TDDD16 Compilers and interpreters

J""”"a‘

Finite Automata

Extra slide material
(see whiteboard)

Peter Fritzson, Christoph Kessler,

R
Why automata models? E:*;

B Automaton: Strongly limited computation model
compared to ordinary computer programs

A weak model (with many limitations) ...
| allows to do static analysis
e e.g. on termination (decidable for finite automata)

e which is not generally possible with a general computation
model

B is easy to implement in a general-purpose programming mode
e e.g. scanner generation/coding, parser generation/coding
e source code generation from UML statecharts

m Generally, we are interested in the weakest machine model
(automaton model) that is still able to recognize a class of

DA, Link=epings uriversitet, 2008 0002l ANGUAYES . 01 w1 206 .
TR TR
Finite Automaton / Finite State Machine k*;‘ Computation of a Finite Automaton k*;‘
m Given by quintuple (X, S, s,inS, subsetFof S, §) | |nitial configuration:
e current state := start state sO
drection of moving e read head points to first symbol of the input string
i?pulstfingx [al=[b]+]c]s] | ® 1 computation step:
“tape” .
string over reac L. et s o read next input symbol, t
alphabet = (current pos.) et S={s; Sy, .. ¢}
of a finite number of states e look up & for entry (current state, t, new state)
ﬁnit @ some of them may be to determine new state
(:ontrotlwe ‘sm@ accepting (final) states (F) e current state = new state
current | input new
state | symbol | state Transitions in § are tuples e move read head forward to next symbol on tape
read
A A A = ((current state, input symbol), o if all symbols consumed and new state is a final state:
o 1 Transition table (new state)) accept and halt
S, b S, 3 Given as entries in transition table X
) i, o otherwise repeat
. or as edges in a transition diagram
TDDUswr e, o, o sncaarer, v, LIU, 2008, 2, (directed graph) TDDD16/B44, P. Fritzson, C. Kessler, DA, LIU, 2008, ob4
IR IR
NFA and DFA k*;‘ DFA Example k*;‘
NFA (Nondeterministic Finite Automaton) B DFA with

B "empty moves” (reading €) with state change are possible,
i.e. entries (s; &, s) may existin &

B ambiguous state transitions are possible,
i.e. entries (s;, t, s) and (s;, t,) may existin &

NFA accepts input string if there exists a computation (i.e., a
sequence of state transitions) that leads to "accept and halt”

DFA (Deterministic Finite Automaton)
® No e-transitions, no ambiguous transitions (is a function)
B Special case of a NFA

TDDD16/B44, P. Fritzson, C. Kessler, IDA, LIU, 2008 2,

Alphabet £={0,1}
State set S={s,, s; }

N 0
initial state: s, 0
S0y S 9
©
e OB O
(s1,0,5y), 1
(s1:1,89) }

n recognizes (accepts) Computation for input string 10110:

strings containing an odd So read 1

number of 1s s, read0
s, read 1

s, read 1
s, read0
s, accept

TDDD16/B44, P. Fritzson, C. Kessler, IDA, LIU, 2008 2b.6

TR
From regular expression to code %;i:é
4 Steps:

m For each regular expression r there exists a NFA that accepts
L, [Thompson 1968 - see whiteboard]

B For each NFA there exists a DFA accepting the same
language

m For each DFA there exists a minimal DFA (min. #states) that
accepts the same language

® From a DFA, equivalent source code can be generated.
[->Lecture on Scanners]

TDDD16/844, P. Fritzson, C. Kessler, IDA, LIU, 2008, b

Theorem: For each regular expression r there #R4™
exists an NFA that accepts L, [Thompson 1968}2%.
Proof: By induction,

following the inductive construction of regular expressions

Divide-and-conquer strategy to construct NFA(r):
0. if ris trivial (base case): construct NFA(r) directly, else:
1. decompose r into its constituent subexpressions ry, r,...
2. recursively construct NFA(r,), NFA(r,), ...
3. compose these to NFA(r) according to decomposition of r

2 base cases: e

Case 1. r=e: NFA() =
with i = new start state, f = final state of NFA(r)
NFA(r) recognizes L(g) ={¢e}.

Case 2: r=aforainX: NFA(r) = a

TDDD16/B44, P. Fritzson, C. Kessler, IDA, LIU, 201

recognizes L(ag ={a}.

TR
(cont.) k*;‘

4 recursive decomposition cases:
Case 3: r=r,|r,; By Ind.-hyp. exist NFA(r,), NFA(r,)

NFA®r) =

recognizes L(r, | ;) =L(ry) U L(rp)
Case4: r=r,.r,; By Ind.-hyp. exist NFA(r;), NFA(r,)

NFA() =

recognizes L(r;.r,) =L(ry) . L(r,)

TDDD16/B44, P. Fritzson, C. Kessler, IDA, LIU, 2008 2.9

R
(cont.) k*;‘
Case5: r=r* By ind.-hyp. exists NFA(r,)

NFA(r) =

recognizes L(r;*) = (L(ry))*.
(similarly for r = r,*)

Case 6: Parentheses: r=(r;)
NFA(r) =

(no modifications).

The theorem follows by induction. J

TDDD16/B44, P. Fritzson, C. Kessler, IDA, LIU, 2008 2b.10

