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CISC vs. RISC

CISC

 Complex Instruction Set Computer

 Memory operands for arithmetic and 
logical operations possible

 M(r1+r2)  M(r1+r2) * M(r3+disp)

 Many instructions

 Complex instructions

 Few registers, not symmetric

 Variable instruction size

 Instruction decoding (often done in 
microcode) takes much silicon 
overhead

 Example:  80x86, 680x0

 RISC

 Reduced Instruction Set Computer

 Arithmetic/logical operations only on 
registers

 add r1, r2, r1
load (r1), r4
load r3+disp, r5
mul  r4, r5
store r5, (r1)

 Fewer, simple instructions

 Many registers, all general-purpose
typically  32 ... 256 registers

 Fixed instruction size and format

 Instruction decoding hardwired

 Example:  POWER, HP-PA RISC,
MIPS, ARM, SPARC
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Instruction-Level Parallel (ILP) architectures 

Single-Issue:    (can start at most one instruction per clock cycle)

 Simple, pipelined RISC processors
with one or multiple functional units

 e.g. ARM9E, DLX

Multiple-Issue:   (can start several instructions per clock cycle)

 Superscalar processors

 e.g. Sun SPARC, MIPS R10K, Alpha 21264, IBM Power2, Pentium 

 VLIW processors (Very Long Instruction Word)

 e.g. Multiflow Trace, Cydrome Cydra-5, Intel i860, 
HP Lx, Transmeta Crusoe; 
most DSPs, e.g. Philips Trimedia TM32, TI ‘C6x

 EPIC processors (Explicitly Parallel Instruction Computing)

 e.g. Intel Itanium family  (IA-64)
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Processors with/without Pipelining

Processor cycle no.

Instr. retrieval

Instr. decoding

Execution

Store result

#1

#1

#1

#1

#2

#2

#2

#2

#1#3

#3

Instr 1 Instr 2 Instr 3

1 2 3 4 6 7 8 9 10 115

Traditional processor without pipelining

One instruction takes 4 processor cycles, i.e.  0.25 instructions/cycle
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Processor with Simple Pipelining

An instruction takes 1 cycle on average with pipeline

i.e. 1 instruction/cycle

This pipeline achieves 4-way parallelism

Processor cycle no.

Instr. retrieval

Instr. decoding

Execution

Store result

#1

#1

#1

#1

#1#9

#9

1 2 3 4 6 7 8 9 10 11

Instr

#2

#2

#2

#2

#3

#3

#3

#3

#4

#4

#4

#4

#5

#5

#5

#5

#6

#6

#6

#6

#7

#7

#7

#7

#8

#8

#8

#8

5

  1

Instr

  2

Instr

  3

Instr

  4

Instr

  5
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Processor with Super-Pipelining

A new instruction can begin before the previous one is finished.

Thus you manage on average 3 instr/cycle when the pipeline is full.

Processor cycle no.

R= Instr. retrieval

D= Instr. decoding

E= Execution

S= Store result

R1

1 2 3 4 6 7 8 9 10 11

D1 E1 S1

5

R2 D2 E2 S2

R3 D3 E3 S3

R4 D4 E4 S4

R5 D5 E5 S5

R6 D6 E6 S6

Instruction 1 readyInstruction 1 starts
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A Processor with Parallel Pipelines

IF

i fetch i decode

ID

A1 A2 WB

add 1 add 2
write- 
back

EX ME WB

EX WB

M1 M2 M3

mult. 1 mult. 2 mult. 3
write 
back

WB

execute access

execute
write- 
back

Floating- 
point
mult.

Floating-point
add

Load/store
instructions

Integer
instructions

write- 
back
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Problems using Branch Instructions on 

Simple Pipelined Processors

Branch instructions force the pipeline to restart 

and thus reduce performance.

The diagram below shows execution of a branch 

(cbr = conditional branch) to instruction #3, which makes the pipeline restart.

The grey area indicates lost performance. 

Only 4 instructions start in 6 cycles instead of the maximum of 6.

Processor cycle no.

Instr. retrieval

Instr. decoding

Execution

Store result

#1

#1

#1

#1

1 2 3 4 6 7 8

#2 cbr

#2 cbr

#2 cbr

#2

#3

#3

 #3

#3

#4

#4

#4

5
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Summary Pipelined RISC Architectures
 A single instruction is issued per clock cycle

 Possibly several parallel functional units / resources

 Execution of different phases of subsequent instructions overlaps in time. 

This makes them prone to:

 data hazards (may have to delay op until operands ready),

 control hazards (may need to flush pipeline after wrongly predicted branch), 

 structural hazards (required resource(s)/ e.g. functional units, bus, register,  

must not be occupied)

 Static scheduling (insert NOPs to avoid hazards)

vs. Run-time treatment by pipeline stalling

IF

ID

EX

MEM/EX2

WB
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Reservation Table, Scheduling Hazards
(Avoid hazards = resource collisions)

Reservation table

specifies required resource 

occupations

[Davidson 1975]

If we start add at t+2, the bus

write will appear at cycle t+5
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Comparison between Superscalar Processors 

and VLIW processors

PU PU PU PU

Instruction flow

PU PU PU PU

VLIW Processors
(Very Long Instruction Word)

Superscalar Processors

with multiple loading of instructions

(multi-issue)

Several processor units are loaded

simultaneously be different operations in 

the same instructions. 

E.g. the multiflow machine, 

1024 bits, 28 operations,

or specialized graphics processors
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Superscalar Processors
A superscalar processor has several function units that can work in parallel and 

which can load more than 1 instruction per cycle.

The word superscalar comes from the fact that the processor executes more 

than 1 instruction per cycle. 

The diagram below shows how a maximum of 4 units can work in parallel, which 

in theory means they work 4 times faster.

The type of parallelism used depends on the type of instruction and 

dependencies between instructions.

Processor cycle  no:

R= Instr. retrieval

D= Instr.decoding
E= Execution

S= Store  result

R1

1 2 3 4 6 7 8 9 10 11

D1 E1 S1

5

R2 D2 E2 S2

R3 D3 E3 S3

R4 D4 E4 S4

R5 D5 E5 S5

R6 D6 E6 S6

Instruction 1 readyInstruction 1 starts

R7 D7 E7 S7

R8 D8 E8 S8

H9 D9 E9 S9
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Superscalar Processor

 Run-time scheduling by instruction dispatcher

 convenient (sequential instruction stream – as usual)

 limited look-ahead buffer to analyze dependences, reorder instr.

 high silicon overhead, high energy consumption

 Example:  Motorola MC 88110
2-way, in-order issue 

superscalar
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A Parallel Superscalar Pipeline

IF

i fetch

A1 A2 WB

add 1 add 2
write- 
back

EX ME WB

EX WB

M1 M2 M3

mult. 1 mult. 2 mult. 3
write 
back

WB

execute memory

execute
write- 
back

Floating- 
point

mult.

Floating-point
add

Load/store
instructions

Integer
instructions

write- 
back

i decode

i dec ode

i decode

i decode

ID

ID

ID

ID

instruction
dispatch

DS
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Branch Effects on Performance for Deeply 

Pipelined Superscalar Processors

Branch-instructions force the pipeline to restart and thus reduce 

performance. Worse on deeply pipelined superscalar processors.

Cycle no.

Instr. retr.

Instr. decode 1

Store

1 2 3 4 6 7 85

#1 #3

#2 cbr #4

#5

#6

#1 #3

#2 cbr #4

#5

#6

#1 #3

#2 cbr #4

#5

#6

#1 #3

#4

#5

#6

#1 #3

#2 cbr #4

#5

#6

Instr. decode 2

Execution 1

Execution 2

The diagram shows

execution of a branch 

(cbr = conditional 

branch) to instruction 

#3, which makes the 

pipeline restart.

The grey area 

indicates lost 

performance. 

Only 6 instructions 

start during 5 cycles 

instead of a 

maximum of 20.
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VLIW (Very Long Instruction Word) architectures

 Multiple slots for instructions in long instruction-word

 Direct control of functional units and resources – low decoding OH

 Compiler (or assembler-level programmer) 
must determine the schedule statically  

 independence, unit availability, packing into long instruction words 

 Challenging!  But the compiler has more information on the program 
than an on-line scheduler with a limited lookahead window.

 Silicon- and 
energy-efficient
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EPIC Architectures
(Explicitly Parallel Instruction Computing)

 Based on VLIW

 Compiler groups instructions to LIW’s (bundles)

 Compiler takes care of resource and latency constraints

 Compiler marks sequences of independent instructions

 Dynamic scheduler assigns resources and reloads new bundles as 

required

 This allows a newer CPU, with more resources, to run the same program 

as before (although not optimally)
LIW 1 LIW 2 ...

LIW 2 cont LIW 3

Instr 1

Instr 2

etc.
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The Instruction Scheduling Problem

 Schedule the instructions in such an order that  parallel 

function units are used to the greatest possible degree. 

 Input:

 Instructions to be scheduled

 A data dependency graph

 A processor architecture

 Register allocation has (typically) been performed

 Output:

 A scheduling of instructions which minimizes execution 

time
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Example Instructions to be Scheduled

1

2

3

4

5 6

7

8

9 10

11

mov    rax, 5

mov    rcx, [rbp-16]

mul    rax, 8

mov    [rcx-64], rax

push   4

call   L6

inc    [rbp-8]

dec    [rbp+8]

mov    rdx, [rsp-32]

mov    [rsp-40], rdx  

ret

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Dependency graphInstructions
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Instruction Scheduling (1)

 Map instructions to time slots on issue units (and resources), 

such that no hazards occur

 Global reservation table,  resource usage map

 Example without data dependences:
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Instruction Scheduling (2)

 Data dependences imply latency constraints

 target-level data flow graph / data dependence graph

latency(mul) = 6 add

mul 6

6
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Instruction Scheduling

Generic Resource model

 Reservation table

Local Scheduling 
(f. Basic blocks / DAGs)

 Data dependences 
 Topological sorting

 List Scheduling 
(diverse heuristics)

Global Scheduling

 Trace scheduling, Region scheduling, ...

 Cyclic scheduling (Software pipelining)

There exist retargetable schedulers
and scheduler generators, e.g. for GCC since 2003
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Example of List Scheduling Algorithm

 The level of a task (i.e., 

instruction) node is the 

maximal number of nodes 

that are passed on the 

way to the final node, itself 

included.

 The algorithm:

 The level of each node 

is used as priority.

 When a 

processor/function unit 

is free, assign the 

unexecuted task which 

has highest priority

and which is ready to 

be executed. 

Example of Highest Level First algorithm on a

tree structured task graph, 3 processor units

task number

task execution time

task priority
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Example:  Topological Sorting (0)

According to Data Dependencies

d

a b c

e

Not yet considered

Data ready  (zero-in-degree set)

Already scheduled, still live

Already scheduled, no longer referenced
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Example:  Topological Sorting (1)

According to Data Dependencies

d

a b c

e

Not yet considered

Data ready  (zero-indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

a
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Example:  Topological Sorting (2)

According to Data Dependencies

d

a b c

e

Not yet considered

Data ready  (zero-indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

ba
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Example:  Topological Sorting (3)

According to Data Dependencies

d

a b c

e

Not yet considered

Data ready  (zero-indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

da    b
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Example:  Topological Sorting (4)

According to Data Dependencies

d

a b c

f

e

Not yet considered

Data ready  (zero-indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

and so on...a   b   d
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Topological Sorting and Scheduling

 Construct schedule incrementally 
in topological (= causal) order

 ”Appending” instructions to partial code sequence: 
close up in target schedule reservation table 
(as in ”Tetris”) 

 Idea: Find optimal target-schedule by enumerating 
all  topological sortings ...

Beware of scheduling anomalies
with complex reservation tables!  

Instruction needing

3 functional units
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Software Pipelining

for i := l  to  n

get values;

compute;

store;

end for

}
get values 1  get values 2 get values 3

compute 1 compute 2

store 1
In parallel

iter 1 iter 2 iter 3 iter ...
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Software Pipelining of Loops (1)
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Software Pipelining of Loops (2)

 More about Software Pipelining in TDDC86 

Compiler Optimizations and Code Generation
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Software Pipelining of Loops  (3)

Modulo Scheduling

7 instructions

A, B, C, D,...G

ResMII = Resource

Constrained Minimum

Initiation Interval

Assume 2 processor cycles
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Global Register Allocation
 Register Allocation:  Determines values (variables, temporaries, 

constants) to be kept when in registers

 Register Assignment:  Determine in which physical register such a value 
should reside.

 Essential for Load-Store Architectures

 Reduce memory traffic  ( memory / cache latency, energy)

 Limited resource

 Values that are live simultaneously cannot be kept in the same register

 Strong interdependence with instruction scheduling

 scheduling determines live ranges

 spill code needs to be scheduled

 Local register allocation (for a single basic block) can be done in linear 
time  (see previous lecture)

 Global register allocation on whole procedure body (with minimal spill 
code) is NP-complete. 
Can be modeled as a graph coloring problem  [Ershov’62] [Cocke’71].
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When do Register Allocation

 Register allocation is normally performed at the end of 

global optimization, when the final structure of the code and 

all potential use of registers is known.

 It is performed on abstract machine code where you have 

access to an unlimited number of registers or some other 

intermediary form of program.

 The code is divided into sequential blocks (basic blocks) with 

accompanying control flow graph.
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Live Range

(Here, variable = program variable or temporary)

 A variable is being defined at a program point if it is written 
(given a value) there.

 A variable is used at a program point if it is read (referenced 
in an expression) there.

 A variable is live at a point if it is referenced there or at some 
following point that has not (may not have) been preceded by 
any definition.

 A variable is reaching a point if an (arbitrary) definition of it, 
or usage (because a variable can be used before it is defined) 
reaches the point.

 A variable’s live range is the area of code (set of instructions) 
where the variable is both live and reaching. 

 does not need to be consecutive in program text.
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Live Range Example

x

x := 5+u;

z := 3+x;

y := 35+x+z;

x is defined

Use of x

Last use of x

Live range for x
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Interference Graphs

 The live ranges of two 

variables interfere if their 

intersection is not empty.

 Each live range builds a 

node in the interference 

graph (or conflict graph)

 If two live ranges 

interfere, an edge is 

drawn between the 

nodes. 

 Two adjacent nodes in the 

graph can not be 

assigned the same 

register.

x

y

z w

x y

wz

Interference graph:
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Register Allocation vs Graph Coloring

 Register allocation can be compared with the classic coloring 

problem.

 That is, to find a way of coloring - with a maximum of k 

colors - the interference graph which does not assign the 

same color to two adjacent nodes.

 k = the number of registers. 

 On a RISC-machine there are, for example, 16 or 32 

general registers. Certain methods use some registers for 

other tasks. e.g., for spill code.

 Determining whether a graph is colorable using k colors is 

NP-complete for k>3

 In other words, it is unmanageable always to find an 

optimal solution.
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Register Allocation by Graph Coloring

 Step 1: Given a program with symbolic registers s1, s2, ...

 Determine live ranges of all variables
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Register Allocation by Graph Coloring

 Step 2: Build the Register Interference Graph

 Undirected edge connects two symbolic registers (si, sj) 

if live ranges of si and sj overlap in time

 Reserved registers (e.g. fp) interfere with all si

symbolic registers
physical

registers



45 TDDB44: Code Generation for RISC and ILP ProcessorsFritzson, Kessler, Sjölund IDA, Linköpings universitet.

Reg. Alloc. by Graph Coloring Cont.

 Step 3:  Color the register interference graph with k colors,
where k = #available registers.

 If not possible:  pick a victim si to spill, generate spill code 
(store after def., reload before use)

This may remove some interferences.
Rebuild the register interference graph + repeat Step 3...

This register interference graph cannot be colored 

with less than 4 colors, as it contains a 4-clique
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Coloring a Graph with k Colors

 NP-complete  for  k > 3

 Chromatic number g(G) = minimum number of colors to color a graph G

 g(G) >= c  if the graph contains a c-clique  

 A c-clique is a completely connected subgraph of c nodes

 Chaitin’s heuristic (1981):

S  { s1, s2, ... }    // set of spill candidates
while ( S not empty )

choose some  s  in  S.
if s  has less than k neighbors in the graph

then // there will be some color left for s:
delete  s (and incident edges) from the graph

else modify the graph  (spill, split, coalesce ... nodes)
and restart.

// once we arrive here, the graph is empty:
color the nodes greedily in reverse order of removal.
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Chaitin’s Register Allocator  (1981)
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Register Allocation for Loops (1)

 Interference graphs have some weaknesses:

 Imprecise information on how and when live ranges interfere.

 No special consideration is taken of loop variables’ live ranges (except 

when calculating priority).

 Instead, in a cyclic interval graph:

 The time relationships between the live ranges are explicit.

 Live ranges are represented for a variable whose live range crosses 

iteration limits by cyclic intervals.

 Notation for cyclic live intervals for loops:

 Intervals for loop variables which do not cross the iteration limit are 

included precisely once.

 Intervals which cross the iteration limit are represented as an interval 

pair, cyclic interval:

([0, t’), [t, tend])
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Register Allocation for Loops (2)

i

x1

x2

x3

Circular edge graph

Only 3 interferences at the same time

x1

i x2

x3

Traditional interference graph,

all variables interfere, 4 registers needed
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Register Allocation for Loops (3)

Example:

x3 = 7

for i = 1 to 100 {

x1 = x3 + 2

x2 = x1 + x3

x3 = x2 + x1

}

y = x3 + 42

x3 = 7

i = 1

i <= 100

x1 = x3 + 2

x2 = x1 + x3

x3 = x2 + x1

i = i + 1

y = x3 + i + 42

Control flow graph

FT

i x2x1 x3

Live ranges (loop only):

cyclic intervals

e.g. for i:  [0, 5), [5, 6]

x1: [2, 4)      x2: [3, 5)

x3: ([0, 3), [4, 6])

At most 3 values live at a time

 3 registers sufficient

All variables 

interfere with 

each other –

need 4 regs?

X X

X

X

0

1

3

2

4

5

6
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Live Range Splitting

 Instead of spilling completely (reload before each use), 

it may be sufficient to split a live range at one position 

where register pressure is highest 

 save, and reload once

store

load
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Live Range Coalescing/Combining
(Reduces Register Needs)

 For a copy instruction     sj  si

 where si and sj do not interfere

 and si and sj are not rewritten after the copy operation

 Merge si and sj:

 patch (rename) all occurrences of si to sj

 update the register interference graph

 and remove the copy operation.

s2  ...

...

s3  s2

...

... s3 ...

s3  ...

...

s3  s3

...

... s3 ...



P. Fritzson, C. Kessler , M. Sjölund 

IDA, Linköpings universitet, 2016.

TDDD55 Compilers and Interpreters  (opt.)

TDDB44 Compiler Construction

4.    Phase Ordering Problems

and Integrated Code Generation
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Phase Ordering Problems  

IR

target

code

Instruction 

selection

Instruction scheduling
Register 

allocation

gcc,

lcc
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Phase Ordering Problems (1)

Instruction scheduling   vs.   register allocation

(a)  Scheduling first:

determines Live-Ranges   

 Register need,

possibly spill-code to be

inserted afterwards

(b)  Register allocation first:

Reuse of same register by different

values introduces ”artificial”

data dependences

 constrains scheduler
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5.  Integrated Code Generation

IR

Target

code

Instruction

selection

Instruction scheduling
Register 

allocation
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Our Project at PELAB (Kessler): OPTIMIST

Retargetable integrated code 

generator

Open Source:

www.ida.liu.se/~chrke/optimist

x

x


