
1

Christoph Kessler, IDA,
Linköpings universitet, 2007.

TDDB29 Compilers and Interpreters

TDDB44 Compiler Construction

Intermediate Code Optimization

2 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Code optimization – overview

Source
code

Intermediate
program

representation
(IR)

Source-to-source
compiler/optimizer

Front
End

IR-level
optimizations

target-level
optimizations

Back-
End

Target-level
representation

Emit
asm
code

Mostly target machine
independent,
language independent

Target machine dependent,
language independent

Goal: Faster code and/or smaller code and/or low energy consumption

Target machine
independent,
language dependent

3 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Remarks

Often multiple levels of IR:

high-level IR (e.g. abstract syntax tree AST),

medium-level IR (e.g. quadruples, basic block graph),

low-level IR (e.g. directed acyclic graphs, DAGs)

do optimization on most appropriate level of abstraction

code generation is continuous lowering of the IR
towards target code

”Postpass optimization”:
done on binary code (after compilation or without compiling)

4 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Disadvantages of compiler optimizations

Debugging made difficult

Code moves around or disappears

Important to be able to switch off optimization

Increases compilation time

May even affect program semantics

A = B*C – D + E A = B*C + E – D
may lead to overflow

5 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Optimization examples

Source-level optimization - independent of target machine

Replace a slow algorithm with a quicker one,
e.g. Bubble sort Quick sort

Poor algorithms are the main source of inefficiency but difficult to optimize

Needs pattern matching, e.g. [K.’96] [di Martino, K. 2000]

Intermediate code optimization - mostly target machine independent

Local optimizations within basic blocks (e.g. common subexpr. elimination)

Loop optimizations (e.g. loop interchange to improve data locality)

Global optimization (e.g. code motion)

Interprocedural optimization

Target-level code optimization - target machine dependent

Instruction selection, register allocation, instruction scheduling, predication

Peephole optimization
6 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Basic block

A basic block is a sequence of textually consecutive
operations (e.g. quadruples)
that contains no branches (except perhaps its last operation)
and no branch targets (except perhaps its first operation).

Always executed in same order from entry to exit

A.k.a. straight-line code 1: (JEQZ, 5, 0, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B1

B2

B3

B4

2

7 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Control flow graph

Nodes: primitive operations
(e.g., quadruples)

Edges: control flow transitions

1: (JEQZ, 5, 0, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B1

B2

B3

B4

1: (JEQZ, 5, 0, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

8 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Basic block graph

Nodes: basic blocks

Edges: control flow transitions

1: (JEQZ, 5, 0, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B1

B2

B3

B4

1: (JEQZ, 5, 0, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B1

B2

B3

B4

9 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Local optimization

Within a single basic block

Needs no information about other blocks

Example: Constant folding (Constant propagation)

Compute constant expressions at compile time

const int NN = 4;

…

i = 2 + NN;

j = i * 5 + a;

const int NN = 4;

…

i = 6;

j = 30 + a;

10 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Local optimization (cont.)

Elimination of common subexpressions

A[i+1] = B[i+1]; tmp = i+1;

A[tmp] = B[tmp];

D = D + C * B;

A = D + C * B;

T = C * B;

D = D + T;

A = D + T;

NB: Redefinition of D
D+T is not a common

subexpression! (does not
refer to the same value)

Common subexpression elimination

builds DAGs (directed acyclic graphs)

from expression trees and forests

11 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Local optimization (cont.)

Reduction in operator strength

Replace an expensive operation by a cheaper one
(on the given target machine)

Example: x = y ** 2 x = y * y

Example: x = 2.0 * y x = y + y

Example: Concatenation in Snobol

L := Length(S1 || S2) L := Length(S1) + Length(S2)

12 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Minimize time spent in a loop

Time of loop body

Data locality

Loop control overhead

What is a loop?

A strongly connected component
(cycle) in the control flow graph
resp. basic block graph

that has a unique entry

Example: { B2, B4 }
is a SCC with 2 entries not a loop in the strict sense…

1: (JEQZ, 5, 0, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B1

B2

B3

B4

Loop optimization

3

13 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Loop optimization examples (1)

Loop-invariant code hoisting

Example:

for (i=0; i<10; i++)

a[i] = b[i] + c / d;

tmp = c / d;

for (i=0; i<10; i++)

a[i] = b[i] + tmp;

14 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Loop optimization examples (2)

Loop unrolling

Reduces loop overhead (number of branches)

Example:

i = 1;

while (i <= 50) {

a[i] = b[i];

i = i + 1;

}

i = 1;

while (i <= 50) {

a[i] = b[i];

i = i + 1;

a[i] = b[i];

i = i + 1;

}

15 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Loop optimization examples (3)

Loop interchange

To improve data locality
(reduce cache misses / page faults)

Example:

for (i=0; i<N; i++)

for (j=0; j<M; j++)

a[j][i] = 0.0 ;

for (j=0; j<M; j++)

for (i=0; i<N; i++)

a[j][i] = 0.0 ;

....

i

j

16 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Loop optimization examples (4)

Loop fusion

Merge loops with identical headers

To improve data locality and number of branches

Example:

for (i=0; i<N; i++)

a[i] = … ;

for (i=0; i<N; i++)

… = … a[i] … ;

for (i=0; i<N; i++) {

a[i] = … ;

… = … a[i] … ;

}

17 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Loop optimization examples (5)

Loop collapsing

Flatten a multi-dimensional loop nest

May simplify addressing
(relies on consecutive array layout in memory)

Loss of structure

Example:

for (i=0; i<N; i++)

for (j=0; j<M; j++)

… a[i][j] … ;

for (ij=0; ij<M*N; ij++) {

… a[ij] … ;

}

....

j

i

18 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Remarks

Need to analyze data dependences to make sure that
transformations do not change the semantics of the code

Global transformations (within a procedure – intraprocedural)
need control and data flow analysis

Interprocedural analysis deals with the whole program

Will be covered in
TDDC86 Compiler optimizations and code generation

4

19 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Target-level optimizations

Often included in main code generation step of back end:

Register allocation

Better register use less memory accesses, less energy

Instruction selection

Choice of more powerful instructions for same code
faster + shorter code, possibly using fewer registers too

Instruction scheduling reorder instructions for faster code

Branch prediction (e.g. guided by profiling data)

Predication of conditionally executed code

See lecture on code generation for RISC and superscalar processors (TDDB44)

Much more in TDDC86 Compiler optimizations and code generation
20 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Postpass optimizations (1)

”postpass” = done after target code generation

Peephole optimization

Very simple and limited

Cleanup after code generation or other transformation

Use a window of very few consecutive instructions

Could be done in hardware by superscalar processors…

…

LD A, R0

ADD 1, R0

ST R0, A

LD A, R0

…

…

INC A

(removed)

(removed

LD A, R0

…

…

INC A, R0

(removed)

(removed)

LD A, R0

…

21 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Postpass optimizations (2)

”postpass” = done after target code generation

Peephole optimization

Very simple and limited

Cleanup after code generation or other transformation

Use a window of very few consecutive instructions

Could be done in hardware by superscalar processors…

…

LD A, R0

ADD 1, R0

ST R0, A

LD A, R0

…

…

LD A, R0

ADD 1, R0

ST R0, A

LD A, R0

…

…

LD A, R0

ADD 1, R0

ST R0, A

(load removed)

…

Greedy peephole optimization (as on
previous slide) may miss a more
profitable alternative optimization

(here, removal of a load instruction)

22 TDDB29/44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Postpass optimizations (2)

Postpass instruction (re)scheduling

Reconstruct control flow, data dependences
from binary code

Reorder instructions to improve execution time

Works even if no source code available

Can be retargetable
(parameterized in processor architecture specification)

E.g., aiPop™ tool by AbsInt GmbH, Saarbrücken

