TDDB44/TDDD55 Lecture 14:
Compiler Frameworks and Compiler Generators

A (non-exhaustive) survey
with a focus on open-source frameworks

Peter Fritzson, Christoph Kessler and Martin Sjélund

Department of Computer and Information Science
Linképing University

2018-12-17

LINKOPING
II.“ UNIVERSITY

2/40

Overview

Part | Syntax-Based Generators

Part Il Semantics-Based Generators

Part IlI Primarily Back-End Frameworks and Generators
Part IV More Frameworks

LINKOPING
II.“ UNIVERSITY

Part |

Syntax-Based Generators

LINKOPING
II.“ UNIVERSITY

4/40

Syntax-Based Generators

> Lex and Flex — generates lexical analysers.
Clones and/or open source alternatives exist for many programming languages.
Wikipedia has a reasonable overview.

P Yacc and Bison — generates parsers

Can be used for syntax-directed translation

Usually syntax-directed translation is not used (if the compilation is not completely
driven by the parser, it is something else)

Does not generate semantic analysis, intermediate code, optimization, or code
generation

YACC produces parsers that are bad at error management

> Very many alternatives exist, with the grammar specification either using an APl in
the programming language, EBNF, or something else. Many parser generators (such
as ANTLR) allow the user to adapt the error handling routines. Some also have IDE’s
that make debugging your grammar easier.

> https://en.wikipedia.org/wiki/Comparison_of_parser_generators

LINKOPING
II.“ UNIVERSITY

https://en.wikipedia.org/wiki/Comparison_of_parser_generators

Part I

Semantics-Based Generators

LINKOPING
II.“ UNIVERSITY

6/40

RML — A Compiler Generation System and Specification Language from
Natural Semantics/Structured Operational Semantics

> Goals

Efficient code — comparable to hand-written compilers
Simplicity — simple to learn and use
Compatibility with “typical natural semantics/operational semantics” and with Standard
ML
> Properties
Deterministic
Separation of input and output arguments
Statically strongly typed
Polymorphic type inference
Efficient compilation of pattern-matching

www.ida.liu.se/pelab/~rml —developed around 1999 and used in OpenModelica
until 2014-10-25.

LINKOPING
II.“ UNIVERSITY

www.ida.liu.se/pelab/~rml

Generating an Interpreter Implemented in C,

LINKOPING
UNIVERSITY

Formalism Generator

tool

Regular Lex

expressions ———*

BNF Yacce
—_—

grammar
Natural

. rml2e
semantics ——————*
in RML
(Interpretive
semantics)

Interpreter
phase

Interpreter /

Evaluator

using rml2C

Program
representation

Token sequence

Abstract syntax

7/40

Generating a Compiler Implemented in C,

LINKOPING
UNIVERSITY

Formalism Generator
tool
Regular Lex
expressions "
BNF i
grammar Yace
Natural
semantics rml2 C,
in RML
Optimizer Lo
specification Optimix_

Instruction set
description

(or rml2c)

BEG

Compiler
phase

Scanner

l,

Parser

Semantics:
Type checking
Int. form gen.

Machine code
generator

using rml2C

Program
representation

Text

Token sequence

Abstract syntax

Intermediate form

Intermediate form

Machine code

8/40

9/40

RML Syntax
Goal: Eliminate phletora of special symbols usually found in Natural
Semantics/Operational Semantics specifications
Software engineering viewpoint: identifiers are more readable in large specifications
A Natural/Operational semantics rule:

H1 |- T1 : Rl . . Hn |- Tn : Rn

if <cond>

H|-— T : R

Typical RML rule:

rule NameX(H1,T1) => R1 &

NameY(Hn,Tn) => Rn &
<cond>

II “LINKDD\NG RelationName(H,T) => R
o

UNIVERSITY

10/40

Example: the Expl Expression Language

Typical expressions

12 + 5%3

PLUSop
—5 % (10 — 4)
Abstract syntax (defined in RML):
datatype Exp INTTonﬁ MULop
= INTconst of int 12
| PLUSop of Exp x Exp INTconst INTconst
| SUBop of Exp * Exp |
| MULop of Exp * Exp 5 3
| DIVop of Exp x Exp Figure: Abstract syntax tree of 12 + 5*3
| NEGop of Exp igure: Abstract syntax tree o

LINKOPING
II.“ UNIVERSITY

11/40

Evaluator for Exp1

Relation eval: Exp => int = rule eval(el) => vl & eval(e2) => v2 &
int_add(vl,v2) => v3
Evaluation of an integer constant ival is the eval(PLUSop(el,e2)) => v3
integer itself: rule eval(el) => vl & eval(e2) => v2 &
int_sub(vl,v2) => v3
axiom eval(INTconst(ival))
=> ival eval(SUBop(el,e2)) => v3
rule eval(el) => vl & eval(e2) => v2 &
Evaluation of an addition node PLUSop is v3, int_mul (v1,v2) => v3
if v3 is the result of adding the evaluated eval(MUlop(el,e2)) => v3
results of its children el and e2. rule eval(e) => v1 & int_neg(vl) => v2
Subtraction, multiplication, division eval (NEGop(e)) => v2

end

operators have similar specifications. (we
have removed division below)

II LINKOPING
{) UNIVERSITY

Simple Lookup in Environments Represented as Linked Lists

relation lookup: (Env,Ident) => Value =
(* lookup returns the value associated with an identifier.
If no association is present, lookup will fail.
Identifier id is found in the first pair of the list,
and value is returned. =)
rule id = id2

lookup ((id2 ,value) :: _, id) => value
(* id is not found in the first pair of the list,
and lookup will recursively search the rest of the list.

If found, value is returned. x)

rule not id=id2 & lookup(rest, id) => value

lookup ((id2,_) :: rest, id) => value
end
(* NOTE: Searching linked lists is slow.
RML does not support fancy hash tables ... x)

II LINKOPING
{) UNIVERSITY

12/40

13/40

Translational Semantics of the PAM language — Abstract Syntax to Machine

Code

PAM example program:

read x,vy;

while x<> 99 do
ans := (x+1) — (y / 2);
write ans;
read x,y

end

II LINKOPING
{) UNIVERSITY

Simple Machine Instruction Set:

LOAD
STO
ADD
SUB
MULT
DIV
GET
PUT

J

IN
JP
INZ
Pz
INP
LAB
HALT

Load accumulator

Store

Add

Subtract

Multiply

Divide

Input a value

Output a value

Jump

Jump on negative

Jump on positive

Jump on negative or zero
Jump on positive or zero
Jump on negative or positive
Label (no operation)
Halt execution

PAM Example Translation

PAM example program:

read x,y;

while x<> 99 do
ans := (x+1) — (y / 2);
write ans;
read x,y

end

II LINKOPING
{) UNIVERSITY

Translated machine code assembly text

GET sTO
GET vy LOAD

L1 LAB suB
LOAD x sTO
SUB 99 PUT
1z L2 GET
LOAD X GET
ADD 1 J
STO T1 L2 LAB
LOAD y HALT
DIV 2

T2
T1
T2
ans
ans
X

Y
L1

Low level representation tree form

MGET(1(x)) MSTO(
MGET(I(y)) MLOAD(
MLABEL(L(1)) MB(MSUB,
MLOAD(1(x)) MSTO(
MB(MSUB,N(99)) MPUT(
MI(MJZ, L(2)) MGET(
MLOAD(1(x)) MGET(
MB(MADD,N(1)) MIMP(
MSTO(T(1)) MLABEL(
MLOAD(I(y)) MHALT
MB(MDIV,N(2))

T(2))
T(1))
T(2))
I(ans))
I(ans))
1(x))
1(y))
L(1))
L(2))

14/40

Some Applications of RML

v

Small functional language with call-by-name
semantics (mini-Freja, a subset of Haskell)

Almost full Pascal with some C features (Petrol)
Mini-ML including type inference

Specification of full Java 1.2

Specification of Modelica 2.0

vvyYyy

LINKOPING
UNIVERSITY

Mini-Freja Interpreter performance compared to Centaur/Typol:

primes

Typol

RML

Typol/RML

3

13s

0.0026s

5000

4

72s

0.0037s

19459

5

1130s

0.0063s

179365

15/40

16/40

Some Attribute-Grammar Based Tools

> JASTADD — OO Attribute grammars
> Ordered Attribute Grammars

Uwe Kastens, Anthony M. Sloane. Generating Software from Specifications 2007
©Jones and Bartlett Publishers Inc. www. jbpub. com

LINKOPING
II.“ UNIVERSITY

www.jbpub.com

Part Il

Primarily Back-End Frameworks and Generators

LINKOPING
II.“ UNIVERSITY

18/40

LCC (Little C Compiler)

Not really a generator, but uses IBURG
» Dragon-book style C compiler implementation in C

» Very small (20K Loc), well documented, well tested,
widely used

» Open source:
http://www.cs.princeton.edu/software/lcc

> Textbook A retargetable C compiler [Fraser, Hanson
1995] contains complete source code

» One-pass compiler, fast

LINKOPING
II." UNIVERSITY

http://www.cs.princeton.edu/software/lcc

LCC (Little C Compiler)

> C frontend (hand-crafted scanner and recursive descent parser) with own C
preprocessor
> Low-level IR
Basic-block graph containing DAGs of quadruples
No AST

Interface to IBURG code generator generator

Tree pattern matching + dynamic programming
Few optimizations:

local common subexpr. elimination

constant folding

>
> Example code generators for MIPS, SPARC, Alpha, x86 processors
| 2
>

> Good choice for source-to-target compiling if a prototype is needed soon

LINKOPING
II.“ UNIVERSITY

19/40

— Not a Generator, but wide-spread usage

>

| 2

LINKOPING
II.“ UNIVERSITY

Gnu Compiler Collection (earlier: Gnu C Compiler)

Compilers for C, C++, Fortran, Java, Objective-C, Ada, and more
sometimes with own extensions, e.g. Gnu-C

Open-source, developed since 1985

Very large (GCC 6.2.0 tarball is 835 MB)

3 IR formats (all language independent)
GENERIC: tree representation for whole function (also statements)
GIMPLE (simple version of GENERIC for optimizations) based on trees but expressions in
qguadruple form. High-level, low-level and SSA-low-level form.
RTL (Register Transfer Language, low-level, Lisp-like) (the traditional GCC-IR) only
word-sized data types; stack explicit; statement scope

Many optimizations

20/40

> Version 4.x (since 2004) has strong support for retargetable code generation
Machine description in .md file
Reservation tables for instruction scheduler generation

> Many target architectures
Note: GCC is not a cross-compiling compiler and does not include a linker. It compiles
code for a set of language, but only targets a single target platform. If you want to
cross-compile code, you need to compile a linker and GCC targeting this platform (you
have one GCC and linker toolchain installed for each target platform).

> Good choice if one has the time to get into the framework (and what you want is a

compiler, not a development environment).

Note: Now has a new version numbering where 5.2 is really 4.10.2 and 6.0 is really 4.11.0 (in the old version numbering scheme).

LINKOPING
II.“ UNIVERSITY

21/40

22/40

Figure: Official LLVM dragon logotype. Inspired by the course book. Dragons, like LLVM, are

powerful.
houues

23/40

ALLVM

g)C OMPILER
INFRASTRUCTURE

> “Low-level virtual machine”, IR. LLVM is a backend framework.

> Mainly accessed through an API, and is suitable for integration in an IDE (such as
Apple’s XCode).

> Also comes with command-line tools, which can manipulate its IR (LLVM bitcode),
including optimizing bitcode to produce an optimized bitcode file or generating an
executable from bitcode.

P Itincludes:

Front-ends for C/C++/0bjC/OpenMP (clang), can use GCC as a frontend (dragonegg),
A debugger (11db).

A C++ standard library.

An experimental linker (114d).

P Third parties add more frontends, including for example the Julia language.

LINKOPING
II.“ UNIVERSITY

24/40

ALLVM

g)C OMPILER
INFRASTRUCTURE

> Compiles to several target platforms (see 11¢ --version)
LLVM is a cross-compiling compiler.
You only need one copy of LLVM installed to generate code for all supported platforms.
You probably still need a linker for the target installed (114 is limited).
You will also need platform-specific headers for the compiler frontend and
platform-specific libraries to link against.
> Open source (BSD-license), originally developed at Univ. of lllinois at Urbana
Champaign.
> Note: Microsoft’s Visual Studio can use clang as a front-end, but uses their own
backend and optimizations instead of LLVM.

LINKOPING
II.“ UNIVERSITY

Open64 / ORC Open Research Compiler Framework

| 2

v

LINKOPING
II.“ UNIVERSITY

Based on SGI Pro-64 Compiler for MIPS processor, written in C++, went open source
in 2000. Discontinued in 2011. Forked by Nvidia for optimizing CUDA code.

Several tracks of development (Open64, ORC, ...)

For Intel Itanium (IA-64) and x86 (IA-32) processors. Also retargeted to x86-64, Ceva
DSP, Tensilica, XScale, ARM, ... “simple to retarget” (?)

Languages: C, C++, Fortran95 (uses GCC as frontend), OpenMP and UPC (for parallel
programming)

Industrial strength, with contributions from Intel, Pathscale, ...

Open source: sourceforge.net/projects/open64/

6-layer IR:
WHIRL (VH, H, M, L, VL) — 5 levels of abstraction
All levels semantically equivalent
Each level a lower level subset of the higher form

and target-specific very low-level CGIR

25/40

https://sourceforge.net/projects/open64/

26/40

ORC: Flow of IR

’ C, C++ ‘ ’ F95 ‘
1 front-ends
(GCC)
;/tgr%alone inliner YeryhlighiRIRE
(AST) Lower aggregates

Un-nest calls

IPA (interprocedural analysi

PREOPT T High WHIRL Lower arrays

LNO (Loop nest optimizer) Lower complex numbers
l Lower HL control flow

Lower bit-fields
WOPT (global optimizer, | Mid WHIRL
uses internally an SSA IR) Lower intrinsic ops to calls
RVI1 (register variable All data mapped to segments
identification) l Lower loads/stores to final form
RVI2 Expose code sequences for
constants, addresses
| LT AL Expose #(gp) addr. for globals
e v
| Very Low WHIRL |
l code generation, including
CcG scheduling, profiling support,
| CGIR predication, SW speculation

II LINKOPING
{) UNIVERSITY

27/40

Open64 / ORC Open Research Compiler

> Multi-level IR
Translation by lowering

© Analysis / Optimization engines can work on the most appropriate level of abstraction
© Clean separation of compiler phases
® Framework gets larger and slower

> Many optimizations, many third-party contributed components

LINKOPING
II.“ UNIVERSITY

28/40

CoSy

A commercial compiler framework primarily focused on backends

www.ace.nl

II." LINKOPING
UNIVERSITY

www.ace.nl

Traditional Compiler Structure

Figure: Traditional compiler model: sequential process

ext

tokeng

Lexer

p tree {semant.
arser Analysis

IR

IR

Code

\ 4

Optimizer

generator

code

Improvement: Pipelining (by files/modules, classes, functions)

Figure: More modern compiler model with shared symbol table and IR

ext

Coordination Symbol table

data flow \
L p Semant. Obtimi Code
exer » Parser Analysis pHimizer generator

Data fetch/store))
Intermediate representation (IR)

II LINKOPING
{) UNIVERSITY

code

29/40

A CoSy Compiler with Repository Architecture

“Engines” i
(compiler tasks, Semantic
phases) analysis

Parser

Lexer

Common

LINKOPING
II." UNIVERSITY

Transformation

Optimizer

Codegen

“Blackboard architecture”

30/40

31/40

Engine

Modular compiler building block
Performs a well-defined task
Focus on algorithms, not compiler configuration

Parameters are handles on the underlying common IR repository

vVvyYVvyyvyy

Execution may be in a separate process or as subroutine call - the engine writer does
not know!

v

View of an engine class: the part of the common IR repository that it can access
(scope set by access rights: read, write, create)

> Examples: Analyzers, Lowerers, Optimizers, Translators, Support

LINKOPING
II.“ UNIVERSITY

32/40

Composite Engines in CoSy

> Built from simple engines or from other composite engines by combining engines in
interaction schemes (Loop, Pipeline, Fork, Parallel, Speculative, ...)

> Described in EDL (Engine Description Language) View defined by the joint effect of
constituent engines A compiler is nothing more than a large composite engine

ENGINE CLASS compiler (IN u: mirUNIT) {
PIPELINE
frontend (u)
optimizer (u)
backend (u)

LINKOPING
II.“ UNIVERSITY

33/40

A CoSy Compiler

\

Generated
access layer

TR T

Composite Engines in CoSy

Component classes (engine class)
Component instances (engines)

Basic components are implemented in C

vvyyy

Interaction schemes (cf. skeletons) form complex
connectors

SEQUENTIAL

PIPELINE

DATAPARALLEL

SPECULATIVE
» EDL can embed automatically
Single-call-components into pipes
p<>means a stream of p-items
EDL can map their protocols to each other (p vs
p<>)

LINKOPING
UNIVERSITY

ENGINE CLASS optimizer (procedure p)
{
ControlFlowAnalyser cfa;
CommonSubExprEliminator cse;
LoopVariableSimplifier lvs;

PIPELINE
cfa(p);
cse(p);
Ivs(p);

}

ENGINE CLASS compiler (file f)
{

Token token;
Module m;
PIPELINE

// lexer takes file,

// delivers token stream
lexer(IN f, OUT token<>);
// Parser delivers a module
parser(IN token<>, OUT m);
sema(m);

decompose(m, p<>);

// here comes a stream of procedures
// from the module
optimizer(p<>);

backend(p<>);

34/40

Evaluation of CoSy

> The outer call layers of the compiler are generated from view description
specifications
Adapter, coordination, communication, encapsulation
Sequential and parallel implementation can be exchanged
There is also a non-commercial prototype [Martin Alt: On Parallel Compilation. PhD
thesis, 1997, Univ. Saarbriicken]
> Access layer to the repository must be efficient (solved by generation of macros)
> Because of views, a CoSy-compiler is very easily extensible
That’s why it is expensive
Reconfiguration of a compiler within an hour

LINKOPING
II.“ UNIVERSITY

35/40

Part IV

More Frameworks

LINKOPING
II.“ UNIVERSITY

More Frameworks...

> Cetus

http://cobweb.ecn.purdue.edu/ParaMount/Cetus/
C/C++ source-to-source compiler written in Java.
Open source

> Tools and generators

TXL source-to-source transformation system
ANTLR frontend generator

LINKOPING
II.“ UNIVERSITY

37/40

http://cobweb.ecn.purdue.edu/ParaMount/Cetus/

More Frameworks...

> Some influential frameworks of the 1990s

SUIF Stanford university intermediate format, suif .stanford.edu
Trimaran (for instruction-level parallel processors) www.trimaran.org
Polaris (Fortran) UIUC

Jikes RVM (Java) IBM

Soot (Java)

GMD Toolbox / Cocolab Cocktail™ compiler generation tool suite

and many others ...

» And many more for the embedded domain ...

LINKOPING
UNIVERSITY

38/40

suif.stanford.edu
www.trimaran.org

39/40

The End (?)

ll Now this is not the end.
It is not even the beginning of the end. ’ ’
But it is, perhaps, the end of the beginning.
W. Churchill

Do you like compiler technology? Learn more?
Advanced Compiler Construction 9 hp (PhD-level)
Thesis project (exjobb) at PELAB, 30/15/16 hp

For more software engineering:
TDDE41 Software Architectures, 6 hp (VT), replaces component-based software
TDDE45 Software Design and Construction, 6 hp (HT), replaces Design Patterns
TDDE46 Software Quality, 6 hp (VT)

houie

www.liu.se

LINKOPING
II.“ UNIVERSITY

	Syntax-Based Generators
	Semantics-Based Generators
	Primarily Back-End Frameworks and Generators
	More Frameworks

