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TDDD55 Compilers and interpreters
TDDB44 Compiler Construction

Finite Automata

Peter Fritzson, Christoph Kessler, 
IDA, Linköpings universitet, 2011.

Extra slide material for 
interested students. Not 
included in the regular course.

Why automata models?

 Automaton:  Strongly limited computation model
compared to ordinary computer programs

A weak model (with many limitations) ...

 allows to do static analysis

 e.g. on termination  (decidable for finite automata)
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 which is not generally possible with a general computation 
model  

 is easy to implement in a general-purpose programming model

 e.g. scanner generation/coding, parser generation/coding

 source code generation from UML statecharts

 Generally, we are interested in the weakest machine model 
(automaton model) that is still able to recognize a class of 
languages.

Finite Automaton / Finite State Machine

 Given by quintuple  ( ,  S,  s0 in S,  subset F of S,   )

a := b + c $
read-only 
head

input string, 
”tape” 
string over 

EOF token
direction of moving

S t S { }
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Transition table


s1

head
(current pos.)

g
alphabet 

s0

s4

s3

s2

Transitions in are tuples

( (current state, input symbol),  
(new state) )

Given as entries in transition table

or as edges in a transition diagram 
(directed graph)

finite 
control

current state
current 
state

input 
symbol 
read

new 
state

s0 a s1

s1 b s1

... ... ...

Set  S = { s0, s1, ..., sk }
of a finite number of states

some of them may be 
accepting (final) states (F)

Computation of a Finite Automaton

 Initial configuration:

 current state  :=  start state  s0

 read head points to first symbol of the input string

 1 computation step:

 read next input symbol,  t
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ead e t put sy bo , t

 look up  for entry  (current state,  t, new state)
to determine new state

 current state  :=  new state

 move read head forward to next symbol on tape

 if all symbols consumed and new state is a final state:
accept and halt

 otherwise repeat

NFA and DFA

NFA  (Nondeterministic Finite Automaton)

 ”empty moves” (reading )  with state change are possible,
i.e.  entries  ( si, , sj)  may exist in  

 ambiguous state transitions are possible,
i.e.  entries ( si, t, sj) and ( si, t, sl) may exist in  

NFA t i t t i if th i t t ti (i
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NFA accepts input string if there exists a computation (i.e., a 
sequence of state transitions) that leads to ”accept and halt”

DFA  (Deterministic Finite Automaton)

 No  -transitions,  no ambiguous transitions  ( is a function)

 Special case of a NFA

DFA Example

 DFA  with
Alphabet   = { 0, 1 }
State set  S = { s0, s1 }
initial state: s0
F = { s1 }
 = { (s0, 0, s0),

(s0, 1, s1),
s0 s1

0 0

1
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(s1, 0, s1),
(s1, 1, s0) }

 recognizes (accepts) 
strings containing an odd 
number of 1s

1

Computation for input string 10110:

s0 read 1
s1 read 0
s1 read 1
s0 read 1
s1 read 0
s1 accept
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From regular expression to code

4 Steps:

 For each regular expression r there exists a NFA that accepts 
Lr [Thompson 1968  - see whiteboard]

 For each NFA there exists a DFA accepting the same 
language

F h DFA th i t i i l DFA ( i # t t ) th t
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 For each DFA there exists a minimal DFA  (min. #states) that 
accepts the same language

 From a DFA, equivalent source code can be generated. 
[Lecture on Scanners]

Theorem:  For each regular expression r there 
exists an NFA that accepts Lr    [Thompson 1968]

Proof:  By induction, 
following the inductive construction of regular expressions

Divide-and-conquer strategy to construct NFA(r):
0.  if r is trivial (base case):  construct NFA(r) directly, else:
1.  decompose r into its constituent subexpressions r1, r2...
2.  recursively construct NFA(r1),  NFA(r2), ...
3 compose these to NFA(r) according to decomposition of r
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3.  compose these to NFA(r) according to decomposition of r

2 base cases:

Case 1:  r =:    NFA(r)  =
with i = new start state,  f = final state of NFA(r) 
NFA(r)  recognizes  L() = {  }.

Case 2:  r = a for a in :   NFA(r) =

recognizes L(a) = { a }.

i f


i f
a

(cont.)

4 recursive decomposition cases:

Case 3:  r = r1 | r2:      By Ind.-hyp. exist NFA(r1), NFA(r2)

NFA(r)  =  
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recognizes L(r1 | r2)  = L(r1) U  L(r2)

Case 4:  r = r1 . r2:     By Ind.-hyp. exist NFA(r1), NFA(r2)

NFA(r)  = 

recognizes  L(r1 . r2)  = L(r1) . L(r2)

(cont.)

Case 5:   r = r1*:        By ind.-hyp. exists NFA(r1)

NFA(r)  =

recognizes L(r1*) = (L(r1))*.
(similarly for r = r1

+)
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Case 6:   Parentheses:   r = (r1)

NFA(r)  =

(no modifications).

The theorem follows by induction.


