
1

Christoph Kessler, IDA,
Linköpings universitet, 2007.

TDDB29 Compilers and Interpreters (opt.)

TDDB44 Compiler Construction

Code Generation
for RISC and Instruction-Level Parallel

Processors

RISC/ILP Processor Architecture Issues

Instruction Scheduling

Register Allocation

Phase Ordering Problems

Integrated Code Generation Christoph Kessler, IDA,
Linköpings universitet, 2007.

TDDB29 Compilers and Interpreters (opt.)

TDDB44 Compiler Construction

1. RISC and Instruction-Level
Parallel Target Architectures

3 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

CISC vs. RISC

CISC

Complex Instruction Set Computer

Memory operands for arithmetic and
logical operations possible

M(r1+r2) M(r1+r2) * M(r3+disp)

Many instructions

Complex instructions

Few registers, not symmetric

Variable instruction size

Instruction decoding (often done in
microcode) takes much silicon
overhead

Example: 80x86, 680x0

RISC

Reduced Instruction Set Computer

Arithmetic/logical operations only on
registers

add r1, r2, r1
load r1, r4
load r3+disp, r5
mul r4, r5
store r5, r1

Few, simple instructions

Many registers, all general-purpose
typ. 32 ... 256

Fixed instruction size and format

Instruction decoding hardwired

Example: POWER, HP-PA RISC,
MIPS, ARM, SPARC

4 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Instruction-Level Parallel (ILP) architectures

Single-Issue: (can start at most one instruction per clock cycle)

Simple, pipelined RISC processors
with one or multiple functional units

e.g. ARM9E, DLX

Multiple-Issue: (can start several instructions per clock cycle)

Superscalar processors
e.g. Sun SPARC, MIPS R10K, Alpha 21264, IBM Power2, Pentium

VLIW processors
e.g. Multiflow Trace, Cydrome Cydra-5, Intel i860,

HP Lx, Transmeta Crusoe;
most DSPs, e.g. Philips Trimedia TM32, TI ‘C6x

EPIC processors
e.g. Intel Itanium family (IA-64)

5 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Pipelined RISC Architectures

A single instruction is issued per clock cycle

Possibly several parallel functional units / resources

Execution of different phases of subsequent instructions overlaps in time.
This makes them prone to:

data hazards (may have to delay op until operands ready),

control hazards (may need to flush pipeline after wrongly predicted branch),

structural hazards (required resource(s) must not be occupied)

Static scheduling (insert NOPs to avoid hazards)
vs. Run-time treatment by pipeline stalling

IF
ID
EX

MEM/EX2
WB

6 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Reservation Table, Scheduling Hazards

Reservation table
specifies required resource
occupations

[Davidson 1975]

2

7 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Superscalar processor

Run-time scheduling by instruction dispatcher
convenient (sequential instruction stream – as usual)

limited look-ahead buffer to analyze dependences, reorder instr.

high silicon overhead, high energy consumption

Example: Motorola MC 88110
2-way, in-order issue
superscalar

8 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

VLIW (Very Long Instruction Word) architectures

Multiple slots for instructions in long instruction-word
Direct control of functional units and resources – low decoding OH

Compiler (or assembler-level programmer)
must determine the schedule statically

independence, unit availability, packing into long instruction words

Challenging! But the compiler has more information on the program
than an on-line scheduler with a limited lookahead window.

Silicon- and
energy-efficient

9 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

EPIC architectures

Based on VLIW

Compiler groups instructions to LIW’s (bundles)

Compiler takes care of resource and latency constraints

Compiler marks sequences of independent instructions

Dynamic scheduler assigns resources and reloads new
bundles as required

Christoph Kessler, IDA,
Linköpings universitet, 2007.

TDDB29 Compilers and Interpreters (opt.)

TDDB44 Compiler Construction

2. Instruction Scheduling

11 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Instruction Scheduling (1)

Map instructions to time slots on issue units (and resources),
such that no hazards occur

Global reservation table, resource usage map

12 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Instruction Scheduling (2)

Data dependences imply latency constraints
target-level data flow graph / data dependence graph

latency(mul) = 6 add

mul 6

6

3

13 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Instruction Scheduling

Generic Resource model

Reservation table

Local Scheduling
(f. Basic blocks / DAGs)

Data dependences
Topological sorting

List Scheduling
(diverse heuristics)

Global Scheduling

Trace scheduling, Region scheduling, ...

Cyclic scheduling (Software pipelining)

There exist retargetable schedulers
and scheduler generators, e.g. for GCC since 2003

14 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Example: Topological Sorting (0)

d

a b c

e

Not yet considered

Data ready (zero-indegree set)

Already scheduled, still alive

Already scheduled, no longer referenced

15 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Example: Topological Sorting (1)

d

a b c

e

Not yet considered

Data ready (zero-indegree set)

Already scheduled, still alive

Already scheduled, no longer referenced

a

16 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Example: Topological Sorting (2)

d

a b c

e

Not yet considered

Data ready (zero-indegree set)

Already scheduled, still alive

Already scheduled, no longer referenced

ba

17 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Example: Topological Sorting (3)

d

a b c

e

Not yet considered

Data ready (zero-indegree set)

Already scheduled, still alive

Already scheduled, no longer referenced

da b

18 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Example: Topological Sorting (4)

d

a b c

f

e

Not yet considered

Data ready (zero-indegree set)

Already scheduled, still alive

Already scheduled, no longer referenced

and so on...a b d

4

19 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Topological Sorting and Scheduling

Construct schedule incrementally
in topological (= causal) order

”Appending” instructions to partial code sequence:
close up in target schedule reservation table
(as in ”Tetris”)

Idea: Find optimal target-schedule by enumerating
all topological sortings ...

Beware of scheduling anomalies
with complex reservation tables!

[K. / Bednarski / Eriksson 2007]

20 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Software Pipelining of Loops (1)

21 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Software Pipelining of Loops (2)

More about Software Pipelining in TDDC86
Compiler Optimizations and Code Generation

22 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Software Pipelining of Loops (3)
Modulo Scheduling

Christoph Kessler, IDA,
Linköpings universitet, 2007.

TDDB29 Compilers and Interpreters (opt.)

TDDB44 Compiler Construction

3. Register Allocation

24 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Register Allocation

Register Allocation: Determines values (variables, temporaries,
constants) to be kept when in registers
Register Assignment: Determine in which physical register such a value
should reside.

Essential for Load-Store Architectures
Reduce memory traffic (memory / cache latency, energy)
Limited resource
Values that are alive simultaneously cannot be kept in the same register
Strong interdependence with instruction scheduling

scheduling determines live ranges
spill code needs to be scheduled

Local register allocation (for a single basic block) can be done in linear
time (see function getreg() above).
Global register allocation (with minimal spill code) is NP-complete.
Can be modeled as a graph coloring problem [Ershov’62] [Cocke’71].

5

25 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Local Register Allocation

26 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Live range

(Here, variable = program variable or temporary)

A variable is being defined at a program point if it is written
(given a value) there.

A variable is used at a program point if it is read (referenced
in an expression) there.

A variable is alive at a point if it is referenced there or at some
following point that has not (may not have) been preceded by
any definition.

A variable is reaching a point if an (arbitrary) definition of it,
or usage (because a variable can be used before it is defined)
reaches the point.

A variable’s live range is the area of code (set of instructions)
where the variable is both alive and reaching.

does not need to be consecutive in program text.

27 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Register Allocation for Loops

Example:

x3 = 7

for i = 1 to 100 {

x1 = x3 + 2

x2 = x1 + x3

x3 = x2 + x1

}

y = x3 + 42

x3 = 7

i = 1

i <= 100

x1 = x3 + 2

x2 = x1 + x3

x3 = x2 + x1

i = i + 1

y = x3 + 42

Control flow graph

FT

i x2x1 x3

Live ranges (loop only):
cyclic intervals
e.g. for i: [0, 6), [6, 7)

At most 3 values alive at a time
3 registers sufficient?

All variables
interfere with
each other –
need 4 regs?

28 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Register Allocation by Graph Coloring

Step 1: Given a program with symbolic registers s1, s2, ...

Determine live ranges of all variables

29 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Register Allocation by Graph Coloring

Step 2: Build the Register Interference Graph

Undirected edge connects two symbolic registers (si, sj)
if live ranges of si and sj overlap in time

Reserved registers (e.g. fp) interfere with all si

symbolic registers
physical
registers

30 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Step 3: Color the register interference graph with k colors,
where k = #available registers.

If not possible: pick a victim si to spill, generate spill code
(store after def., reload before use)

This may remove some interferences.
Rebuild the register interference graph + repeat Step 3...

This register interference graph cannot be colored
with less than 4 colors, as it contains a 4-clique

6

31 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Coloring a graph with k colors

NP-complete for k > 3

Chromatic number γ(G) = minimum number of colors to color a graph G

γ(G) >= c if the graph contains a c-clique

A c-clique is a completely connected subgraph of c nodes

Chaitin’s heuristic (1981):

S { s1, s2, ... } // set of spill candidates
while (S not empty)

choose some s in S.
if s has less than k neighbors in the graph

then // there will be some color left for s:
delete s (and incident edges) from the graph

else modify the graph (spill, split, coalesce ... nodes)
and restart.

// once we arrive here, the graph is empty:
color the nodes greedily in reverse order of removal.

32 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Live range splitting

Instead of spilling completely (reload before each use),
it may be sufficient to split a live range at one position
where register pressure is highest

save, and reload once

store

load

33 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Live range coalescing

For a copy instruction sj si

where si and sj do not interfere

and si and sj are not rewritten after the copy operation

Merge si and sj:

patch (rename) all occurrences of si to sj

update the register interference graph

and remove the copy operation.

s2 ...
...
s3 s2
...
... s3 ...

s3 ...
...
s3 s3
...
... s3 ...

34 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Chaitin’s Register Allocator (1981)

Christoph Kessler, IDA,
Linköpings universitet, 2007.

TDDB29 Compilers and Interpreters (opt.)

TDDB44 Compiler Construction

4. Phase Ordering Problems
and Integrated Code Generation

36 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Phase ordering problems

IR

target
code

Instruction
selection

Instruction scheduling
Register
allocation

gcc,
lcc

7

37 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Phase ordering problems (1)

Instruction scheduling vs. register allocation

(a) Scheduling first:
determines Live-Ranges

Register need,
possibly spill-code to be
inserted afterwards

(b) Register allocation first:
Reuse of same register by different
values introduces ”artificial”
data dependences

constrains scheduler

38 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Phase ordering problems (2)
Conflicts Instruction selection Scheduling / Reg. alloc.

Selection first: Cost attribute of a pattern covering rule
is only a coarse estimate of the real cost
(effect on e.g. overall time)

Real cost based on

currently free functional units

other instructions ready to execute simultaneously

pending latencies of already issued but unfinished
instructions

Integration with instruction scheduling desirable

Mutations with different resource requirements

a = 2 * b or a = b << 1 or a = b + b ?

Different instructions with different register need

39 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Clustered VLIW processor

E.g., TI C62x, C64x DSP processors

Register classes

Parallel execution constrained by operand residence

u v

Register File A Register File B

Unit A1 Unit B1

u

add.A1 u, v add.B1 u, v

Data bus

+

u v

40 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

More phase ordering problems

In parallel e.g.: load on A || load on B || move A B

Mapping instructions cluster

should preferably know already beforehand about free
move-slots in schedule...

Instruction scheduling

must know mapping to generate moves where needed

Heuristic [Leupers’00]

iterative optimization by simulated annealing

TI ’C62x family
clustered VLIW DSP processor

41 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

5. Integrated Code generation

IR

Target
code

Instruktion
selection

Instruction scheduling
Register
allocation

42 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Integrated Code Generation
Related Work

Heuristic Phase Interleaving
[Goodman/Hsu ’88], [Leupers’00], ...

Combination of 2 phases

Instruktion selection and register allocation

DP for space optimization, e.g. [Aho/Johnsson ’77]

DP for space- or time optimization, e.g. [Fraser et al.’92]

Instruction scheduling and register allocation

ILP e.g. [Kästner’00]

Combination of 3 phases

ILP [Wilson et al.’94]

only for simple, non-pipelined RISC processor

8

43 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Results (2) – DP

Clustered 8-issue VLIW processor TI C6201

Leupers’
example

INDIR INDIRINDIR INDIR INDIRINDIRINDIR INDIR

44 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Results (4) – Optimal integrated code
generation, OPTIMIST – DP algorithm

Single-issue vs. Single-cluster vs. Double-cluster Architecture

45 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Our project: OPTIMIST

Retargetable integrated code
generator

Open Source:

www.ida.liu.se/~chrke/optimist

x

x

46 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Processor specification language xADML
<architecture omega="8">
<registers> ... </registers>
<residenceclasses> ... </residenceclasses>
<funits> ... </funits>
<patterns> ... </patterns>
<instruction_set>
<instruction id="ADDP4" op="4407">

<target id="ADD .L1" op0="A" op1="A" op2="A" use_fu="L1"/>
<target id="ADD .L2" op0="B" op1="B" op2="B" use_fu="L2"/>
...

</instruction>
...
<transfer>

<target id="MOVE" op0=“A" op1=“B">
<use_fu="X2"/>
<use_fu="L1"/>

</target>
...

</transfer>
</instruction_set>

</architecture>

Specify reservation
tables by

<cycle_matrix>
...
</cycle_matrix> XXt

XXt+1

Xt+2

X2L2L1OPx

+

47 TDDB44: Code Generation for RISC and ILP ProcessorsC. Kessler, IDA, Linköpings universitet.

Project Literature (Selection)

Christoph Kessler, Andrzej Bednarski:
Optimal integrated code generation for VLIW architectures.
Concurrency and Computation: Practice and Experience 18: 1353-1390,
2006.

Andrzej Bednarski, Christoph Kessler:
Optimal Integrated VLIW Code Generation with Integer Linear
Programming.
Proc. Euro-Par 2006 conference, Springer LNCS 4128, pp. 461-472, Aug.
2006.

Andrzej Bednarski:
Optimal Integrated Code Generation for Digital Signal Processors.
PhD thesis, Linköping university - Institute of Technology, Linköping,
Sweden, June 2006.

Christoph Kessler, Andrzej Bednarski, Mattias Eriksson:
Classification and generation of schedules for VLIW processors.
Concurrency and Computation: Practice and Experience 19: 2369-2389,
2007.

www.ida.liu.se/~chrke/optimist

