
1 / 40

TDDB44/TDDD55 Lecture 14:
Compiler Frameworks and Compiler Generators

A (non-exhaustive) survey
with a focus on open-source frameworks

Peter Fritzson, Christoph Kessler and Martin Sjölund

Department of Computer and Information Science
Linköping University

2018-12-17

2 / 40

Overview

Part I Syntax-Based Generators

Part II SemanƟcs-Based Generators

Part III Primarily Back-End Frameworks and Generators

Part IV More Frameworks

3 / 40

Part I

Syntax-Based Generators

4 / 40

Syntax-Based Generators

I Lex and Flex – generates lexical analysers.

I Clones and/or open source alternaƟves exist for many programming languages.

Wikipedia has a reasonable overview.

I Yacc and Bison – generates parsers

I Can be used for syntax-directed translaƟon
I Usually syntax-directed translaƟon is not used (if the compilaƟon is not completely

driven by the parser, it is something else)
I Does not generate semanƟc analysis, intermediate code, opƟmizaƟon, or code

generaƟon
I YACC produces parsers that are bad at error management

I Very many alternaƟves exist, with the grammar specificaƟon either using an API in

the programming language, EBNF, or something else. Many parser generators (such

as ANTLR) allow the user to adapt the error handling rouƟnes. Some also have IDE’s

that make debugging your grammar easier.

I https://en.wikipedia.org/wiki/Comparison_of_parser_generators

https://en.wikipedia.org/wiki/Comparison_of_parser_generators

5 / 40

Part II

Semantics-Based Generators

6 / 40

RML – A Compiler GeneraƟon System and SpecificaƟon Language from

Natural SemanƟcs/Structured OperaƟonal SemanƟcs

I Goals

I Efficient code – comparable to hand-wriƩen compilers
I Simplicity – simple to learn and use
I CompaƟbility with “typical natural semanƟcs/operaƟonal semanƟcs” and with Standard

ML

I ProperƟes

I DeterminisƟc
I SeparaƟon of input and output arguments
I StaƟcally strongly typed
I Polymorphic type inference
I Efficient compilaƟon of paƩern-matching

www.ida.liu.se/pelab/~rml – developed around 1999 and used in OpenModelica

unƟl 2014-10-25.

www.ida.liu.se/pelab/~rml

7 / 40

GeneraƟng an Interpreter Implemented in C, using rml2C

8 / 40

GeneraƟng a Compiler Implemented in C, using rml2C

9 / 40

RML Syntax
Goal: Eliminate phletora of special symbols usually found in Natural

SemanƟcs/OperaƟonal SemanƟcs specificaƟons

SoŌware engineering viewpoint: idenƟfiers are more readable in large specificaƟons

A Natural/OperaƟonal semanƟcs rule:

H1 |− T1 : R1 . . Hn |− Tn : Rn

−−−−−−−−−−−−−−−−−−−−−−
i f <cond >

H |− T : R

Typical RML rule:

r u l e NameX (H1 , T1) => R1 &

. . .

NameY (Hn , Tn) => Rn &

<cond >

−−−−−−−−−−−−−−−−−−−−−−
Relat ionName (H , T) => R

10 / 40

Example: the Exp1 Expression Language

Typical expressions

12 + 5*3
−5 * (10 − 4)

Abstract syntax (defined in RML):

da ta t ype Exp

= INTcons t o f i n t

| PLUSop of Exp * Exp

| SUBop of Exp * Exp

| MULop of Exp * Exp

| DIVop of Exp * Exp

| NEGop of Exp
Figure: Abstract syntax tree of 12 + 5*3

11 / 40

Evaluator for Exp1

R e l a t i o n e v a l : Exp => i n t =

EvaluaƟon of an integer constant ival is the

integer itself:

axiom ev a l (INTcon s t (i v a l))

=> i v a l

EvaluaƟon of an addiƟon node PLUSop is v3,

if v3 is the result of adding the evaluated

results of its children e1 and e2.

SubtracƟon, mulƟplicaƟon, division

operators have similar specificaƟons. (we

have removed division below)

r u l e e v a l (e1) => v1 & ev a l (e2) => v2 &

in t _add (v1 , v2) => v3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
e v a l (PLUSop (e1 , e2)) => v3

r u l e e v a l (e1) => v1 & ev a l (e2) => v2 &

i n t _ s ub (v1 , v2) => v3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
e v a l (SUBop (e1 , e2)) => v3

r u l e e v a l (e1) => v1 & ev a l (e2) => v2 &

in t_mu l (v1 , v2) => v3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
e v a l (MULop (e1 , e2)) => v3

r u l e e v a l (e) => v1 & i n t _neg (v1) => v2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
e v a l (NEGop (e)) => v2

end

12 / 40

Simple Lookup in Environments Represented as Linked Lists

r e l a t i o n lookup : (Env , I d en t) => Va lue =

(* l ookup r e t u r n s the va l ue a s s o c i a t e d wi th an i d e n t i f i e r .

I f no a s s o c i a t i o n i s p resent , lookup w i l l f a i l .

I d e n t i f i e r i d i s found i n the f i r s t p a i r o f the l i s t ,

and va l ue i s r e tu rned . *)
r u l e i d = i d2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
l ookup ((id2 , v a l ue) : : _ , i d) => va l ue

(* i d i s not found i n the f i r s t p a i r o f the l i s t ,

and lookup w i l l r e c u r s i v e l y s ea r ch the r e s t o f the l i s t .

I f found , v a l ue i s r e tu rned . *)

r u l e not i d = i d2 & lookup (r e s t , i d) => va l ue

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
l ookup ((id2 , _) : : r e s t , i d) => va l ue

end

(* NOTE : S e a r c h i n g l i n k e d l i s t s i s s low .

RML does not suppor t f an c y hash t a b l e s . . . *)

13 / 40

TranslaƟonal SemanƟcs of the PAM language – Abstract Syntax to Machine

Code

PAM example program:

read x , y ;

wh i l e x <> 99 do

ans : = (x +1) − (y / 2) ;

w r i t e ans ;

read x , y

end

Simple Machine InstrucƟon Set:

LOAD Load accumu la to r

STO S to r e

ADD Add

SUB Sub t r a c t

MULT Mu l t i p l y

DIV D i v i d e

GET I npu t a va l ue

PUT Output a va l ue

J Jump

JN Jump on neg a t i v e

JP Jump on p o s i t i v e

JNZ Jump on neg a t i v e or ze ro

JPZ Jump on p o s i t i v e or ze ro

JNP Jump on neg a t i v e or p o s i t i v e

LAB Labe l (no ope r a t i on)

HALT Ha l t e x e cu t i on

14 / 40

PAM Example TranslaƟon

PAM example program:

read x , y ;

wh i l e x <> 99 do

ans : = (x +1) − (y / 2) ;

w r i t e ans ;

read x , y

end

Translated machine code assembly text

GET x STO T2

GET y LOAD T1

L1 LAB SUB T2

LOAD x STO ans

SUB 99 PUT ans

J Z L2 GET x

LOAD x GET y

ADD 1 J L1

STO T1 L2 LAB

LOAD y HALT

DIV 2

Low level representaƟon tree form

MGET (I (x)) MSTO (T (2))

MGET (I (y)) MLOAD(T (1))

MLABEL (L (1)) MB(MSUB , T (2))

MLOAD(I (x)) MSTO (I (ans))

MB(MSUB ,N (9 9)) MPUT (I (ans))

MJ (MJZ , L (2)) MGET (I (x))

MLOAD(I (x)) MGET (I (y))

MB(MADD,N (1)) MJMP(L (1))

MSTO (T (1)) MLABEL (L (2))

MLOAD(I (y)) MHALT

MB(MDIV ,N (2))

15 / 40

Some ApplicaƟons of RML

I Small funcƟonal language with call-by-name

semanƟcs (mini-Freja, a subset of Haskell)

I Almost full Pascal with some C features (Petrol)

I Mini-ML including type inference

I SpecificaƟon of full Java 1.2

I SpecificaƟon of Modelica 2.0

Mini-Freja Interpreter performance compared to Centaur/Typol:

primes Typol RML Typol/RML

3 13s 0.0026s 5000

4 72s 0.0037s 19459

5 1130s 0.0063s 179365

16 / 40

Some AƩribute-Grammar Based Tools

I JASTADD – OO AƩribute grammars

I Ordered AƩribute Grammars

I Uwe Kastens, Anthony M. Sloane. GeneraƟng SoŌware from SpecificaƟons 2007

©Jones and BartleƩ Publishers Inc. www.jbpub.com

www.jbpub.com

17 / 40

Part III

Primarily Back-End Frameworks and Generators

18 / 40

LCC (LiƩle C Compiler)

Not really a generator, but uses IBURG

I Dragon-book style C compiler implementaƟon in C

I Very small (20K Loc), well documented, well tested,

widely used

I Open source:

http://www.cs.princeton.edu/software/lcc
I Textbook A retargetable C compiler [Fraser, Hanson

1995] contains complete source code

I One-pass compiler, fast

http://www.cs.princeton.edu/software/lcc

19 / 40

LCC (LiƩle C Compiler)

I C frontend (hand-craŌed scanner and recursive descent parser) with own C

preprocessor

I Low-level IR

I Basic-block graph containing DAGs of quadruples
I No AST

I Interface to IBURG code generator generator

I Example code generators for MIPS, SPARC, Alpha, x86 processors

I Tree paƩern matching + dynamic programming

I Few opƟmizaƟons:

I local common subexpr. eliminaƟon
I constant folding

I Good choice for source-to-target compiling if a prototype is needed soon

20 / 40

– Not a Generator, but wide-spread usage

I Gnu Compiler CollecƟon (earlier: Gnu C Compiler)

I Compilers for C, C++, Fortran, Java, ObjecƟve-C, Ada, and more

I someƟmes with own extensions, e.g. Gnu-C

I Open-source, developed since 1985

I Very large (GCC 6.2.0 tarball is 835 MB)

I 3 IR formats (all language independent)

I GENERIC: tree representaƟon for whole funcƟon (also statements)
I GIMPLE (simple version of GENERIC for opƟmizaƟons) based on trees but expressions in

quadruple form. High-level, low-level and SSA-low-level form.
I RTL (Register Transfer Language, low-level, Lisp-like) (the tradiƟonal GCC-IR) only

word-sized data types; stack explicit; statement scope

I Many opƟmizaƟons

21 / 40

I Version 4.x (since 2004) has strong support for retargetable code generaƟon

I Machine descripƟon in .md file
I ReservaƟon tables for instrucƟon scheduler generaƟon

I Many target architectures

I Note: GCC is not a cross-compiling compiler and does not include a linker. It compiles

code for a set of language, but only targets a single target plaƞorm. If you want to

cross-compile code, you need to compile a linker and GCC targeƟng this plaƞorm (you

have one GCC and linker toolchain installed for each target plaƞorm).

I Good choice if one has the Ɵme to get into the framework (and what you want is a

compiler, not a development environment).

Note: Now has a new version numbering where 5.2 is really 4.10.2 and 6.0 is really 4.11.0 (in the old version numbering scheme).

22 / 40

Figure: Official LLVM dragon logotype. Inspired by the course book. Dragons, like LLVM, are

powerful.

23 / 40

I “Low-level virtual machine”, IR. LLVM is a backend framework.

I Mainly accessed through an API, and is suitable for integraƟon in an IDE (such as

Apple’s XCode).

I Also comes with command-line tools, which can manipulate its IR (LLVM bitcode),

including opƟmizing bitcode to produce an opƟmized bitcode file or generaƟng an

executable from bitcode.

I It includes:

I Front-ends for C/C++/ObjC/OpenMP (clang), can use GCC as a frontend (dragonegg),
I A debugger (lldb).
I A C++ standard library.
I An experimental linker (lld).

I Third parƟes add more frontends, including for example the Julia language.

24 / 40

I Compiles to several target plaƞorms (see llc --version)
I LLVM is a cross-compiling compiler.
I You only need one copy of LLVM installed to generate code for all supported plaƞorms.
I You probably sƟll need a linker for the target installed (lld is limited).
I You will also need plaƞorm-specific headers for the compiler frontend and

plaƞorm-specific libraries to link against.

I Open source (BSD-license), originally developed at Univ. of Illinois at Urbana

Champaign.

I Note: MicrosoŌ’s Visual Studio can use clang as a front-end, but uses their own

backend and opƟmizaƟons instead of LLVM.

25 / 40

Open64 / ORC Open Research Compiler Framework

I Based on SGI Pro-64 Compiler for MIPS processor, wriƩen in C++, went open source

in 2000. DisconƟnued in 2011. Forked by Nvidia for opƟmizing CUDA code.

I Several tracks of development (Open64, ORC, ...)

I For Intel Itanium (IA-64) and x86 (IA-32) processors. Also retargeted to x86-64, Ceva

DSP, Tensilica, XScale, ARM, ... “simple to retarget” (?)

I Languages: C, C++, Fortran95 (uses GCC as frontend), OpenMP and UPC (for parallel

programming)

I Industrial strength, with contribuƟons from Intel, Pathscale, ...

I Open source: sourceforge.net/projects/open64/

I 6-layer IR:
I WHIRL (VH, H, M, L, VL) – 5 levels of abstracƟon

I All levels semanƟcally equivalent
I Each level a lower level subset of the higher form

I and target-specific very low-level CGIR

https://sourceforge.net/projects/open64/

26 / 40

ORC: Flow of IR

27 / 40

Open64 / ORC Open Research Compiler

I MulƟ-level IR

I TranslaƟon by lowering

☺ Analysis / OpƟmizaƟon engines can work on the most appropriate level of abstracƟon

☺ Clean separaƟon of compiler phases

☹ Framework gets larger and slower

I Many opƟmizaƟons, many third-party contributed components

28 / 40

CoSy

A commercial compiler framework primarily focused on backends

www.ace.nl

www.ace.nl

29 / 40

TradiƟonal Compiler Structure

Figure: TradiƟonal compiler model: sequenƟal process

Improvement: Pipelining (by files/modules, classes, funcƟons)

Figure: More modern compiler model with shared symbol table and IR

30 / 40

A CoSy Compiler with Repository Architecture

31 / 40

Engine

I Modular compiler building block

I Performs a well-defined task

I Focus on algorithms, not compiler configuraƟon

I Parameters are handles on the underlying common IR repository

I ExecuƟon may be in a separate process or as subrouƟne call - the engine writer does

not know!

I View of an engine class: the part of the common IR repository that it can access

(scope set by access rights: read, write, create)

I Examples: Analyzers, Lowerers, OpƟmizers, Translators, Support

32 / 40

Composite Engines in CoSy

I Built from simple engines or from other composite engines by combining engines in

interacƟon schemes (Loop, Pipeline, Fork, Parallel, SpeculaƟve, ...)

I Described in EDL (Engine DescripƟon Language) View defined by the joint effect of

consƟtuent engines A compiler is nothing more than a large composite engine

ENGINE CLASS comp i l e r (IN u : mirUNIT) {

P I PE L INE

f ron tend (u)

o p t im i z e r (u)

backend (u)

}

33 / 40

A CoSy Compiler

34 / 40

Composite Engines in CoSy

I Component classes (engine class)

I Component instances (engines)

I Basic components are implemented in C

I InteracƟon schemes (cf. skeletons) form complex

connectors

I SEQUENTIAL
I PIPELINE
I DATAPARALLEL
I SPECULATIVE

I EDL can embed automaƟcally

I Single-call-components into pipes
I p<> means a stream of p-items
I EDL can map their protocols to each other (p vs

p<>)

ENGINE CLASS op t im i z e r (p rocedure p)

{

C on t r o l F l owAna l y s e r c f a ;

CommonSubExprE l iminator c se ;

L o o p V a r i a b l e S i m p l i f i e r l v s ;

P I PE L INE

c f a (p) ;

c se (p) ;

l v s (p) ;

}

ENGINE CLASS comp i l e r (f i l e f)

{

. . .

Token token ;

Module m;

P I PE L INE

/ / l e x e r t a ke s f i l e ,

/ / d e l i v e r s token stream

l e x e r (IN f , OUT token <>) ;

/ / P a r s e r d e l i v e r s a module

pa r s e r (IN token < > , OUT m) ;

sema (m) ;

decompose (m, p<>) ;

/ / here comes a stream of p rocedures

/ / from the module

op t im i z e r (p<>) ;

backend (p<>) ;

}

35 / 40

EvaluaƟon of CoSy

I The outer call layers of the compiler are generated from view descripƟon

specificaƟons

I Adapter, coordinaƟon, communicaƟon, encapsulaƟon
I SequenƟal and parallel implementaƟon can be exchanged
I There is also a non-commercial prototype [MarƟn Alt: On Parallel CompilaƟon. PhD

thesis, 1997, Univ. Saarbrücken]

I Access layer to the repository must be efficient (solved by generaƟon of macros)

I Because of views, a CoSy-compiler is very easily extensible

I That’s why it is expensive
I ReconfiguraƟon of a compiler within an hour

36 / 40

Part IV

More Frameworks

37 / 40

More Frameworks...

I Cetus

I http://cobweb.ecn.purdue.edu/ParaMount/Cetus/
I C/C++ source-to-source compiler wriƩen in Java.
I Open source

I Tools and generators

I TXL source-to-source transformaƟon system
I ANTLR frontend generator

http://cobweb.ecn.purdue.edu/ParaMount/Cetus/

38 / 40

More Frameworks...

I Some influenƟal frameworks of the 1990s

I SUIF Stanford university intermediate format, suif.stanford.edu
I Trimaran (for instrucƟon-level parallel processors) www.trimaran.org
I Polaris (Fortran) UIUC
I Jikes RVM (Java) IBM
I Soot (Java)
I GMD Toolbox / Cocolab Cocktail™ compiler generaƟon tool suite
I and many others ...

I And many more for the embedded domain ...

suif.stanford.edu
www.trimaran.org

39 / 40

The End (?)

“
Now this is not the end.

It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.

W. Churchill”
Do you like compiler technology? Learn more?

I Advanced Compiler ConstrucƟon 9 hp (PhD-level)

I Thesis project (exjobb) at PELAB, 30/15/16 hp

For more soŌware engineering:

I TDDE41 SoŌware Architectures, 6 hp (VT), replaces component-based soŌware

I TDDE45 SoŌware Design and ConstrucƟon, 6 hp (HT), replaces Design PaƩerns

I TDDE46 SoŌware Quality, 6 hp (VT)

40 / 40

www.liu.se

	Syntax-Based Generators
	Semantics-Based Generators
	Primarily Back-End Frameworks and Generators
	More Frameworks

