TDDDS5 Compilers and interpreters _i'# "_
TDDB44 Compiler Construction . .

oy

Finite Automata

Extra slide material for
interested students. Not
included in the regular course.

Peter Fritzson, Christoph Kessler,
IDA, Link6pings universitet, 2011

AL
Why automata models? #}"

m Automaton: Strongly limited computation model
compared to ordinary computer programs

A weak model (with many limitations) ...

| allows to do static analysis
e e.g. on termination (decidable for finite automata)

e which is not generally possible with a general computation
model

| js easy to implement in a general-purpose programming mode
® e.g. scanner generation/coding, parser generation/coding
e source code generation from UML statecharts

m Generally, we are interested in the weakest machine model
(automaton model) that is still able to recognize a class of

100055 BNGUAES . o 1 zon o

. . . {’g\
Finite Automaton / Finite State Machine Be o

oy

m Given by quintuple (X, S, syinS, subsetFof S, §)

direction of moving OF token

’i’nput“string, I a E b I + | c | $ I I

‘ape read’Qql
5:":9[;7"[6); head Set S={s(, Sy, ..., S }
alphabet t) . N
(current p of a finite number of states
fil‘lit @ some of them may be
control accepting (final) states (F)
current | input new

state symbol | state

Transitions in § are tuples
read

curre!t max@

((current state, input symbol),

: . TR
Computation of a Finite Automaton #}-‘

oy

| |nitial configuration:
e current state := start state sO
e read head points to first symbol of the input string

®m 1 computation step:
e read next input symbol, t

e look up & for entry (current state, t, new state)
to determine new state

e current state := new state
e move read head forward to next symbol on tape
o if all symbols consumed and new state is a final state:

So a Sy Transition table (new state)) accept and halt
S b Sy 8 Given as entries in transition table .
) . e otherwise repeat
. or as edges in a transition diagram
TDDU oo s 1 -+ treesorns o rvaorers ror LIU, 2011 b (directed graph) TDDDS5/B44, P. Fritzson, C. Kessler, IDA, LIU, 2011 b4

:i,w- "w_ :i.f" m_
NFA and DFA Re DFA Example —*W y
NFA (Nondeterministic Finite Automaton) ® DFA with

m "empty moves” (reading ¢) with state change are possible,
i.e. entries (s, ¢, s) may existin &

B ambiguous state transitions are possible,
i.e. entries (s, t, s)and (s;,t, s) may existin &

NFA accepts input string if there exists a computation (i.e., a
sequence of state transitions) that leads to "accept and halt”

DFA (Deterministic Finite Automaton)
® No e-transitions, no ambiguous transitions (3 is a function)
| Special case of a NFA

TDDDS5/B44, P. Fritzson, C. Kessler, IDA, LIU, 2011 b5

Alphabet £={0,1}
State set S={s,, s, }

initial state: s, 0 0
F={s} {]
8 ={ (S0, 0, sp), e
(sor 1, s),
(slv Ov sl)v 1
(s1,1,80) }

- recognizes (accepts) Computation for input string 10110:

strings containing an odd s read 1

number of 1s sy read0
s, read 1

sy read 1
s, read 0
s, accept

TDDDS5/B44, P. Fritzson, C. Kessler, DA, LIU, 2011 b6

. TR
From regular expression to code d}'

g

4 Steps:

m For each regular expression r there exists a NFA that accepts
L, [Thompson 1968 - see whiteboard]

m For each NFA there exists a DFA accepting the same
language

m For each DFA there exists a minimal DFA (min. #states) that
accepts the same language

® From a DFA, equivalent source code can be generated.
[->Lecture on Scanners]

TDDDS5/B44, P. Fritzson, C. Kessler, DA, LIU, 2011 b

Theorem: For each regular expression r there f&:\
exists an NFA that accepts L, [Thompson 1968}#%.4

Proof: By induction,
following the inductive construction of regular expressions

Divide-and-conquer strategy to construct NFA(r):
0. ifris trivial (base case): construct NFA(r) directly, else:
1. decompose r into its constituent subexpressions ry, r,...
2. recursively construct NFA(r;), NFA(r,), ...
3. compose these to NFA(r) according to decomposition of r

2 base cases: e

Case 1: r=e: NFA(r) =
with i = new start state, f = final state of NFA(r)
NFA(r) recognizes L(g) ={¢}.

Case2: r=aforainX: NFA(r) = a

recognizes L(ag ={a}.

TDDDSS/B44, P. Fritzson, C. Kessler, IDA, LIU, 20°

AL

(cont.) #}-‘

4 recursive decomposition cases:
Case 3: r=ry|r,; By Ind.-hyp. exist NFA(r,), NFA(r,)

NFA@) =

recognizes L(r, | r,) =L(ry) U L(ry)
Case4: r=r;.r,; BylInd.-hyp. exist NFA(r;), NFA(r,)

NFA®) =

recognizes L(ry.r,) =L(ry) . L(ry)

TDDDS5/B44, P. Fritzson, C. Kessler, DA, LIU, 2011 bo

R
(cont.) 5\&}-'

oy

Case5: r=rn* By ind.-hyp. exists NFA(r,)

NFA(T) =

recognizes L(r*) = (L(ry)*
(similarly for r = r,*)

Case 6: Parentheses: r=(ry)
NFA(r) =

(no modifications).

The theorem follows by induction.]

TDDDS5/B44, P. Fritzson, C. Kessler, DA, LIU, 2011 L 10

