
P. Fritzson, C. Kessler , M. Sjölund

IDA, Linköpings universitet, 2016.

TDDD55 Compilers and Interpreters (opt.)

TDDB44 Compiler Construction

Code Generation

for RISC and Instruction-Level Parallel

Processors

RISC/ILP Processor Architecture Issues

Instruction Scheduling

Register Allocation

Phase Ordering Problems

Integrated Code Generation

P. Fritzson, C. Kessler , M. Sjölund

IDA, Linköpings universitet, 2016.

TDDD55 Compilers and Interpreters (opt.)

TDDB44 Compiler Construction

1. RISC and Instruction-Level

Parallel Target Architectures

3 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

CISC vs. RISC

CISC

 Complex Instruction Set Computer

 Memory operands for arithmetic and
logical operations possible

 M(r1+r2)  M(r1+r2) * M(r3+disp)

 Many instructions

 Complex instructions

 Few registers, not symmetric

 Variable instruction size

 Instruction decoding (often done in
microcode) takes much silicon
overhead

 Example: 80x86, 680x0

 RISC

 Reduced Instruction Set Computer

 Arithmetic/logical operations only on
registers

 add r1, r2, r1
load (r1), r4
load r3+disp, r5
mul r4, r5
store r5, (r1)

 Fewer, simple instructions

 Many registers, all general-purpose
typically 32 ... 256 registers

 Fixed instruction size and format

 Instruction decoding hardwired

 Example: POWER, HP-PA RISC,
MIPS, ARM, SPARC

4 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Instruction-Level Parallel (ILP) architectures

Single-Issue: (can start at most one instruction per clock cycle)

 Simple, pipelined RISC processors
with one or multiple functional units

 e.g. ARM9E, DLX

Multiple-Issue: (can start several instructions per clock cycle)

 Superscalar processors

 e.g. Sun SPARC, MIPS R10K, Alpha 21264, IBM Power2, Pentium

 VLIW processors (Very Long Instruction Word)

 e.g. Multiflow Trace, Cydrome Cydra-5, Intel i860,
HP Lx, Transmeta Crusoe;
most DSPs, e.g. Philips Trimedia TM32, TI ‘C6x

 EPIC processors (Explicitly Parallel Instruction Computing)

 e.g. Intel Itanium family (IA-64)

5 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Processors with/without Pipelining

Processor cycle no.

Instr. retrieval

Instr. decoding

Execution

Store result

#1

#1

#1

#1

#2

#2

#2

#2

#1#3

#3

Instr 1 Instr 2 Instr 3

1 2 3 4 6 7 8 9 10 115

Traditional processor without pipelining

One instruction takes 4 processor cycles, i.e. 0.25 instructions/cycle

6 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Processor with Simple Pipelining

An instruction takes 1 cycle on average with pipeline

i.e. 1 instruction/cycle

This pipeline achieves 4-way parallelism

Processor cycle no.

Instr. retrieval

Instr. decoding

Execution

Store result

#1

#1

#1

#1

#1#9

#9

1 2 3 4 6 7 8 9 10 11

Instr

#2

#2

#2

#2

#3

#3

#3

#3

#4

#4

#4

#4

#5

#5

#5

#5

#6

#6

#6

#6

#7

#7

#7

#7

#8

#8

#8

#8

5

 1

Instr

 2

Instr

 3

Instr

 4

Instr

 5

7 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Processor with Super-Pipelining

A new instruction can begin before the previous one is finished.

Thus you manage on average 3 instr/cycle when the pipeline is full.

Processor cycle no.

R= Instr. retrieval

D= Instr. decoding

E= Execution

S= Store result

R1

1 2 3 4 6 7 8 9 10 11

D1 E1 S1

5

R2 D2 E2 S2

R3 D3 E3 S3

R4 D4 E4 S4

R5 D5 E5 S5

R6 D6 E6 S6

Instruction 1 readyInstruction 1 starts

8 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

A Processor with Parallel Pipelines

IF

i fetch i decode

ID

A1 A2 WB

add 1 add 2
write-
back

EX ME WB

EX WB

M1 M2 M3

mult. 1 mult. 2 mult. 3
write
back

WB

execute access

execute
write-
back

Floating-
point
mult.

Floating-point
add

Load/store
instructions

Integer
instructions

write-
back

9 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Problems using Branch Instructions on

Simple Pipelined Processors

Branch instructions force the pipeline to restart

and thus reduce performance.

The diagram below shows execution of a branch

(cbr = conditional branch) to instruction #3, which makes the pipeline restart.

The grey area indicates lost performance.

Only 4 instructions start in 6 cycles instead of the maximum of 6.

Processor cycle no.

Instr. retrieval

Instr. decoding

Execution

Store result

#1

#1

#1

#1

1 2 3 4 6 7 8

#2 cbr

#2 cbr

#2 cbr

#2

#3

#3

 #3

#3

#4

#4

#4

5

10 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Summary Pipelined RISC Architectures
 A single instruction is issued per clock cycle

 Possibly several parallel functional units / resources

 Execution of different phases of subsequent instructions overlaps in time.

This makes them prone to:

 data hazards (may have to delay op until operands ready),

 control hazards (may need to flush pipeline after wrongly predicted branch),

 structural hazards (required resource(s)/ e.g. functional units, bus, register,

must not be occupied)

 Static scheduling (insert NOPs to avoid hazards)

vs. Run-time treatment by pipeline stalling

IF

ID

EX

MEM/EX2

WB

11 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Reservation Table, Scheduling Hazards
(Avoid hazards = resource collisions)

Reservation table

specifies required resource

occupations

[Davidson 1975]

If we start add at t+2, the bus

write will appear at cycle t+5

12 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Comparison between Superscalar Processors

and VLIW processors

PU PU PU PU

Instruction flow

PU PU PU PU

VLIW Processors
(Very Long Instruction Word)

Superscalar Processors

with multiple loading of instructions

(multi-issue)

Several processor units are loaded

simultaneously be different operations in

the same instructions.

E.g. the multiflow machine,

1024 bits, 28 operations,

or specialized graphics processors

13 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Superscalar Processors
A superscalar processor has several function units that can work in parallel and

which can load more than 1 instruction per cycle.

The word superscalar comes from the fact that the processor executes more

than 1 instruction per cycle.

The diagram below shows how a maximum of 4 units can work in parallel, which

in theory means they work 4 times faster.

The type of parallelism used depends on the type of instruction and

dependencies between instructions.

Processor cycle no:

R= Instr. retrieval

D= Instr.decoding
E= Execution

S= Store result

R1

1 2 3 4 6 7 8 9 10 11

D1 E1 S1

5

R2 D2 E2 S2

R3 D3 E3 S3

R4 D4 E4 S4

R5 D5 E5 S5

R6 D6 E6 S6

Instruction 1 readyInstruction 1 starts

R7 D7 E7 S7

R8 D8 E8 S8

H9 D9 E9 S9

14 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Superscalar Processor

 Run-time scheduling by instruction dispatcher

 convenient (sequential instruction stream – as usual)

 limited look-ahead buffer to analyze dependences, reorder instr.

 high silicon overhead, high energy consumption

 Example: Motorola MC 88110
2-way, in-order issue

superscalar

15 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

A Parallel Superscalar Pipeline

IF

i fetch

A1 A2 WB

add 1 add 2
write-
back

EX ME WB

EX WB

M1 M2 M3

mult. 1 mult. 2 mult. 3
write
back

WB

execute memory

execute
write-
back

Floating-
point

mult.

Floating-point
add

Load/store
instructions

Integer
instructions

write-
back

i decode

i dec ode

i decode

i decode

ID

ID

ID

ID

instruction
dispatch

DS

16 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Branch Effects on Performance for Deeply

Pipelined Superscalar Processors

Branch-instructions force the pipeline to restart and thus reduce

performance. Worse on deeply pipelined superscalar processors.

Cycle no.

Instr. retr.

Instr. decode 1

Store

1 2 3 4 6 7 85

#1 #3

#2 cbr #4

#5

#6

#1 #3

#2 cbr #4

#5

#6

#1 #3

#2 cbr #4

#5

#6

#1 #3

#4

#5

#6

#1 #3

#2 cbr #4

#5

#6

Instr. decode 2

Execution 1

Execution 2

The diagram shows

execution of a branch

(cbr = conditional

branch) to instruction

#3, which makes the

pipeline restart.

The grey area

indicates lost

performance.

Only 6 instructions

start during 5 cycles

instead of a

maximum of 20.

17 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

VLIW (Very Long Instruction Word) architectures

 Multiple slots for instructions in long instruction-word

 Direct control of functional units and resources – low decoding OH

 Compiler (or assembler-level programmer)
must determine the schedule statically

 independence, unit availability, packing into long instruction words

 Challenging! But the compiler has more information on the program
than an on-line scheduler with a limited lookahead window.

 Silicon- and
energy-efficient

18 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

EPIC Architectures
(Explicitly Parallel Instruction Computing)

 Based on VLIW

 Compiler groups instructions to LIW’s (bundles)

 Compiler takes care of resource and latency constraints

 Compiler marks sequences of independent instructions

 Dynamic scheduler assigns resources and reloads new bundles as

required

 This allows a newer CPU, with more resources, to run the same program

as before (although not optimally)
LIW 1 LIW 2 ...

LIW 2 cont LIW 3

Instr 1

Instr 2

etc.

P. Fritzson, C. Kessler , M. Sjölund

IDA, Linköpings universitet, 2016.

TDDD55 Compilers and Interpreters (opt.)

TDDB44 Compiler Construction

2. Instruction Scheduling

20 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

The Instruction Scheduling Problem

 Schedule the instructions in such an order that parallel

function units are used to the greatest possible degree.

 Input:

 Instructions to be scheduled

 A data dependency graph

 A processor architecture

 Register allocation has (typically) been performed

 Output:

 A scheduling of instructions which minimizes execution

time

21 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Example Instructions to be Scheduled

1

2

3

4

5 6

7

8

9 10

11

mov rax, 5

mov rcx, [rbp-16]

mul rax, 8

mov [rcx-64], rax

push 4

call L6

inc [rbp-8]

dec [rbp+8]

mov rdx, [rsp-32]

mov [rsp-40], rdx

ret

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Dependency graphInstructions

22 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Instruction Scheduling (1)

 Map instructions to time slots on issue units (and resources),

such that no hazards occur

 Global reservation table, resource usage map

 Example without data dependences:

23 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Instruction Scheduling (2)

 Data dependences imply latency constraints

 target-level data flow graph / data dependence graph

latency(mul) = 6 add

mul 6

6

24 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Instruction Scheduling

Generic Resource model

 Reservation table

Local Scheduling
(f. Basic blocks / DAGs)

 Data dependences
 Topological sorting

 List Scheduling
(diverse heuristics)

Global Scheduling

 Trace scheduling, Region scheduling, ...

 Cyclic scheduling (Software pipelining)

There exist retargetable schedulers
and scheduler generators, e.g. for GCC since 2003

25 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Example of List Scheduling Algorithm

 The level of a task (i.e.,

instruction) node is the

maximal number of nodes

that are passed on the

way to the final node, itself

included.

 The algorithm:

 The level of each node

is used as priority.

 When a

processor/function unit

is free, assign the

unexecuted task which

has highest priority

and which is ready to

be executed.

Example of Highest Level First algorithm on a

tree structured task graph, 3 processor units

task number

task execution time

task priority

26 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Example: Topological Sorting (0)

According to Data Dependencies

d

a b c

e

Not yet considered

Data ready (zero-in-degree set)

Already scheduled, still live

Already scheduled, no longer referenced

27 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Example: Topological Sorting (1)

According to Data Dependencies

d

a b c

e

Not yet considered

Data ready (zero-indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

a

28 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Example: Topological Sorting (2)

According to Data Dependencies

d

a b c

e

Not yet considered

Data ready (zero-indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

ba

29 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Example: Topological Sorting (3)

According to Data Dependencies

d

a b c

e

Not yet considered

Data ready (zero-indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

da b

30 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Example: Topological Sorting (4)

According to Data Dependencies

d

a b c

f

e

Not yet considered

Data ready (zero-indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

and so on...a b d

31 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Topological Sorting and Scheduling

 Construct schedule incrementally
in topological (= causal) order

 ”Appending” instructions to partial code sequence:
close up in target schedule reservation table
(as in ”Tetris”)

 Idea: Find optimal target-schedule by enumerating
all topological sortings ...

Beware of scheduling anomalies
with complex reservation tables!

Instruction needing

3 functional units

32 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Software Pipelining

for i := l to n

get values;

compute;

store;

end for

}
get values 1 get values 2 get values 3

compute 1 compute 2

store 1
In parallel

iter 1 iter 2 iter 3 iter ...

33 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Software Pipelining of Loops (1)

34 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Software Pipelining of Loops (2)

 More about Software Pipelining in TDDC86

Compiler Optimizations and Code Generation

35 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Software Pipelining of Loops (3)

Modulo Scheduling

7 instructions

A, B, C, D,...G

ResMII = Resource

Constrained Minimum

Initiation Interval

Assume 2 processor cycles

P. Fritzson, C. Kessler , M. Sjölund

IDA, Linköpings universitet, 2016.

TDDD55 Compilers and Interpreters (opt.)

TDDB44 Compiler Construction

3. Register Allocation

37 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Global Register Allocation
 Register Allocation: Determines values (variables, temporaries,

constants) to be kept when in registers

 Register Assignment: Determine in which physical register such a value
should reside.

 Essential for Load-Store Architectures

 Reduce memory traffic ( memory / cache latency, energy)

 Limited resource

 Values that are live simultaneously cannot be kept in the same register

 Strong interdependence with instruction scheduling

 scheduling determines live ranges

 spill code needs to be scheduled

 Local register allocation (for a single basic block) can be done in linear
time (see previous lecture)

 Global register allocation on whole procedure body (with minimal spill
code) is NP-complete.
Can be modeled as a graph coloring problem [Ershov’62] [Cocke’71].

38 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

When do Register Allocation

 Register allocation is normally performed at the end of

global optimization, when the final structure of the code and

all potential use of registers is known.

 It is performed on abstract machine code where you have

access to an unlimited number of registers or some other

intermediary form of program.

 The code is divided into sequential blocks (basic blocks) with

accompanying control flow graph.

39 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Live Range

(Here, variable = program variable or temporary)

 A variable is being defined at a program point if it is written
(given a value) there.

 A variable is used at a program point if it is read (referenced
in an expression) there.

 A variable is live at a point if it is referenced there or at some
following point that has not (may not have) been preceded by
any definition.

 A variable is reaching a point if an (arbitrary) definition of it,
or usage (because a variable can be used before it is defined)
reaches the point.

 A variable’s live range is the area of code (set of instructions)
where the variable is both live and reaching.

 does not need to be consecutive in program text.

40 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Live Range Example

x

x := 5+u;

z := 3+x;

y := 35+x+z;

x is defined

Use of x

Last use of x

Live range for x

41 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Interference Graphs

 The live ranges of two

variables interfere if their

intersection is not empty.

 Each live range builds a

node in the interference

graph (or conflict graph)

 If two live ranges

interfere, an edge is

drawn between the

nodes.

 Two adjacent nodes in the

graph can not be

assigned the same

register.

x

y

z w

x y

wz

Interference graph:

42 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Register Allocation vs Graph Coloring

 Register allocation can be compared with the classic coloring

problem.

 That is, to find a way of coloring - with a maximum of k

colors - the interference graph which does not assign the

same color to two adjacent nodes.

 k = the number of registers.

 On a RISC-machine there are, for example, 16 or 32

general registers. Certain methods use some registers for

other tasks. e.g., for spill code.

 Determining whether a graph is colorable using k colors is

NP-complete for k>3

 In other words, it is unmanageable always to find an

optimal solution.

43 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Register Allocation by Graph Coloring

 Step 1: Given a program with symbolic registers s1, s2, ...

 Determine live ranges of all variables

44 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Register Allocation by Graph Coloring

 Step 2: Build the Register Interference Graph

 Undirected edge connects two symbolic registers (si, sj)

if live ranges of si and sj overlap in time

 Reserved registers (e.g. fp) interfere with all si

symbolic registers
physical

registers

45 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Reg. Alloc. by Graph Coloring Cont.

 Step 3: Color the register interference graph with k colors,
where k = #available registers.

 If not possible: pick a victim si to spill, generate spill code
(store after def., reload before use)

This may remove some interferences.
Rebuild the register interference graph + repeat Step 3...

This register interference graph cannot be colored

with less than 4 colors, as it contains a 4-clique

46 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Coloring a Graph with k Colors

 NP-complete for k > 3

 Chromatic number g(G) = minimum number of colors to color a graph G

 g(G) >= c if the graph contains a c-clique

 A c-clique is a completely connected subgraph of c nodes

 Chaitin’s heuristic (1981):

S  { s1, s2, ... } // set of spill candidates
while (S not empty)

choose some s in S.
if s has less than k neighbors in the graph

then // there will be some color left for s:
delete s (and incident edges) from the graph

else modify the graph (spill, split, coalesce ... nodes)
and restart.

// once we arrive here, the graph is empty:
color the nodes greedily in reverse order of removal.

47 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Chaitin’s Register Allocator (1981)

48 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Register Allocation for Loops (1)

 Interference graphs have some weaknesses:

 Imprecise information on how and when live ranges interfere.

 No special consideration is taken of loop variables’ live ranges (except

when calculating priority).

 Instead, in a cyclic interval graph:

 The time relationships between the live ranges are explicit.

 Live ranges are represented for a variable whose live range crosses

iteration limits by cyclic intervals.

 Notation for cyclic live intervals for loops:

 Intervals for loop variables which do not cross the iteration limit are

included precisely once.

 Intervals which cross the iteration limit are represented as an interval

pair, cyclic interval:

([0, t’), [t, tend])

49 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Register Allocation for Loops (2)

i

x1

x2

x3

Circular edge graph

Only 3 interferences at the same time

x1

i x2

x3

Traditional interference graph,

all variables interfere, 4 registers needed

50 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Register Allocation for Loops (3)

Example:

x3 = 7

for i = 1 to 100 {

x1 = x3 + 2

x2 = x1 + x3

x3 = x2 + x1

}

y = x3 + 42

x3 = 7

i = 1

i <= 100

x1 = x3 + 2

x2 = x1 + x3

x3 = x2 + x1

i = i + 1

y = x3 + i + 42

Control flow graph

FT

i x2x1 x3

Live ranges (loop only):

cyclic intervals

e.g. for i: [0, 5), [5, 6]

x1: [2, 4) x2: [3, 5)

x3: ([0, 3), [4, 6])

At most 3 values live at a time

 3 registers sufficient

All variables

interfere with

each other –

need 4 regs?

X X

X

X

0

1

3

2

4

5

6

51 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Live Range Splitting

 Instead of spilling completely (reload before each use),

it may be sufficient to split a live range at one position

where register pressure is highest

 save, and reload once

store

load

52 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Live Range Coalescing/Combining
(Reduces Register Needs)

 For a copy instruction sj  si

 where si and sj do not interfere

 and si and sj are not rewritten after the copy operation

 Merge si and sj:

 patch (rename) all occurrences of si to sj

 update the register interference graph

 and remove the copy operation.

s2  ...

...

s3  s2

...

... s3 ...

s3  ...

...

s3  s3

...

... s3 ...

P. Fritzson, C. Kessler , M. Sjölund

IDA, Linköpings universitet, 2016.

TDDD55 Compilers and Interpreters (opt.)

TDDB44 Compiler Construction

4. Phase Ordering Problems

and Integrated Code Generation

54 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Phase Ordering Problems

IR

target

code

Instruction

selection

Instruction scheduling
Register

allocation

gcc,

lcc

55 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Phase Ordering Problems (1)

Instruction scheduling vs. register allocation

(a) Scheduling first:

determines Live-Ranges

 Register need,

possibly spill-code to be

inserted afterwards

(b) Register allocation first:

Reuse of same register by different

values introduces ”artificial”

data dependences

 constrains scheduler

56 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

5. Integrated Code Generation

IR

Target

code

Instruction

selection

Instruction scheduling
Register

allocation

57 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Our Project at PELAB (Kessler): OPTIMIST

Retargetable integrated code

generator

Open Source:

www.ida.liu.se/~chrke/optimist

x

x

