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

and so on...a   b   d
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Topological Sorting and Scheduling
 Construct schedule incrementally 

in topological (= causal) order
 ”Appending” instructions to partial code sequence: 

close up in target schedule reservation table 
(as in ”Tetris”) 

 Idea: Find optimal target-schedule by enumerating 
all  topological sortings ...
Beware of scheduling anomalies

with complex reservation tables!  

Instruction needing
3 functional units
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Software Pipelining

for i := l  to  n
get values;
compute;
store;

end for

}get values 1  get values 2 get values 3
compute 1 compute 2

store 1
In parallel

iter 1 iter 2 iter 3 iter ...
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Software Pipelining of Loops (1)
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Software Pipelining of Loops (2)

 More about Software Pipelining in TDDC86 
Compiler Optimizations and Code Generation
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Software Pipelining of Loops  (3)
Modulo Scheduling

7 instructions
A, B, C, D,...G

ResMII = Resource
Constrained Minimum
Initiation Interval

Assume 2 processor cycles
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Global Register Allocation
 Register Allocation:  Determines values (variables, temporaries, 

constants) to be kept when in registers
 Register Assignment:  Determine in which physical register such a value 

should reside.

 Essential for Load-Store Architectures
 Reduce memory traffic  ( memory / cache latency, energy)
 Limited resource
 Values that are live simultaneously cannot be kept in the same register
 Strong interdependence with instruction scheduling

 scheduling determines live ranges
 spill code needs to be scheduled

 Local register allocation (for a single basic block) can be done in linear 
time  (see previous lecture)

 Global register allocation on whole procedure body (with minimal spill 
code) is NP-complete. 
Can be modeled as a graph coloring problem  [Ershov’62] [Cocke’71].
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When do Register Allocation
 Register allocation is normally performed at the end of 

global optimization, when the final structure of the code and 
all potential use of registers is known.

 It is performed on abstract machine code where you have 
access to an unlimited number of registers or some other 
intermediary form of program.

 The code is divided into sequential blocks (basic blocks) with 
accompanying control flow graph.
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Live Range
(Here, variable = program variable or temporary)
 A variable is being defined at a program point if it is written 

(given a value) there.
 A variable is used at a program point if it is read (referenced 

in an expression) there.
 A variable is live at a point if it is referenced there or at some 

following point that has not (may not have) been preceded by 
any definition.

 A variable is reaching a point if an (arbitrary) definition of it, 
or usage (because a variable can be used before it is defined) 
reaches the point.

 A variable’s live range is the area of code (set of instructions) 
where the variable is both live and reaching. 
 does not need to be consecutive in program text.
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Live Range Example

x
x := 5+u;

z := 3+x;

y := 35+x+z;

x is defined

Use of x

Last use of x

Live range for x
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Interference Graphs
 The live ranges of two 

variables interfere if their 
intersection is not empty.

 Each live range builds a 
node in the interference 
graph (or conflict graph)

 If two live ranges 
interfere, an edge is 
drawn between the 
nodes. 

 Two adjacent nodes in the 
graph can not be 
assigned the same 
register.

x

y

z w

x y

wz

Interference graph:
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Register Allocation vs Graph Coloring
 Register allocation can be compared with the classic coloring 

problem.
 That is, to find a way of coloring - with a maximum of k 

colors - the interference graph which does not assign the 
same color to two adjacent nodes.

 k = the number of registers. 
 On a RISC-machine there are, for example, 16 or 32 

general registers. Certain methods use some registers for 
other tasks. e.g., for spill code.

 Determining whether a graph is colorable using k colors is 
NP-complete for k>3
 In other words, it is unmanageable always to find an 

optimal solution.
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Register Allocation by Graph Coloring
 Step 1: Given a program with symbolic registers s1, s2, ...

 Determine live ranges of all variables



44 TDDB44: Code Generation for RISC and ILP Processors

Register Allocation by Graph Coloring
 Step 2: Build the Register Interference Graph

 Undirected edge connects two symbolic registers (si, sj) 
if live ranges of si and sj overlap in time

 Reserved registers (e.g. fp) interfere with all si

symbolic registers
physical
registers
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Reg. Alloc. by Graph Coloring Cont.
 Step 3:  Color the register interference graph with k colors,

where k = #available registers.
 If not possible:  pick a victim si to spill, generate spill code 

(store after def., reload before use)
This may remove some interferences.

Rebuild the register interference graph + repeat Step 3...

This register interference graph cannot be colored 
with less than 4 colors, as it contains a 4-clique
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Coloring a Graph with k Colors
 NP-complete  for  k > 3
 Chromatic number γ(G) = minimum number of colors to color a graph G
 γ(G) >= c  if the graph contains a c-clique  

 A c-clique is a completely connected subgraph of c nodes

 Chaitin’s heuristic (1981):

S  { s1, s2, ... }    // set of spill candidates
while ( S not empty )

choose some  s  in  S.
if s  has less than k neighbors in the graph

then // there will be some color left for s:
delete  s (and incident edges) from the graph

else modify the graph  (spill, split, coalesce ... nodes)
and restart.

// once we arrive here, the graph is empty:
color the nodes greedily in reverse order of removal.
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Chaitin’s Register Allocator  (1981)
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Register Allocation for Loops (1)
 Interference graphs have some weaknesses:

 Imprecise information on how and when live ranges interfere.
 No special consideration is taken of loop variables’ live ranges (except 

when calculating priority).
 Instead, in a cyclic interval graph:

 The time relationships between the live ranges are explicit.
 Live ranges are represented for a variable whose live range crosses 

iteration limits by cyclic intervals.
 Notation for cyclic live intervals for loops:

 Intervals for loop variables which do not cross the iteration limit are 
included precisely once.

 Intervals which cross the iteration limit are represented as an interval 
pair, cyclic interval:

([0, t’), [t, tend])
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Register Allocation for Loops (2)

i

x1

x2

x3

Circular edge graph
Only 3 interferences at the same time

x1

i x2

x3

Traditional interference graph,
all variables interfere, 4 registers needed
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Register Allocation for Loops (3)

Example:

x3 = 7

for i = 1 to 100 {

x1 = x3 + 2

x2 = x1 + x3

x3 = x2 + x1

}

y = x3 + 42

x3 = 7

i = 1

i <= 100

x1 = x3 + 2

x2 = x1 + x3

x3 = x2 + x1

i = i + 1

y = x3 + i + 42

Control flow graph

FT

i x2x1 x3

Live ranges (loop only):
cyclic intervals
e.g. for i:  [0, 5), [5, 6]
x1: [2, 4)      x2: [3, 5)
x3: ([0, 3), [4, 6])

At most 3 values live at a time
 3 registers sufficient

All variables 
interfere with 
each other –
need 4 regs?

X X

X

X

0

1

3

2

4

5

6
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Live Range Splitting
 Instead of spilling completely (reload before each use), 

it may be sufficient to split a live range at one position 
where register pressure is highest 
 save, and reload once

store

load



52 TDDB44: Code Generation for RISC and ILP Processors

Live Range Coalescing/Combining
(Reduces Register Needs)

 For a copy instruction     sj si
 where si and sj do not interfere
 and si and sj are not rewritten after the copy operation

 Merge si and sj:
 patch (rename) all occurrences of si to sj
 update the register interference graph

 and remove the copy operation.

s2  ...
...
s3  s2
...
... s3 ...

s3  ...
...
s3  s3
...
... s3 ...
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Phase Ordering Problems  

IR

target
code

Instruction 
selection

Instruction scheduling
Register 
allocation

gcc,
lcc
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Phase Ordering Problems (1)
Instruction scheduling   vs.   register allocation

(a)  Scheduling first:
determines Live-Ranges   
 Register need,
possibly spill-code to be
inserted afterwards

(b)  Register allocation first:
Reuse of same register by different
values introduces ”artificial”
data dependences
 constrains scheduler
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5.  Integrated Code Generation

IR

Target
code

Instruction
selection

Instruction scheduling
Register 
allocation
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Our Project at PELAB (Kessler): OPTIMIST
Retargetable integrated code 
generator

Open Source:

www.ida.liu.se/~chrke/optimist

x

x
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Thank you!
 Any questions?
 L13 – on error management and interpreters
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