
1

TDDD55 Compilers and interpreters
TDDB44 Compiler Construction

Finite Automata

Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2011.

Extra slide material for
interested students. Not
included in the regular course.

Why automata models?

 Automaton: Strongly limited computation model
compared to ordinary computer programs

A weak model (with many limitations) ...

 allows to do static analysis

 e.g. on termination (decidable for finite automata)

2b.2TDDD55/B44, P. Fritzson, C. Kessler, IDA, LIU, 2011.

 which is not generally possible with a general computation
model

 is easy to implement in a general-purpose programming model

 e.g. scanner generation/coding, parser generation/coding

 source code generation from UML statecharts

 Generally, we are interested in the weakest machine model
(automaton model) that is still able to recognize a class of
languages.

Finite Automaton / Finite State Machine

 Given by quintuple (, S, s0 in S, subset F of S,)

a := b + c $
read-only
head

input string,
”tape”
string over

EOF token
direction of moving

S t S { }

2b.3TDDD55/B44, P. Fritzson, C. Kessler, IDA, LIU, 2011.

Transition table

s1

head
(current pos.)

g
alphabet

s0

s4

s3

s2

Transitions in are tuples

((current state, input symbol),
(new state))

Given as entries in transition table

or as edges in a transition diagram
(directed graph)

finite
control

current state
current
state

input
symbol
read

new
state

s0 a s1

s1 b s1

...

Set S = { s0, s1, ..., sk }
of a finite number of states

some of them may be
accepting (final) states (F)

Computation of a Finite Automaton

 Initial configuration:

 current state := start state s0

 read head points to first symbol of the input string

 1 computation step:

 read next input symbol, t

2b.4TDDD55/B44, P. Fritzson, C. Kessler, IDA, LIU, 2011.

ead e t put sy bo , t

 look up for entry (current state, t, new state)
to determine new state

 current state := new state

 move read head forward to next symbol on tape

 if all symbols consumed and new state is a final state:
accept and halt

 otherwise repeat

NFA and DFA

NFA (Nondeterministic Finite Automaton)

 ”empty moves” (reading) with state change are possible,
i.e. entries (si, , sj) may exist in

 ambiguous state transitions are possible,
i.e. entries (si, t, sj) and (si, t, sl) may exist in

NFA t i t t i if th i t t ti (i

2b.5TDDD55/B44, P. Fritzson, C. Kessler, IDA, LIU, 2011.

NFA accepts input string if there exists a computation (i.e., a
sequence of state transitions) that leads to ”accept and halt”

DFA (Deterministic Finite Automaton)

 No -transitions, no ambiguous transitions (is a function)

 Special case of a NFA

DFA Example

 DFA with
Alphabet = { 0, 1 }
State set S = { s0, s1 }
initial state: s0
F = { s1 }
 = { (s0, 0, s0),

(s0, 1, s1),
s0 s1

0 0

1

2b.6TDDD55/B44, P. Fritzson, C. Kessler, IDA, LIU, 2011.

(s1, 0, s1),
(s1, 1, s0) }

 recognizes (accepts)
strings containing an odd
number of 1s

1

Computation for input string 10110:

s0 read 1
s1 read 0
s1 read 1
s0 read 1
s1 read 0
s1 accept

2

From regular expression to code

4 Steps:

 For each regular expression r there exists a NFA that accepts
Lr [Thompson 1968 - see whiteboard]

 For each NFA there exists a DFA accepting the same
language

F h DFA th i t i i l DFA (i # t t) th t

2b.7TDDD55/B44, P. Fritzson, C. Kessler, IDA, LIU, 2011.

 For each DFA there exists a minimal DFA (min. #states) that
accepts the same language

 From a DFA, equivalent source code can be generated.
[Lecture on Scanners]

Theorem: For each regular expression r there
exists an NFA that accepts Lr [Thompson 1968]

Proof: By induction,
following the inductive construction of regular expressions

Divide-and-conquer strategy to construct NFA(r):
0. if r is trivial (base case): construct NFA(r) directly, else:
1. decompose r into its constituent subexpressions r1, r2...
2. recursively construct NFA(r1), NFA(r2), ...
3 compose these to NFA(r) according to decomposition of r

2b.8TDDD55/B44, P. Fritzson, C. Kessler, IDA, LIU, 2011.

3. compose these to NFA(r) according to decomposition of r

2 base cases:

Case 1: r =: NFA(r) =
with i = new start state, f = final state of NFA(r)
NFA(r) recognizes L() = { }.

Case 2: r = a for a in : NFA(r) =

recognizes L(a) = { a }.

i f

i f
a

(cont.)

4 recursive decomposition cases:

Case 3: r = r1 | r2: By Ind.-hyp. exist NFA(r1), NFA(r2)

NFA(r) =

2b.9TDDD55/B44, P. Fritzson, C. Kessler, IDA, LIU, 2011.

recognizes L(r1 | r2) = L(r1) U L(r2)

Case 4: r = r1 . r2: By Ind.-hyp. exist NFA(r1), NFA(r2)

NFA(r) =

recognizes L(r1 . r2) = L(r1) . L(r2)

(cont.)

Case 5: r = r1*: By ind.-hyp. exists NFA(r1)

NFA(r) =

recognizes L(r1*) = (L(r1))*.
(similarly for r = r1

+)

2b.10TDDD55/B44, P. Fritzson, C. Kessler, IDA, LIU, 2011.

Case 6: Parentheses: r = (r1)

NFA(r) =

(no modifications).

The theorem follows by induction.

