TDDDS5 Compilers and Interpreters (opt.) _ir# “\\
TDDB44 Compiler Construction '\\ .f

Code Generation
for RISC and Instruction-Level Parallel
Processors

RISC/ILP Processor Architecture Issues
Instruction Scheduling

Register Allocation

Phase Ordering Problems

Integrated Code Generation puerrizson, chistoph kesster
IDA, Linképings universitet, 2011.

R

TDDB44 Compiler Construction \\ .f

TDDDS5 Compilers and Interpreters (opt.)

®

1. RISC and Instruction-Level
Parallel Target Architectures

Peter Fritzson, Christoph Kessler
IDA, Linkspings universitet, 2011

CISC vs. RISC Be Y Instruction-Level Parallel (ILP) architectures {*:5
cIsC = RISC Single-Issue: (can start at most one instruction per clock cycle)
m Complex Instruction Set Computer ® Reduced Instruction Set Computer n Simple, pipeIined RISC processors
m Memory operands for arithmetic and ® Arithmetic/logical operations only on with one or multiple functional units
logical operations possible registers
B M(r1+r2) € M(r1+12) * M(r3+disp) ® addrl, r2,rl ° e.g. ARMOE, DLX
load (r1), r4
load r3+disp, r5 . . .
mul r4, 15 Multlple-lssue: (can start several instructions per clock cycle)

store 15, (r1)

= Many |nst.ruct|on:.= ® Few, simple instructions

u Comple>.< instructions) = Many registers, all general-purpose

® Few registers, not symmetric typically 32 ... 256 registers

® Variable instruction size ® Fixed instruction size and format

m [nstruction decoding (often done in m Instruction decoding hardwired
microcode) takes much silicon
overhead

m Example: 80x86, 680x0 m Example: POWER, HP-PA RISC,

MIPS, ARM, SPARC

B Superscalar processors
e e.g. Sun SPARC, MIPS R10K, Alpha 21264, IBM Power2, Pentium
m VLIW processors (Very Long Instruction Word)

e e.g. Multiflow Trace, Cydrome Cydra-5, Intel i860,
HP Lx, Transmeta Crusoe;
most DSPs, e.g. Philips Trimedia TM32, TI ‘C6x

m EPIC processors (Explicitly Parallel Instruction Computing)
e e.g. Intel ltanium family (IA-64)

P_Fritzson, C. Kessler IDA, Linkdpings universitet JDDB44: Code Generation for RISC and ILP Processors P_Fritzson, C. Kessler IDA, Linkdpings universitet 4 JDDB44: Code Generation for RISC and ILP Processors
o o TR o o R
Processors with/without Pipelining &*5 Processor with Simple Pipelining be

Traditional processor without pipelining

One instruction takes 4 processor cycles, i.e. 0.25 instructions/cycle

Processorcycleno. 1 2 3 4 5 6 7 8 9 10 11

Instr. retrieval #1 #2 #3

Instr. decoding #1 #2 ‘ﬁ’
Execution #1 #2
Store result ﬂ ﬂ

Instr 1 Instr 2 Instr 3

P Fritzson, C,Kessler IDA, Linkopings universitet 5 10DB44; Code Generation for RISC and ILP Processors

An instruction takes 1 cycle on average with pipeline
i.e. 1 instruction/cycle

This pipeline achieves 4-way parallelism

Processorcycleno. 1 2 3 4 5 6 7 8 9 10 11

Instr. retrieval #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 |#9

Instr. decoding H#H1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9
Execution #1 |#2 |#3 |#4 |#5 |#6 (#7 |#8
Storeresult #1 |#2 |#3 |#4 |#5 |#6 |#7 |#8

Instr Instr Instr Tnstr Instr
1 2 3 4 5

P Fritzson, C, Kessler IDA, Linkopings universitet 5 10DB44; Code Generation for RISC and ILP Processors

L
Processor with Super-Pipelining &
A new instruction can begin before the previous one is finished.

Thus you manage on average 3 instr/cycle when the pipeline is full.

Processor cycle no. 12 3 4 5 6 7 8 9 10 11

s

Instruction 1 starts ~ ———»>| ~«— Instruction 1 ready

R= Instr. retrieval
D= Instr. decoding
E= Execution

S= Store result

P_Fritzson, C. Kessler IDA, Linkopings universitet 10DB44; Code Generation for RISC and ILP Processors

A Processor with Parallel Pipelines

AL A2 WB ‘""j
write-
L add 1 aadz> back | Fmﬁatmg—point
al

M2 _ M3 _ WB
muit, 2 | [mut.3| | e | |Floating-
— o —| point
mult.
F D

i fetch| |i decode

ME WB

write-
execute | [laccess | | pack | [Load/store
— - 123CK

™| |instructions

> lexecute | | back Integer
> ——| [—w{| instructions

P_Fritzson, C. Kessler IDA, Linkopings universitet 10DB44; Code Generation for RISC and ILP Processors

Problems using Branch Instructions on ’f N

Simple Pipelined Processors o/

Branch instructions force the pipeline to restart
and thus reduce performance.

The diagram below shows execution of a branch
(cbr = conditional branch) to instruction #3, which makes the pipeline restart.

The grey area indicates lost performance.

Only 4 instructions start in 6 cycles instead of the maximum of 6.

Processor cycle no. 1 2 3 4 5 6 7 8

Instr. retrieval #1 #2 cbr| #3 | #4

Instr. decoding #1 #2 cbr| #3 #4
Execution #1 2 cbr #3 | #4
Store result #1 #2 #3
P Fritzson, C.Kessler DA, Linkpings universitet 9 TDDBA4: Code Generation for RISC and ILP Processors

o - TR
Summary Pipelined RISC Architectures :*f

m A single instruction is issued per clock cycle =
m Possibly several parallel functional units / resources

m Execution of different phases of subsequent instructions overlaps in time.
This makes them prone to:
e data hazards (may have to delay op until operands ready),
e control hazards (may need to flush pipeline after wrongly predicted branch),
e structural hazards (required resource(s)/ e.g. functional units, bus, register,
must not be occupied)
m Static scheduling (insert NOPs to avoid hazards)
vs. Run-time treatment by pipeline stalling

issue [cycle[PM Decoder ALL, DMIALU, Regs
IF I ‘ 1 (IR
D I 2 |1/ 1Dy
X 5 2 I, ID; EX
I IE: 1Dy EXs MEM,
MEM/EX2 s 5 |iF D, EX, MEM, WB
wB I 6 |IF IDs EX, MEM, WB,

P Fritzson, C_Kessler DA, Linkapings universi

Reservation Table, Scheduling Hazards
(Avoid hazards = resource collisions)

add: ALU MULTIPLIER
tead | tead | stagd stagd stagd stagd stagd stage write
sicl | 5062 | 0 1 Q 1 2 3 tesolt

Reservation table
specifies required resource

Time |opnd| opnd| bus
o occupations
1
2 [Davidson 1975]

If we start add at t+2, the bus
write will appear at cycle t+5

mul: ALU MULTIPLLER
tead | tead [slagd stagd stagd stagd stagd stagd write .
sl [sic2 (0 |1 [0 |1 |2 |3 |iesalt t: mul ...
Tiumo | opne] oprd bus ee1:

o
! t+2: add .. é
2
3 Lo structural
+ hazard
3 at =5

Comparison between Superscalar Processors #34™|

and VLIW processors Lo

VLIW Processors

Superscalar Processors _
(Very Long Instruction Word)

with multiple loading of instructions
(multi-issue) [I

Instruction flow '/

Several processor units are loaded
simultaneously be different operations in
the same instructions.

E.g. the multiflow machine,

1024 bits, 28 operations,

or specialized graphics processors

P Fritzson, C, Kessler IDA, Linkopings universitet L 10DB44; Code Generation for RISC and ILP Processors

Superscalar Processors gf g

A superscalar processor has several function units that can work in parallel and %\...«j
which can load more than 1 instruction per cycle.

The word superscalar comes from the fact that the processor executes more
than 1 instruction per cycle.

The diagram below shows how a maximum of 4 units can work in parallel, which
in theory means they work 4 times faster.

The type of parallelism used depends on the type of instruction and
dependencies between instructions.

Processor cycle no: 1 2 3 4 5 6 7 8 9 10 11

Instruction 1starts —~ R, (D, [E, | S, [= Instruction 1 ready

R2|D2|E2 | S2

R3| D3| Es|Ss

Rq|Da|Esl|Ss

Rs|Ds| Es | Ss

R | D | Es | Se

R7| D7| E7 | Sy

R= Instr. retrieval

D= Instr.decoding Rs| Dg|Es | Se

E= Execution
Hg| Dg | Eg | So
S= Store result
P Fritzson, C. Kessler_IDA, Linkopings universitet 1 TDDB44; Cade Generation for RISC and ILP Processors P Fritzson, C. Kessler_IDA, Linkopings universitet

TR
Superscalar Processor u*}

® Run-time scheduling by instruction dispatcher
e convenient (sequential instruction stream — as usual)
o limited look-ahead buffer to analyze dependences, reorder instr.
o high silicon overhead, high energy consumption

m Example: Motorola MC 88110

2-way, in-order issue

superscalar “{i‘\""
- == DISPATCIER
Iy Tl internal instroction
= < bufler (2i ons)

A Parallel Superscalar Pipeline { :
perscalar ®

DS _ D _ Al _ A2 _ WB _
instruction|
write-
duspatch> i decode amﬂ> add 2| | pack F;o:nngrpoinl
- * ™1 la
—-
u »[] u o U
D M1 M2 M3 _ wa Floating-

Ipint

write
™| i dedodel [mut.1 || mut 2| | muit. 3| | ack | ™It
Pt | o R | back
IF | -

u . u U U u
i fetch] U

Branch Effects on Performance for Deeply R
Pipelined Superscalar Processors K*..«f

Branch-instructions force the pipeline to restart and thus reduce
performance. Worse on deeply pipelined superscalar processors.

The diagram shows Cycleno. 1 2 3 4 5 6 7 8
execution qf_a branch st retr.

(cbr = conditional
branch) to instruction
#3, which makes the
pipeline restart.

Instr. decode 1

Instr. decode 2

m Multiple slots for instructions in long instruction-word
e Direct control of functional units and resources — low decoding OH
m Compiler (or assembler-level programmer)
must determine the schedule statically
e independence, unit availability, packing into long instruction words
e Challenging! But the compiler has more information on the program
than an on-line scheduler with a limited lookahead window.

e Silicon- and
energy-efficient REGISTER FILE |

PC x’ ' ' '
addi NOP load NOP

N write- The grey area
decodk ite Load/st
L | [TR R [msvuctons indicates lost
performance. Execution 1
- - - B - Only 6 instructions
_ 1D EX _ start during 5 cycles .
. instead of a Execution 2
i decode| |exece | | ey, | |Integer Inste
| ——| ——>| = [instructions maximum of 20.
Ll Store
P.Frtzson C Kessler DA, Linkopings universic s Toneas Codo Generaion for RISC and 16 Procescors P.Fritzson C Kessler DA, Linkopings universic 1 IDDB44. Cae Generation for RISC and L processors
R EPIC Architectures R
VLIW (Very Long Instruction Word) architectur Y (Explicitly Parallel Instruction Computing) oY
Ll o

P Fritzson, C. Kessler DA, Linkdpings univ s

®m Based on VLIW

m Compiler groups instructions to LIW's (bundles)

m Compiler takes care of resource and latency constraints
m Compiler marks sequences of independent instructions

® Dynamic scheduler assigns resources and reloads new
bundles as required

Liw1 LIW2..

\ | \ [| | instr1

‘ ‘ | | | ‘ Instr 2

LIW 2 cont LIw 3 etc.

10DB44; Code Generation for RISC and ILP Processors

P Fritzson, C. Kessler IDA, Linkapings universitet 18

TDDB44 Compiler Construction \ .f

oy

TDDD55 Compilers and Interpreters (opt.)

N

2. Instruction Scheduling

The Instruction Scheduling Problem d}'

m Schedule the instructions in such an order that parallel
function units are used to the greatest possible degree.

H [nput:
e Instructions to be scheduled
e A data dependency graph
e A processor architecture
o Register allocation has (typically) been performed

oy

Instructions Dependency graph

@ i [%sp + 0x64], %gl <:>_
@ ud [%sp + Ox68], %I1 >@\\

m Qutput:
e A scheduling of instructions which minimizes execution
time
Peter Fritzson, Christoph Kessler
DA, Linkopings universiet, 2014 P_Fritzson, C. Kessler IDA, Linkopings universitet Q TDDB44: Code Generation for RISC and ILP Processors.
: AL _ _ TR
Example Instructions to be Scheduled #}-‘ Instruction Scheduling (1) Be o

oy

B Map instructions to time slots on issue units (and resources),
such that no hazards occur
> Global reservation table, resource usage map

[s5ue tead |read | A LU MULTIPLIER |wlie
binit 1 slel [sic? | stage slagd stagd stagd slage stage result
Tie opndfopndl0 (1 O [1 |2 |3 bus
t: mul R1,... o
t+i: nop ...
t+2: nop ...

t+4: nep ...

W ow o e

t+6: add ...,R1

latency(mul) = 6

P Fritzson, C. Kessler IDA. Lind 3 10DB44; Code Generation for RISC and ILP Processors

8; add g ol, w12 O—® ® Example without data dependences:
(5) sethi %hi(0x2000), %17
() or %17, 0x240, %17 ! 0x2240 —
@ cir %00 O—® s read| ead| ALU | MULTLIPLLIER |wiie
Egg sethi gﬁ?ioiggooooom %03 Q) . it 1 stc] | stc | shagd slhsf' ;‘“3‘ 51“3‘ b Eghgc ot
10) or %03, 0x2, %03 1 -OXTFFFFFfe £ mul e ﬁm'—"ma = e
(11) mov %16, %04 - et a
t+l: add ...
t+2: nop 2
- : .
o= 3
@ . .
5
P. Fritzson, C. Kessler IDA, Lmkapmﬁs universitet. 1 JDDB44: Code Generation for RISC and ILP Processors_

. _ : &:\. _ _ IR
Instruction Scheduling (2) Re Instruction Scheduling Re
® Datad d imply lat traint Generic Resource model fom] [~=[r=[are [ocrircienlon

ata dependences imply latency constraints = Reservation table PO P = - e~
> target-level data flow graph / data dependence graph £+1: nop ...
E+2: nop ... [| <t

Local Scheduling .
(f. Basic blocks / DAGs) * .

-

g
L

m Data dependences t+6: add ... Rl

-> Topological sorting

e List Scheduling
(diverse heuristics)

(ITTX XXX

4

Global Scheduling
m Trace scheduling, Region scheduling, ...
m Cyclic scheduling (Software pipelining)

There exist retargetable schedulers
and scheduler generators, e.g. for GCC since 2003

10DB44; Code Generation for RISC and ILP Processors

P Fritzson, C. Kessler IDA, Linkapings universitet 4

R
Example of List Scheduling Algorithm &
m The level of a task (i.e.,
instruction) node is the
maximal number of nodes
that are passed on the
way to the final node, itself
included.

Example of Highest Level First algorithm on a
tree structured task graph, 3 processor units

task priority task number

task execution time

4 % time P1 P2 P3

o
10 9 8

e The level of each node
is used as priority. 3 a 7 6 5
e Whena . s .
2 v

processor/function unit

is free, assign the 2 2
unexecuted task which
has highest priority

and which is ready to 1
be executed. Task Graph

m The algorithm:

Gantt Chart

P_Fritzson, C. Kessler IDA, Linkopings universitet 25 JIDDB44: Code Generation for RISC and ILP Processors

Example: Topological Sorting (0)
According to Data Dependencies

Not yet considered
Data ready (zero-in-degree set)

Already scheduled, still live

OCee

Already scheduled, no longer referenced

P_Fritzson, C. Kessler IDA, Linkopings universitet 26

®

Y

10DB44; Code Generation for RISC and ILP Processors

Example: Topological Sorting (1) R
According to Data Dependencies R

Not yet considered
Data ready (zero-indegree set)

Already scheduled, still live

cCee

Already scheduled, no longer referenced

a

P Fritzson, C, Kessler IDA, Linkopings universitet 10DB44; Code Generation for RISC and ILP Processors

Example: Topological Sorting (2)
According to Data Dependencies

Not yet considered
Data ready (zero-indegree set)

Already scheduled, still live

cCee

Already scheduled, no longer referenced

a b

P Fritzson, C. Kessler IDA, Linkapings universitet

TR
®

10DB44; Code Generation for RISC and ILP Processors

Example: Topological Sorting (3) R
According to Data Dependencies i

Not yet considered
Data ready (zero-indegree set)
Already scheduled, still live

Already scheduled, no longer referenced

cOee

P Fritzson, C,Kessler IDA, Linkopings universitet 9 10DB44; Code Generation for RISC and ILP Processors

Example: Topological Sorting (4)
According to Data Dependencies

Not yet considered
Data ready (zero-indegree set)
Already scheduled, still live

Already scheduled, no longer referenced

cOCee

ab

P Fritzson, C. Kessler IDA, Linkapings universitet 30

d

TR
®

and so on...

10DB44; Code Generation for RISC and ILP Processors

. . . TR

Topological Sorting and Scheduling &

m Construct schedule incrementally
in topological (= causal) order

e "Appending” instructions to partial code sequence:
close up in target schedule reservation table
(as in "Tetris”)

e Idea: Find optimal target-schedule by enumerating
all topological sortings ...

» Beware of scheduling anomalies
with complex reservation tables!

TR
Software Pipelining 1*:

fori:=1ton
get values;
compute;
store;

end for

iter 1 iter 2 iter 3 iter ...

get values 1 get values 2 get values 3

compute 1 compute 2 In parallel
store 1
Instruction needing
= 3 functional units f
SR a
P Fritzs() o o o) ol 1 DDB44; Code Generation for RISC and ILP Processors P. Fritzson, C. Kessler DA, Linkopings universitet 2 IDDBA4: Code Generation for RISC and ILP Processors

Assume: 4 units, fully pipelined

()
i
&

N
NE
AN

delay=2 for all instructions [

Assume 2 processor cycles

NES
SN
NN

7 instructions
AB,C,D..G

NN

N

N
A
N\

=y
No dependence cycles ResMIl = Resource

- - ol - Constrained Minimym
ResMIl= ceil(74)= 2 iotion interval / [P
Begin with II = ResMIIL = 2 e P s
sduling heuristic / / G

(ABCDEFG)
placement heuristic
as carly as possible

Mark occupicd slots in all il\'r.\liurls.../

il

10DB44; Code Generation for RISC and ILP Processors

If not possible, increase I and try again...

P Fritzson, C. Kessler IDA, Linkapings universitet 35

Software Pipelining of Loops (1) Re Software Pipelining of Loops (2) &
+—tr—t—tt—t++—++— Unitt Unit2 Unit3
time
loop: T Prologue: ;|
- 1
By
P C, A,
D, Dy B
unroll once 4 L E, | Dole2
reschedule N2 INg S™W6 E Patem B Cpy A
locally Fi Diy Bio
Epilogue: E C
infinite unrolling not realistic... F"_,I D
n-1 Py
E
Software B
pipelining 1 N2 N3 N \ "
prologue epilogue
"pattern”, "kernel" for 1 iteration of the modified loop > More about Software Pipelining in TDDC86
Compiler Optimizations and Code Generation
P_Fritzson, C. Kessler IDA, Linkdpings universitet 33 JTDDB44: Code Generation for RISC and ILP Processors, P Fritzson, C_Kessler DA, Link6pings universitet 34 JTDDB44: Code Generation for RISC and ILP Processors,
- . . ;6'" - [
SOftware Plpellnlng Of LOOpS (3) f*\ TDDD55 Compilers and Interpreters (opt.) f \
MO d u | 0 SC h ed u | n g k _'“f TDDB44 Compiler Construction % g

3. Register Allocation

Peter Fritzson, Christoph Kessler
IDA, Link6pings universitet, 2011

R

Global Register Allocation a}'

g

.#”“\

® Register Allocation: Determines values (variables, temporaries,
constants) to be kept when in registers

m Register Assignment: Determine in which physical register such a value
should reside.

Essential for Load-Store Architectures
Reduce memory traffic (= memory / cache latency, energy)
Limited resource
Values that are alive simultaneously cannot be kept in the same register
Strong interdependence with instruction scheduling
e scheduling determines live ranges
e spill code needs to be scheduled

® Local register allocation (for a single basic block) can be done in linear
time (see previous lecture)

m Global register allocation on whole procedure body (with minimal spill
code) is NP-complete.
Can be modeled as a graph coloring problem [Ershov'62] [Cocke'71].

TR
When do Register Allocation B o
W
m Register allocation is normally performed at the end of
global optimization, when the final structure of the code and
all potential use of registers is known.

| |tis performed on abstract machine code where you have
access to an unlimited number of registers or some other
intermediary form of program.

m The code is divided into sequential blocks (basic blocks) with
accompanying control flow graph.

P.Fritzson, C. Kessler IDA, Linkopings universitet JIDDB44: Code Generation for RISC and ILP Processors p_Fritzson C. Kessler IDA, Linkopings universitet. IDDB44: Code Generation for RISC and ILP Processors
- ® |- %
Live Range Re Y Live Range Example Re Y
(Here, variable = program variable or temporary) / xis defined
m Avariable is being defined at a program point if it is written xr S
(given a value) there. XoEsh
m A variable is used at a program point if it is read (referenced Use of x
in an expression) there. I ,/
m A variable is live at a point if it is referenced there or at some Live range for x 2234
following point that has not (may not have) been preceded by
any definition. / Last use of x
m A variable is reaching a point if an (arbitrary) definition of it, o aser
or usage (because a variable can be used before it is defined) y =Sz
reaches the point.
| Avariable’s live range is the area of code (set of instructions)
where the variable is both alive and reaching.
e does not need to be consecutive in program text.
P_Fritzson, C. Kessler IDA, Linkdpings universitet i°] JDDB44: Code Generation for RISC and ILP Processors P_Fritzson, C. Kessler IDA, Linkdpings universitet 40 JDDB44: Code Generation for RISC and ILP Processors
R _ _ _ R
Interference Graphs gﬁ&}-‘ Register Allocation vs Graph Coloring 9%

®m The live ranges of two
variables interfere if their
intersection is not empty. X

® Each live range builds a
node in the interference
graph (or conflict graph)

= If two live ranges
interfere, an edge is
drawn betweenthe
nodes.

Interference graph:

® Two adjacent nodes in the
graph can not be
assigned the same
register.

4@
O—®

10DB44; Code Generation for RISC and ILP Processors

P Fritzson, C. Kessler IDA, Linkapings universitet 41

oy

m Register allocation can be compared with the classic coloring
problem.

e That s, to find a way of coloring - with a maximum of k
colors - the interference graph which does not assign the
same color to two adjacent nodes.

m k = the number of registers.

e On a RISC-machine there are, for example, 16 or 32
general registers. Certain methods use some registers for
other tasks. e.g., for spill code.

m Determining whether a graph is colorable using k colors is
NP-complete for k>3

e In other words, it is unmanageable always to find an

optimal solution.

P Fritzson, C, Kessler IDA, Linkopings universitet 4 10DB44; Code Generation for RISC and ILP Processors

TR
Register Allocation by Graph Coloring &

m Step 1: Given a program with symbolic registers s1, s2, ...
o Determine live ranges of all variables

TR
Register Allocation by Graph Coloring &

m Step 2: Build the Register Interference Graph

e Undirected edge connects two symbolic registers (si, sj)
if live ranges of si and sj overlap in time

o Reserved registers (e.g. fp) interfere with all si

physical
symbolic registers registers
i = ct4; load 8(fp),sl ! ¢ =1 i = ct4; load B(fp),sl ! e =1 @
nop nop
addi sl,#4,s2 52 addi s1, #4,32 52 51 @
store 52,4 (fp) | 1 store s2,4(fp) [= \
d = e-2; subi s1,#2,83 s3 d = e-2; subi sl,#2,s3 53 a2 @
store 83 . 12(fp) ! d I’ atore s3,12(fp) ! d ‘ @
e = g*i; muali sl1,s52,s4 54 ¢ = c*]l; muli s1,s2,s4d 54 @
store s4,8(fp) 1 a 4 store =4,8(fp) 1 a I
P Fritzson, C_Kessler IDA. Linkdpings universitet, 4 JDDB44: Code Generation for RISC and ILP Processors. P Fritzson, C. Kessler DA, Linkopings universitet. 44 IDDB44: Code Generation for RISC and ILP Processors
Reg. Alloc. by Graph Coloring Cont. & Coloring a Graph with k Colors Re

m Step 3: Color the register interference graph with k colors,
where k = #available registers.

e If not possible: pick a victim si to spill, generate spill code
(store after def., reload before use)

» This may remove some interferences.
Rebuild the register interference graph + repeat Step 3...

i = c+4; load 8(fp),sl ! c =1 @
nop
addi s1,#4,s2 s2 @
store s2,4(fp) ti \

d = e-2; subi sl, #2,6s3 s3

store =3,12(fp) ! d
c = ¢*¥l; muli sl,s2, sd
store =4,8(fp) 1 e

This register interference graph cannot be colored
with less than 4 colors, as it contains a 4-clique

® NP-complete for k>3
® Chromatic number y(G) = minimum number of colors to color a graph G
m y(G) >= c if the graph contains a c-clique

e Ac-clique is a completely connected subgraph of ¢c nodes

Chaitin’s heuristic (1981):

S & {s1,s2,...} [l setof spill candidates
while ('S not empty)
choose some s in S.
if s has less than k neighbors in the graph
then // there will be some color left for s:
delete s (and incident edges) from the graph
else modify the graph (spill, split, coalesce ... nodes)
and restart.
1/l once we arrive here, the graph is empty:
color the nodes greedily in reverse order of removal.

P_Fritzson, C_Kessler JLLLIE Z TDDB7T Tom! TEration for RISC and ILP Processors P_Fritzson, C. Kessler IDA, Linkdpings universitet 46 IDDB44: Code Generation for RISC and ILP Processors
" : TR . . TR
Chaitin’s Register Allocator (1981) & Register Allocation for Loops (1) &

find live ranges;

systematically rename thel

[build interference graph G |

coalesce copies

insert

spills

‘While G nonempty:
if ex. node n with degree < k
remove n from G and push it on the stack
else
pick anode n to spill and remove it from G

any spills?

select

~— ‘While stack is non-empty
— pop n; insert n inte G: assigna colorto n

m |nterference graphs have some weaknesses:
e Imprecise information on how and when live ranges interfere.

o No special consideration is taken of loop variables’ live ranges (except
when calculating priority).

®m |nstead, in a cyclic interval graph:
e The time relationships between the live ranges are explicit.
e Live ranges are represented for a variable whose live range crosses
iteration limits by cyclic intervals.
= Notation for cyclic live intervals for loops:
e Intervals for loop variables which do not cross the iteration limit are
included precisely once.
o Intervals which cross the iteration limit are represented as an interval
pair, cyclic interval:

([0, £), [t, tendl)

10DB44; Code Generation for RISC and ILP Processors

P Fritzson, C. Kessler IDA, Linkapings universitet 4

10DB44; Code Generation for RISC and ILP Processors

P Fritzson, C. Kessler IDA, Linkapings universitet 4

AL
Register Allocation for Loops (2) &

Circular edge graph
Only 3 interferences at the same time

x3

Traditional interference graph,
all variables interfere, 4 registers needed

As
vr N

x1

Pt

Register Allocation for Loops (3) AL
Live ranges (loop only)j*._.-t‘f
cyclic intervals

Example: Control flow graph e.g. fori: [0, 5), [5, 6]
3=7 x1:[2,4) x2:[3,5)
_x3 =7 .
fori = 110 100 x3: ([0, 3), [4, 6])
ori=1to { i i x1 x2 x3
xi=xa+2 0
= o~ o~
X2 =x1+x3 H
i<=100 =k
x3=x2 +x1 T
} X1=x3+2 '
y=x3+42 : y
= 3
: 3
4
All variables
interfere with 5 L
— H A
each other T — | R

need 4 regs?

y=x3+i+42 6 At most 3 values live at a time
P. Fritzson, C. Kessler DA, Linkopings universitet 50 1op > 3 registers sufficient

P, Frizson, C Kessler DA, Linkopings universitt 49 IDDB24. Cae Generation for RIS and L processors
. o fg\ Live Range Coalescing/Combining TR
Live Range Splitting i (Reduces Register Needs) Y
~t“i...—" ~t‘i._"_.-
m [nstead of spilling completely (reload before each use), m For a copy instruction sj € si
it may be §uﬁ|C|ent to spl_lt a_Ilve range at one position o where si and sj do not interfere
where register pressure is highest]]) .
e and si and sj are not rewritten after the copy operation
e save, and reload once . .
m Merge si and sj:
e patch (rename) all occurrences of si to sj
#v) fu,) tl(g,,\ fuy) #u tu,) e update the register interference graph
T 17 22 Tas b| Tei; i
1 I I 1, L. - q ® and remove the copy operation.
S2 & ... s3& ...
ttv) tu,) t) tugs i)
L i, Fﬁ'z it store i s3€s2 M
5 L 3 L .s3.. ..S3...
P_Fritzson, C. Kessler IDA, Linkdpings universitet o1 JDDB44: Code Generation for RISC and ILP Processors P_Fritzson, C. Kessler IDA, Linkdpings universitet 2 JDDB44: Code Generation for RISC and ILP Processors
- ==
TDDDS5 Compilers and Interpreters (opt.) i"- "\ . : *
TDDB44 Compiler Construction k f P h as e Ord erl n g Pro b I em S k\.—.—"j

4. Phase Ordering Problems
and Integrated Code Generation

Peter Fritzson, Christoph Kessler
IDA, Link6pings universitet, 2011

gee,
Icc

Instruction
selection

I
|

Register

Instruction scheduling allocation

'

10DB44; Code Generation for RISC and ILP Processors

P Fritzson, C. Kessler IDA, Linkapings universitet 54

71
Phase Ordering Problems (1) =*

Instruction scheduling vs. register allocation

(a) Scheduling first:
determines Live-Ranges
- Register need,
possibly spill-code to be
inserted afterwards

(b) Register allocation first:
Reuse of same register by different
values introduces "artificial”
data dependences
-> constrains scheduler

a = a 1
b= ... 2 _‘ .
- . = Ltetay=1 Instruction
Torme @) (el selection
= ..b.. ““ - arge
L) code
Ay
R 2 _
©@ ® ey —— Regiser
s f T Instruction scheduling allocation
= - S).‘ 'gc'bi'
114
P.Fritzson, C. Kessler IDA, Linkopings universitet. 20 JIDDB44: Code Generation for RISC and ILP Processors, P. Fritzson, C. Kessler IDA, Linkopings universitet 26 JIDDB44: Code Generation for RISC and ILP Processors,

TR
5. Integrated Code Generation =*I

_ TR
Our Project at PELAB (Kessler): OPTIMIST {&;

Retargetable integrated code S0Urce program
(G, G+, Fortran)

generator

Open Source:

. . - LCC, ORC
www.ida.liu.se/~chrke/optimist

ORC HL opt.
: OPTIMIST
o oo retargetable Integrated code generation
w7 w7 | AADMLY | optimlzation engines: DP, ILP [CPLEX)
functional units parser, ﬁ ﬁ ﬁ
reqglster sets p IR 5 F
memory modules o] m -
Instruction set o] tar (
IADML] ol —selufion space
Avaliable specifications:
-TICE201
- ARM 3E
blel
~ Motorola MCS6K e
execution/simulation

p_Fritzson, C. Kessler IDA, Linkopings universitet 5 10DB44; Code Generation for RISC and ILP Processors

10

