TDDD16 Compilers and Interpreters
TDDB44 Compiler Construction

J""”"a‘

LR Parsing, Part 2

Constructing Parse Tables

Parse table construction
Grammar conflict handling

Categories of LR Grammars and Parsers

Peter Fritzson, Christoph Kessler,
IDA, Linkdpings universitet, 2008,

ISR
An NFA Recognizing Viable Prefixes %:*é

o
A k.a. the "characteristic finite automaton” for a grammar G
States: LR(0) items (= context-free items) of extend. grammar
Input stream: The grammar symbols on the stack

Start state: [S'— —|.S] Final state: [S’ — —|S.]
Transitions:

e "move dot across symbol” if symbol found next on stack:
A—-aBy to A—oBy
A—oby to A—oby

o e-transitions to LR(0)-items for nonterminal productions

from items where the dot precedes that nonterminal:
A—-aBy to B-.J

1180 g 18c Sy
Computing the Closure %:ﬂ}-‘ Representing Sets of Items fﬂ:

For a set | of LR(0) items compute Closure(l):
1. Closure(l) = 1

2. If 3[A—0a.Bp] in Closure(l)
and 3 production B — vy
then add [B —.y] to Closure(l) (if not already there)

3. Repeat Step 2 until no more items can be added to Closure(l).

Remarks:

m For s=[A — 0.By], Closure(s) contains all NFA states reachable
from s via e-transitions, i.e., starting from which any substring derivable
from Bp could be recognized. A.k.a. e-closure(s).

® Then apply the well-known subset construction
to transform Closure-NFA -> DFA.

m DFA states will be sets unioning closures of NFA states

P_Fritzson, C. Kessler IDA, Link6pings universitet TDDD16/TDDBA4 Compiler Construction, 200

® Any item [A — o.f] can be represented by 2 integers:
e production number
e position of the dot within the RHS of that production

B The resulting sets often contain "closure” items (where the dot
is at the beginning of the RHS).

e Can easily be reconstructed (on demand)
from other ("kernel”) items

» Kernel items: start state [S' — —|.S], plus all items
where the dot is not at the left end.

e Store only kernel items explicitly, to save space

P_Fritzson, C. Kessler IDA, Link6pings universitet 4 TDDD16/TDDB44 Compiler Construction, 200

120a #7 '“\
GOTO Function and DFA States i*é

o

Ty

Given: Set | of items, grammar symbol X

m GOTO(1, X) = U a5 xgjin s Closure ({[A — oXB] })

e To become the state transitions in the DFA

® Now do the subset construction to obtain the DFA states:
C :=Closure({[S'— —|.S]})
repeat

/I C: Set of sets of NFA states

for each set of items | of C:
for each grammar symbol X
if (GOTO(I,X) is not empty and not in C)
add GOTO(I,X) to C

P_Fritzson G Kesdqr igkoplegs upiuessiges

b e TDDDI6TDPBA4 Compiler Construction, 200

Resulting DFA

m (Example: see whiteboard)

m All states correspond to some viable prefix
m Final states: contain at least one item with dot to the right
® recognized some handle > reduce may (must) follow
m Other states: handle recognition incomplete -> shift will follow

m The DFA is also called the GOTO graph
(not the same as the LR GOTO Table!!).

m This automaton is deterministic as a FA (i.e., selecting
transitions considering only input symbol consumption)
but can still be nondeterministic as a pushdown automaton
(e.g., in state |, above: to reduce or not to reduce?)

P_Fritzson, C. Kessler IDA, Link6pings universitet 6 TDDD16/TDDB44 Compiler Construction, 200

AL
From DFA to parser tables: ACTION %:i:é

1. For each DFA transition |; > I; reading a terminal ain X
ACTION table:

(thus, |, contains items of kind [X=> o.af])
e enter Sj (shift, new state |;) in ACTIC

2. For each DFA final state |;
(containing a complete item [X> o.])
e enter Rx

TR
From DFA to parser tables: GOTO Table %;i:é
1. For each DFA transition |, > |, reading nonterminal A
(i.e., I, contains anitem [X > o.AB])
e enter GOTO[i,A] = j

GOTO table:
(reduce, x = prod. rule number for X> o ele

in ACTION[i, t] ... stete | L E

0 1 6

» LR(0) parser: foralltin £ (all entries in row i) 1 o

» SLR(1) parser: for all tin LAg x(i,[X> o.]) = PO I

FOLLOW,(X) 1 o o

5 o o

» LALR(1) parser: for all tin LA 5 g(i,[X> o.]) (see B s
P rtzson. kessier D hB@E)os universier TODDL6TODBA4 Compiler Construction, 200 P. Fitzson, C Kessler. IDA, Linkopings universtet TODDL6TODBA4 Compiler Construction, 200
R
TDDD16 Compilers and Interpreters H . B E
1DDB44 Compter Comstrcton Conflict Examples in LR Grammars fﬂ:

m Shift — Reduce conflict:
eE>id+E (shift +)
| id (reduce id)

Conflicts and Categories
of LR Grammars and Parsers

m Reduce — Reduce conflict:

eE->id
Pcall > id

(reduce id)
(reduce id)

| (Shift — Accept conflict)

oS >L (accept)
L>L,E (shift ,)
Peter Fritzson, Christoph Kessler,
IDA, Linképings universitet, 2008. o Frizson, C. Kessler, DA Linkspings universiet " TDDD16/TDDBA4 Compiler Construction, 200
R R
Conflicts in LR Grammars k*;‘ Handling Conflicts in LR Grammars k*;‘
Observe conflicts in DFA (GOTO graph) kernels (Overview):

or at the latest when filling the ACTION table.

m Shift-Reduce conflict

o A DFA accepting state has an outgoing transition,
i.e. contains items [X->o.] and [Y->f.Zy] for some Z in NUX

m Reduce-Reduce conflict

e A DFA accepting state can reduce for multiple nonterminals|
i.e. contains at least 2 items [X>o.] and [Y>B.], X!=Y

B (Shift/Reduce-Accept conflict)

e A DFA accepting state containing [S’>S.|--] contains
another item [X>0S.] or [X>aS.bf]

Only for LR(0) grammars there are no conflicts.

TDDD16/TDDB44 Compiler Construction, 200

P_Fritzson, C. Kessler IDA, Link6pings universitet 1

m Use lookahead

e if lucky, the LR(0) states + a few fixed lookahead sets are
sufficient to eliminate all conflicts in the LR(0)-DFA

» SLR(1), LALR(1)

o otherwise, use LR(1) items [X->0o.B, a] (a is look-ahead)
to build new, larger NFA/DFA

» expensive (many items/states > very large tables)
o if still conflicts, may try again with k>1 - even larger tables
B Rewrite the grammar (factoring / expansion) and retry...
| |f nothing helps, re-design your language syntax

o Some grammars are not LR(k) for any constant k
and cannot be made LR(k) by rewriting either

TDDD16/TDDB44 Compiler Construction, 200

P_Fritzson, C. Kessler IDA, Link6pings universitet 12

B Made it simple: SR
Look-Ahead (LA) Sets fi:, Is my grammar SLR(1) ? x*..»

® For a LR(0) item [X — o.p] in DFA-state I, define
lookahead set LA(I;, [X— o.f]) (asubsetofX)

For SLR(1), LALR(1) etc., the LA sets only differ for reduce items

m For SLR(1):
LAgr(I, [X—a.])={ainZ: S =>"pXay}=FOLLOW,(X)
for all I; with [X — a.]in [;
o depends on nonterminal X only, not on state |;

m For LALR(1):

LA ARl X—a])={ain X S =>"pXaw and the
LR(0)-DFA started in I, reaches |; after reading o }

e usually a subset of FOLLOW,(X), i.e. of SLR LA set
13

m Construct the (LR(0)-item) characteristic NFA
and its equivalent DFA (= GOTO graph) as above.

m Consider all conflicts in the DFA states:
e Shift-Reduce:

Consider all pairs of conflicting items [X->o.], [Y>B.byl:
If bin FOLLOW,(X) for any of these =» not SLR(1).

e Reduce-Reduce:

Consider all pairs of conflicting items [X->a.], [Y=>B.]:
If FOLLOW,(X) intersects with FOLLOW,(Y) = not SLR(1)

o (Shift-Accept: similar to Shift-Reduce)

. fﬂ \, 5"‘# \,
Example: L-Values in C Language Be o Example (cont.) Be o
i s

B |-values on left hand side of assignment.
Part of a C grammar:

1. 8 —>8
2. S—»L=R
3. | R
4. L—->*R
5 | id
6. R—>L

® Avoids that R (for R-values) appears as LHS of assignments
m But*R=...is ok.

B This grammar is LALR(1) but not SLR(1):

LR(0) parser has a shift-reduce conflict in kernel of state I,:

B, = {[S'>.S], [S>.L=R], [S>.R], [L>*R], [L>.id], R>.L]}
=1, = {[S->S])

"l = {IS>LARL R>LT i orreaueor?
w1, = {[S>R]}

B, = {[L>*R], [R>.L], [L->*R], [L->.id]}

m |y = {[L->id]}

Bl = {[S->L=R], [R->L], [L->*R], L->.id]}

== {[L>*R]}

m = {[R>L])

m |, = {[S->L=R]}

FOLLOW,(R)={|-,=} => SLR(1) still shift-reduce conflictin I,

as = does not disambiguate

P Fritzson, C. Kessler, IDA, Linkopings universitet. 1 TDDD16/TDDB44 Compiler Construction, 200 P Fritzson, C. Kessler, IDA, Linkopings universitet. 16 TDDD16/TDDB44 Compiler Construction, 200
L R
Example (cont.) E LALR(1) Parser Construction k*;‘
m = >, > L= ->. > % > > -
lo { [§ 8], [S->.L=R], [S->.R], [L Rl [L->.id], R->L] Method 1: (simple but not practical)
=l = {[S->S]} 1. Construct the LR(1) items (see later). (If there is already a conflict, stop.)
||, = {[S>L=R], [R->L.]} 2. Look for sets of LR(1) items that have the same kernel,
m 1, = {[S>R]} and merge them.
m |, = {[L>*R], [R>.L], [L->*R], [L->.id]} 3. Construct the ACTION table as for LR(1).
_ X If a conflict is detected, the grammar is not LALR(1).
=l = {[L->id]} 4. Construct the GOTO function:
m g = {[S>L=R], [R->.L], [L->*R], L->.id]} For each merged J =1, U1, U ... U],
= X the kernels of GOTO(l,,X), ..., GOTO(I,,X) are identical because the
;= (LR t (1)
ernels of I,,...,I, are identical.
mlg = {[R>L]} Set GOTO(J, X) := U {I: I has the same kemel as GOTO(I,.X) }
||y = {[S->L=R]} Method 2: (details see textbook)

LA AR (1, [R->L])={|-} = LALR(1) parser is conflict-free

as computation path |,...1, does not really allow = following R.
= can only occur after R if "*R” was encountered before.

P_Fritzson, C. Kessler IDA, Link6pings universitet 17 TDDD16/TDDB44 Compiler Construction, 200

1. Start from LR(0) items and construct kernels of DFA states |y, I, ...

2. Compute lookahead sets by propagation along the GOTO(I;,X) edges
(fixed point iteration).

P_Fritzson, C. Kessler IDA, Link6pings universitet 18 TDDD16/TDDB44 Compiler Construction, 200

R
Solve Conflicts by Rewriting the Gramma‘(i:;

®m Eliminate Reduce-Reduce Conflict:
Factoring

S>(A)1(B) A dont] S>(A)1(B)1(C)

[B > ident .]+ A > char | integer
f‘aclor
ident /B - float | double

C - ident

A - char | integer | ident
B - float | double | ident

m Eliminate Shift-Reduce Conflict:

Inline-Expansion
S>(A) | OptY (B)

(one token lookahead: (")

p.116

LR(k) Grammar - Formal Definition

m Let G’ be the augmented grammar for G
(i.e., extended by new start symbol S’
and production rule S’ —> S |--)

B Giscalled a LR(k) grammar if
oS . =>" aXw => afw and
oS = YYX ,=> ofy and
o w[1:K] = y[1:K]
imply that o=y and X=Y and x=y=w.

i.e., considering at most k symbols after the handle,
[S>.(A)]) S>(A)1(B) in each rightmost derivation the handle can be localized
OptY > Y |e [S > .OptY (B)] | Y(B) and the production to be applied can be determined.
[OptY > .Y] expand
VD o [OptY >] G . . .
A> . [OptY > ¢ .] é:)) Remark: w, x, yinZ* o, B,y in(NUX)* X,YinN
B> ..)
Y->.. Example: see whiteboard
P_Fritzson, C. Kessler, IDA, Link6pings universitet TDDD16/TDDB44 Compiler Construction, 200¢ P. Fritzson, C. Kessler, IDA, Link5pings universitet. 0 TDDD16/TDDB44 Compiler Construction, 200¢
AL TR
Some grammars are not LR(k) for any fixed k %:*}-‘ No ambiguous grammar is LR(k) for any fixed k%:*}-‘
m Example: S > aBec mS > if E then S
B > bBb | if E then S else S
| b | other statements

e describes language {ab?N*'c: N>=0}
®m This grammar is not LR(k) for any fixed k.

Proof: As k is fixed (constant), consider for any n > k:
oS =>* ab"Bb"c => ab"bb"c
The handle cannot be
oS =>* ab™Bb™' c => ab™ bb localized with only limited
lookahead size k
By the LR(k) definition, coxaneacse

eo=ab" B=b

P Fritzson, C. Kessler, IDA, Link6pings universitet

w=b"c
21

TDDD16/TDDB44 Compiler Construction, 200

is ambiguous — the following statement has 2 parse trees:
if E1 then if E2 then S1 else S2

A AN A AN
A\

£

P Fritzson, C. Kessler, IDA, Linkspings universitet 22

TDDD16/TDDB44 Compiler Construction, 200

R
(cont.) %:g:é

m Consider situation
(configuration of shift-reduce parser)

-~| ... if E then S else ... |-

® Not clear whether to

o shift else
(following production 2, i.e. if E then S is not handle), or

e reduce handle if E then S to S (following production 1)

m Any fixed-size lookahead (else and beyond) does not help!

B Suggestion: Rewrite grammar to make it unambiguous

Rewriting the grammar...

S > MatchedS
| OpenS

MatchedS > if E then MatchedS else MatchedS
| other statements

OpenS > if E then S
| if E then MatchedS else OpenS

is no longer ambiguous

IS form containing an

OpenS nonterminal
Opens] from a MatchedS
if E then |

MatchedS

if E thenMat-S else Mat-S

P_Fritzson, C. Kessler IDA, Link6pings universitet > TDDD16/TDDB44 Compiler Construction, 200

£

e = 4

Impossible now to
derive any sentential

TDDD16/TDDB44 Compiler Construction, 200

TR TR
Some grammars are not LR(k) for any fixed k :{i}" LR(1) Items and LR(k) Items :*é

® Grammar with productions LR(k) parser: Construction similar to LR(0) / SLR(1) parser,
p but plan for distinguishing between states for k>0 tokens
S>aSa | ¢ lookahead already from the beginning

is unambiguous but not LR(k) for any fixed k. (Why?) e States in the LR(0) GOTO graph may be split up
B LR(1) items:
® An equivalent LR grammar for the same language is [A->o.p , a]for all productions A->of and allain X
S>aaS | ¢ ® Can be combined for lookahead symbols with equal behavior:

[A->0.p,alb]or[A->0.p,L] forasubsetL ofX
m Generalized to k>1:
[A->a.B, a;a,...8]

Interpretation of [A->a., a]in a state:

| If B not g, ignore second component (as in LR(0))

b uson & e oA Lnkngs s . . B B=e ie, [A->0.,a] reduge only if nextinput.symbol.= a. ..
IR R
LR(1) Parser k*;‘ Interesting to know... k*;‘
m NFA start stateis [S'->.S, |-] ® For each LR(k) grammar with some constant k>1
m Modify computation of Closure(l), GOTO(I,X) and the subset there exists an equivalent” grammar G’ that is LR(1).

computation for LR(1) items
o Details see [ASU86, p.232] or [ALSUO06, p.261]
m Can have many more states than LR(0) parser

m For any LL(k) grammar there exists an equivalent LR(K)
grammar (but not vice versal)

e eg., language {a"bmn>0}U{a"c:n>0}
e Which may help to resolve some conflicts has a LR(0) grammar
but no LL(k) grammar for any constant k.

B Some grammars are LR(0) but not LL(k) for any k

eeg,S>Ab
A>Aa | a (left recursion, could be rewritten)

* Two grammars are equivalent if they describe the same language.

P Fritzson, C. Kessler, IDA, Linkopings universitet. 27 TDDD16/TDDB44 Compiler Construction, 200 P Fritzson, C. Kessler, IDA, Linkopings universitet. 28 TDDD16/TDDB44 Compiler Construction, 200

