TDDD16 Compilers and interpreters f«‘ ““",
TDDB44 Compiler Construction f

LL Parsing Issues
Beyond Recursive Descent

LL(k)

LL items

Finite pushdown automaton
FIRST and FOLLOW
Table-driven Predictive Parser

Peter Fritzson, Christoph Kessler,
IDA, LinkBpings universitet, 2008.

o\
v

LL(K) ,L*

| Given:

e Context-free grammarG=(N, X, P, S)
e Integerk >0

B Gis (in) LL(Kk) if:
for any two leftmost derivations
® S=>", uYo =>uPo =>" ux and
® S=>" uYo =>uyo =>"uy

itholds B=Yy.

m That is, for fixed left context u, the choice for the "right”
production to apply to Y is uniquely determined
by the next k input tokens.

TDDD16/B44, P Fritzson, C. Kessler, IDA, LIU, 2008, ch

Example

® The following grammar is LL(1)
(terminals are bold-face):

S->if ident then S else S fi
| while ident do S od
| begin S end
| ident :=ident

TDDD16/B44, P Fritzson, C. Kessler, IDA, LIU, 2008 b

Automaton Model
for Parsing Context-Free Languages

Finite pushdown automaton (FPA)
| a finite automaton with a stack of states

—
input "tape” |a[:=|b|+|c|$| |

stream of tokens

read-yol
head

Grammar Gis LL(1) =>
there exists a finite pushdown
automaton recognizing L(G)
where § is a function (i.e., a

deterministic pushdown
automaton)

control

push state (55

op state " i
pop Transition table Transitions in § are tuples
3

stack of

((current state, input symbol,
top stack element),
(new state,
read action, stack action))

Stack-Bottom
o e

Context-Free Iltems

Given CFG G, construct states of the finite pushdown automaton:
® Add new start symbol S' with S'—>S $
® For each production A -> o,...04 e.g.A->aBc

create k+1 context-free items (= states)

e e.g., [A->.aBc], [A->a.Bc], [A->aB.c], [A->aBc.]

m Construct a predictive parser as finite pushdown automaton:
e start in state [S'->.S $] with empty stack (#)
o halt and accept in state [S'->S $.] with empty stack (#)
e at [A->a.by]: read input symbol, i.e., [A->a.by] —> [A->ab.y]
e at [A->a.By]: push [A->aB.y],

determine new production B->f
and start from [B->.f]

e at[B->B.]: pop state [A->0B.y] to restore context (if #, error)

TDDD16/B44, P Fritzson, C. Kessler, IDA, LIU, 2008 b

TR
Example Be o

® Grammar with productions { S—>aSb |c }
B Add new start symbol S {S’->S; S->aSb; S->c}
m Transition diagram (showing stack actions below arrows):

push [S->S.] @) @
TNy

(g, stack nonempty)

pop
Arrows for erroneous transitions not shown.

plish [S->S]

push [S->aS.b]

(e*) inisti |
BUSh [5535] To be made deterministic by lookahead!
()

(e, stack nonempty)
—_
pop

TDDD16/B44, P Fritzson, C. Kessler, IDA, LIU, 2008 b6

iR
FIRST and FOLLOW ey

m For a sentential form o in (N u S)*,
FIRST(o) denotes the set of all terminals
with which a string derived from o may begin.

® For a nonterminal Ain N,
FOLLOW(A) denotes the set of all terminals
that could appear in a sentential form immediately after A,
i.e., there exists S =>*aAaP for arbitrary o, B

R
Computing FIRST = FIRST, £

For all grammar symbols X:

m |f Xis aterminal, then FIRST(X) ={X}.

m If X > ¢ is aproduction, then add & to FIRST(X).

m |f Xis a nonterminal and X > Y, Y, ... Y, is a production,

e then place all those a of £ in FIRST(X) where
for some i, aisin FIRST(Y)
and e is in all of FIRST(Y,), ..., FIRST(Y,,)
(thatis, Yy, ..., Y, all may derive ¢).
e Ifeisin FIRST(Y) forall j=1,2,...q
then add ¢ to FIRST(X).

more terminal
or e can be
added to an;

For the example grammar

S'->S; S->aSh; S->c ?\
FIRST(a) = {a}, FIRST(b) = {b}, Yy g

For any string X, X, ... X, of grammar symbols:
B Add to FIRST(X, X, ... X;,) all non-g symbols of FIRST(X,).

m |fein FIRST(X1), add also all non-e symbols of FIRST(X,),
otherwise done.

m [fealso in FIRST(X,), add also all non-e¢ symbols of FIRST(X,),
otherwise done.

m [fealsoin FIRST(X,), add € to FIRST(X; X, ... X;,)

For the example grammar
S'->S; S->aSh; S->c

FIRST(abc) = {a}
FIRST(Sh) = FIRST(S) = {a,c}

TDDD16/B44, P Fritzson, C. Kessler, IDA, LIU, 2008 b9

FIRST(c) = {c}
1
FIRST(S') = FIRST(S)
b0t Frsen . Kessier 1o L2000 .. { in FIRST,(A) 1o FIRST(S) = {a, ¢ } !]
IR IR
Computing FIRST (cont.) fﬂ: Computing FOLLOW fﬂ:

Compute FOLLOW(B) for each nonterminal B:
B Add $ to FOLLOW(S)
m |f there is a production A —>* aBB for arbitrary a, B
then add all of FIRST(p) except ¢ to FOLLOW(B)
any FOLLOY

m [f there is a production A —> aB, set.
or a production A — oBf3 where € in FIRST(p), i.e. B =>*¢
then add all of FOLLOW(A) to FOLLOW(B).

S

A

For the example grammar B
S->aSh; S->c

FOLLOW(S) = {8, b} —

. [nERSTE @

TDDD16/B44, P Fritzson, C. Kessler, IDA, LIU, 2008

Example Cont.: Finite Pushdown Automaton #gg*
(FPA) Made Deterministic :x*;"

B Grammar with productions { S—>aSb |c }
m Added new start symbol S": {S’'->S$; S->aSb; S->c}

push [S->S.]

a2 o) G-

push [S->aS.b] Disambiguated:
FIRST,(aSh) = {a}
FIRST,(c) ={c}
(g, not #)
pop

see ¢, read £
push [S->aS.b]

()]

TDDD16/B44, P Fritzson, C. Kessler, IDA, LIU, 2008 5h11

AL
Example (cont.): Transition table (k=1) fﬂ:
state final |lookahead lookahead lookahead lookahead
? a b c $
[S->.S $] [no push [S->S.8]; | [Error] push [S->S.8]; | [Error]
[S->.aSh] [S->.c]
[S->S.$] |no [Error] [Error] [Error] read $;
[S->S $.]
[S->S $] |yes
[S->.aSb] | no read a; [Error] [Error] [Error]
[S->a.Sh]
[S->a.Sb] | no push [S->aS.b]; | [Error] push [S->aS.b]; | [Error]
[S->.aSh] [S->.c]
[S->aS.b] | no [Error] read b; [Error] [Error]
[S->aSh.]
[S->aSb.] | no [Error] pop state [Error] pop state
[S->.c] no [Error] [Error] read c; [Error]
[s->c]
[S->c.] no [Error] pop state [Error] pop state

TODDIGIB44, P Friizson, C_Kessler, DA, LU, 2005 Sh.12

General Approach: Predictive Parsing

At any production A -> o
B If gis notin FIRST(ar)):

e Parser expands by production A -> o
if current lookahead input symbol is in FIRST(o).

m otherwise (i.e., € in FIRST(o)):

e Expand by production A -> o
if current lookahead symbol is in FOLLOW(A)
orifitis$and $is in FOLLOW(A).

Use these rules to fill the transition table.
(pseudocode: see [ASU86] p. 190, [ALSUO6] p. 224)

TDDD16/B44, P Fritzson, C. Kessler, IDA, LIU, 2008, cp 1.

Summary: Parsing LL(k) Languages

m Predictive LL parser
o iterative, based on finite pushdown automaton
o transition-table-driven
e can be generated automatically
® Recursive-descent parser
® recursive
e manually coded
o easier to fix intermediate code generation, error handling

m Both require lookahead (or backtracking)
to predict the next production to apply

® Removes nondeterminism
e Necessary checks derived from FIRST and FOLLOW sets
e FIRST and FOLLOW are also useful for syntax error recovery

TDDD16/B44, P Fritzson, C. Kessler, IDA, LIU, 2008, b 14

Homework

® Now, read again the part on recursive descent parsers
and find the equivalent of

e Context-free items (Pushdown automaton (PDA) states)
e The stack of states

e Pushing a state to stack

e Popping a state from stack

o Start state, final state

in a recursive descent parser.

TDDD16/B44, P Fritzson, C. Kessler, IDA, LIU, 2008 S5p 1.

