
1

Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2008.

TDDD16 Compilers and Interpreters

TDDB44 Compiler Construction

LR Parsing, Part 2

Constructing Parse Tables

Parse table construction

Grammar conflict handling

Categories of LR Grammars and Parsers

2 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

An NFA Recognizing Viable Prefixes

A.k.a. the ”characteristic finite automaton” for a grammar G
States: LR(0) items (= context-free items) of extend. grammar
Input stream: The grammar symbols on the stack
Start state: [S’ → −|.S] Final state: [S’ → −|S.]
Transitions:

”move dot across symbol” if symbol found next on stack:
A → α.Bγ to A → αB.γ
A → α.bγ to A → αb.γ

ε-transitions to LR(0)-items for nonterminal productions
from items where the dot precedes that nonterminal:

A → α.Bγ to B →.β

(Example: see whiteboard)

118a

3 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Computing the Closure
For a set I of LR(0) items compute Closure(I):
1. Closure(I) := I
2. If ∃ [A→α.Bβ] in Closure(I)

and ∃ production B → γ
then add [B →.γ] to Closure(I) (if not already there)

3. Repeat Step 2 until no more items can be added to Closure(I).

Remarks:
For s=[A → α.Bγ], Closure(s) contains all NFA states reachable
from s via ε-transitions, i.e., starting from which any substring derivable
from Bβ could be recognized. A.k.a. ε-closure(s).
Then apply the well-known subset construction
to transform Closure-NFA -> DFA.
DFA states will be sets unioning closures of NFA states

118b

4 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Representing Sets of Items

Any item [A → α.β] can be represented by 2 integers:
production number
position of the dot within the RHS of that production

The resulting sets often contain ”closure” items (where the dot
is at the beginning of the RHS).

Can easily be reconstructed (on demand)
from other (”kernel”) items

Kernel items: start state [S’ → −|.S], plus all items
where the dot is not at the left end.

Store only kernel items explicitly, to save space

118c

5 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

GOTO Function and DFA States

Given: Set I of items, grammar symbol X

GOTO(I, X) := U [A→α.Xβ] in I Closure ({ [A → αX.β] })

To become the state transitions in the DFA

Now do the subset construction to obtain the DFA states:
C := Closure({ [S’ → −|.S] }) // C: Set of sets of NFA states

repeat
for each set of items I of C:

for each grammar symbol X
if (GOTO(I,X) is not empty and not in C)

add GOTO(I,X) to C
until no new states are added to C on a round

120a

6 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Resulting DFA
(Example: see whiteboard)

All states correspond to some viable prefix
Final states: contain at least one item with dot to the right

recognized some handle reduce may (must) follow
Other states: handle recognition incomplete -> shift will follow
The DFA is also called the GOTO graph
(not the same as the LR GOTO Table!!).

This automaton is deterministic as a FA (i.e., selecting
transitions considering only input symbol consumption)
but can still be nondeterministic as a pushdown automaton
(e.g., in state I1 above: to reduce or not to reduce?)

120b

2

7 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

From DFA to parser tables: ACTION
1. For each DFA transition Ii Ij reading a terminal a in Σ

(thus, Ii contains items of kind [X α.aβ])
enter S j (shift, new state Ij) in ACTION[i, a]

2. For each DFA final state Ii
(containing a complete item [X α.])

enter R x
(reduce, x = prod. rule number for X α)
in ACTION[i, t] ...

LR(0) parser: for all t in Σ (all entries in row i)
SLR(1) parser: for all t in LASLR(i,[X α.]) =
FOLLOW1(X)
LALR(1) parser: for all t in LALALR(i,[X α.]) (see
later)

ACTION table:

state |-- , a b

0 X X S4 S5
1 A S2 * *
2 X X S4 S5
3 R1 R1 * *
4 R3 R3 * *
5 R4 R4 * *
6 R2 R2 * *

8 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

From DFA to parser tables: GOTO Table

1. For each DFA transition Ii Ij reading nonterminal A
(i.e., Ii contains an item [X α.Aβ])

enter GOTO[i , A] = j

GOTO table:

state L E

0 1 6
1 * *
2 * 3
3 * *
4 * *
5 * *
6 * *

Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2008.

TDDD16 Compilers and Interpreters

TDDB44 Compiler Construction

Conflicts and Categories
of LR Grammars and Parsers

10 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Conflict Examples in LR Grammars

Shift – Reduce conflict:
E id + E (shift +)

| id (reduce id)

Reduce – Reduce conflict:
E id (reduce id)
Pcall id (reduce id)

(Shift – Accept conflict)
S’ L (accept)
L L , E (shift ,)

11 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Conflicts in LR Grammars
Observe conflicts in DFA (GOTO graph) kernels

or at the latest when filling the ACTION table.

Shift-Reduce conflict
A DFA accepting state has an outgoing transition,
i.e. contains items [X α.] and [Y β.Zγ] for some Z in NUΣ

Reduce-Reduce conflict
A DFA accepting state can reduce for multiple nonterminals,
i.e. contains at least 2 items [X α.] and [Y β.], X != Y

(Shift/Reduce-Accept conflict)
A DFA accepting state containing [S’ S.|--] contains
another item [X αS.] or [X αS.bβ]

Only for LR(0) grammars there are no conflicts.
12 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Handling Conflicts in LR Grammars
(Overview):

Use lookahead
if lucky, the LR(0) states + a few fixed lookahead sets are
sufficient to eliminate all conflicts in the LR(0)-DFA

SLR(1), LALR(1)
otherwise, use LR(1) items [X α.β, a] (a is look-ahead)
to build new, larger NFA/DFA

expensive (many items/states very large tables)
if still conflicts, may try again with k>1 even larger tables

Rewrite the grammar (factoring / expansion) and retry...
If nothing helps, re-design your language syntax

Some grammars are not LR(k) for any constant k
and cannot be made LR(k) by rewriting either

3

13 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Look-Ahead (LA) Sets

For a LR(0) item [X → α.β] in DFA-state Ii, define
lookahead set LA(Ii, [X → α.β]) (a subset of Σ)

For SLR(1), LALR(1) etc., the LA sets only differ for reduce items:

For SLR(1):
LASLR(Ii, [X → α.]) = { a in Σ: S’ =>* βXaγ } = FOLLOW1(X)
for all Ii with [X → α.] in Ii

depends on nonterminal X only, not on state Ii
For LALR(1):
LALALR(Ii, [X → α.]) = { a in Σ: S’ =>* βXaw and the

LR(0)-DFA started in I0 reaches Ii after reading βα }
usually a subset of FOLLOW1(X), i.e. of SLR LA set
d d t t I

14 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Made it simple:
Is my grammar SLR(1) ?

Construct the (LR(0)-item) characteristic NFA
and its equivalent DFA (= GOTO graph) as above.
Consider all conflicts in the DFA states:

Shift-Reduce:

Consider all pairs of conflicting items [X α.], [Y β.bγ]:
If b in FOLLOW1(X) for any of these not SLR(1).

Reduce-Reduce:

Consider all pairs of conflicting items [X α.], [Y β.]:
If FOLLOW1(X) intersects with FOLLOW1(Y) not SLR(1).
(Shift-Accept: similar to Shift-Reduce)

[X α.]
[Y β.bγ]
...

...b

[X α.]
[Y β.]
...

15 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Example: L-Values in C Language
L-values on left hand side of assignment.
Part of a C grammar:
1. S’ → S
2. S → L = R
3. | R
4. L → *R
5. | id
6. R → L
Avoids that R (for R-values) appears as LHS of assignments
But *R = ... is ok.

This grammar is LALR(1) but not SLR(1):

16 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Example (cont.)
LR(0) parser has a shift-reduce conflict in kernel of state I2:

I0 = { [S’ .S], [S .L=R], [S .R], [L .*R], [L .id], R .L] }
I1 = { [S’->S.] }
I2 = { [S->L.=R], [R->L.] }
I3 = { [S->R.] }
I4 = { [L->*.R], [R->.L], [L->.*R], [L->.id] }
I5 = { [L->id.] }
I6 = { [S->L=.R], [R->.L], [L->.*R], L->.id] }
I7 = { [L->*R.] }
I8 = { [R->L.] }
I9 = { [S->L=R.] }

FOLLOW1(R) = { |− , = } SLR(1) still shift-reduce conflict in I2
as = does not disambiguate

Shift = or reduce to R?

17 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Example (cont.)
I0 = { [S’->.S], [S->.L=R], [S->.R], [L->.*R], [L->.id], R->.L] }
I1 = { [S’->S.] }
I2 = { [S->L.=R], [R->L.] }
I3 = { [S->R.] }
I4 = { [L->*.R], [R->.L], [L->.*R], [L->.id] }
I5 = { [L->id.] }
I6 = { [S->L=.R], [R->.L], [L->.*R], L->.id] }
I7 = { [L->*R.] }
I8 = { [R->L.] }
I9 = { [S->L=R.] }

LALALR (I2, [R->L.]) = { |− } LALR(1) parser is conflict-free
as computation path I0...I2 does not really allow = following R.
= can only occur after R if ”*R” was encountered before.

18 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

LALR(1) Parser Construction
Method 1: (simple but not practical)
1. Construct the LR(1) items (see later). (If there is already a conflict, stop.)
2. Look for sets of LR(1) items that have the same kernel,

and merge them.
3. Construct the ACTION table as for LR(1).

If a conflict is detected, the grammar is not LALR(1).
4. Construct the GOTO function:

For each merged J = I1 U I2 U ... U Ir,
the kernels of GOTO(I1,X), ..., GOTO(Ir,X) are identical because the
kernels of I1,...,Ir are identical.
Set GOTO(J, X) := U { I: I has the same kernel as GOTO(I1,X) }

Method 2: (details see textbook)
1. Start from LR(0) items and construct kernels of DFA states I0, I1, ...
2. Compute lookahead sets by propagation along the GOTO(Ij,X) edges

(fixed point iteration).

4

19 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Solve Conflicts by Rewriting the Grammar

Eliminate Reduce-Reduce Conflict:
Factoring

Eliminate Shift-Reduce Conflict: (one token lookahead: ’(’)
Inline-Expansion

S (A) | (B)

A char | integer | ident

B float | double | ident

S (A) | (B) | (C)

A char | integer

B float | double

C ident

[A ident .]
[B ident .]
... factor

ident

S (A) | OptY (B)

OptY Y | ε

Y ...
A ...
B ...

[S . (A)]
[S . OptY (B)]
[OptY .Y]
[OptY .ε]
[OptY ε .]
[Y ...] ...

expand
OptY

S (A) | (B)
| Y (B)

Y ...
A ...
B ...

20 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

LR(k) Grammar - Formal Definition
Let G’ be the augmented grammar for G
(i.e., extended by new start symbol S’

and production rule S’ −> S |--)
G is called a LR(k) grammar if

S’ rm=>* αXw rm=> αβw and
S’ rm=>* γYx rm=> αβy and
w[1:k] = y[1:k]

imply that α = γ and X = Y and x = y = w.

Remark: w, x, y in Σ* α, β, γ in (N U Σ)* X, Y in N
Example: see whiteboard

i.e., considering at most k symbols after the handle,
in each rightmost derivation the handle can be localized

and the production to be applied can be determined.

p.116

21 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Some grammars are not LR(k) for any fixed k

Example: S a B c
B b B b

| b
describes language { a b2N+1 c : N >= 0 }

This grammar is not LR(k) for any fixed k.

Proof: As k is fixed (constant), consider for any n > k:
S =>* a bn B bn c => a bn b bn c
S =>* a bn+1 B bn+1 c => a bn+1 b bn+1 c

By the LR(k) definition,
α = a bn β = b w = bn c

1 β 1

The handle cannot be
localized with only limited

lookahead size k

22 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

No ambiguous grammar is LR(k) for any fixed k

S if E then S
| if E then S else S
| other statements

...
is ambiguous – the following statement has 2 parse trees:

if E1 then if E2 then S1 else S2

S

if E then S

elsethenif E SS

S1 S2E2

E1

S

if E then S else

thenif E

S

S

S1

S2

E2

E1

23 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

(cont.)

Consider situation
(configuration of shift-reduce parser)

--| ... if E then S else ... |--

Not clear whether to
shift else
(following production 2, i.e. if E then S is not handle), or
reduce handle if E then S to S (following production 1)

Any fixed-size lookahead (else and beyond) does not help!

Suggestion: Rewrite grammar to make it unambiguous

24 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Rewriting the grammar...
S MatchedS

| OpenS
MatchedS if E then MatchedS else MatchedS

| other statements
OpenS if E then S

| if E then MatchedS else OpenS
...

is no longer ambiguous

OpenS

if E then
S

elsethenif E Mat-SMat-S

S1 S2E2

E1

S

MatchedS

Impossible now to
derive any sentential
form containing an
OpenS nonterminal
from a MatchedS

5

25 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Some grammars are not LR(k) for any fixed k

Grammar with productions
S a S a | ε

is unambiguous but not LR(k) for any fixed k. (Why?)

An equivalent LR grammar for the same language is
S a a S | ε

26 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

LR(1) Items and LR(k) Items

LR(k) parser: Construction similar to LR(0) / SLR(1) parser,
but plan for distinguishing between states for k>0 tokens
lookahead already from the beginning

States in the LR(0) GOTO graph may be split up
LR(1) items:
[A->α.β , a] for all productions A->αβ and all a in Σ
Can be combined for lookahead symbols with equal behavior:
[A->α.β , a|b] or [A->α.β , L] for a subset L of Σ
Generalized to k>1:
[A->α.β , a1a2...ak]

Interpretation of [A->α.β , a] in a state:
If β not ε, ignore second component (as in LR(0))
If β=ε, i.e. [A->α. , a], reduce only if next input symbol = a.

27 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

LR(1) Parser

NFA start state is [S’->.S, |−]
Modify computation of Closure(I), GOTO(I,X) and the subset
computation for LR(1) items

Details see [ASU86, p.232] or [ALSU06, p.261]
Can have many more states than LR(0) parser

Which may help to resolve some conflicts

28 TDDD16/TDDB44 Compiler Construction, 2008P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Interesting to know...

For each LR(k) grammar with some constant k>1
there exists an equivalent* grammar G’ that is LR(1).

For any LL(k) grammar there exists an equivalent LR(k)
grammar (but not vice versa!)

e.g., language { an bn: n>0 } U { an cn: n > 0 }
has a LR(0) grammar
but no LL(k) grammar for any constant k.

Some grammars are LR(0) but not LL(k) for any k
e.g., S A b

A Aa | a (left recursion, could be rewritten)

* Two grammars are equivalent if they describe the same language.

