sosom

TDDB29 Compilers and Interpreters f z’a

TDDB44 Compiler Construction 3 §'
Rl

Intermediate Code Optimization

Christoph Kessler, IDA,
Linkapings universitet, 2007.

&
Code optimization — overview g%

Goal: Faster code and/or smaller code and/or low energy consumption

Source-to-source
compiler/optimizer

Intermediate

Source program Back- asm

Target-level

-~ —»code
representation|

code representation| End
(IR)

N\ U\ J
H_j Y '
Target machine

independent,
language dependent

Mostly target machine Target machine dependent,
independent, language independent
language independent

C. Kessler, IDA, Linkdpings universitet. 2 TDDB29/44 Compiler Construction, 2007

m Often multiple levels of IR:
e high-level IR (e.g. abstract syntax tree AST),
e medium-level IR (e.g. quadruples, basic block graph),
o low-level IR (e.g. directed acyclic graphs, DAGs)
- do optimization on most appropriate level of abstraction
-> code generation is continuous lowering of the IR

towards target code

m "Postpass optimization”:
done on binary code (after compilation or without compiling)

SLE _y“““"”"’ui
Remarks g:jg;; Disadvantages of compiler optimizationsg:jg;;

m Debugging made difficult

e Code moves around or disappears

e Important to be able to switch off optimization
m [ncreases compilation time
m May even affect program semantics

e A=B*C-D+E = A=B*C+E-D
may lead to overflow

m Replace a slow algorithm with a quicker one,
e.g. Bubble sort = Quick sort

m Poor algorithms are the main source of inefficiency but difficult to optimize
m Needs pattern matching, e.g. [K.’96] [di Martino, K. 2000]

Intermediate code optimization - mostly target machine independent

m Local optimizations within basic blocks (e.g. common subexpr. elimination)
m Loop optimizations (e.g. loop interchange to improve data locality)

® Global optimization (e.g. code motion)

® Interprocedural optimization

Target-level code optimization - target machine dependent
m |nstruction selection, register allocation, instruction scheduling, predication
m Peephole optimization

TDDB29/44 Compiler Construction, 2007

C. Kessler, IDA, Linkspings universtet 3 TDDB20/44 Compiler Consiruction, 2007 . Kesslr DA, Linkspings universitet 4 TDDB20/44 Compiler Consruction, 2007
5@“‘“"”‘% 5@“‘“"”"%,@
Optimization examples B o/ Basic block B o/
u”"mwﬂ‘"‘. u”"muv""“.

Source-level optimization - independent of target machine

C. Kessler, IDA, Linkdpings universitet 5

5. (ASGN, 23, 0, A) B3
6: (SUB A 1, B)
7. (MUL, A B C) B4
8 (ADD, C, 1, A)
C_Kessier IDA Linkspings universet s >S9 (JNEZ, B, 2, 0) -

B A basic block is a sequence of textually consecutive
operations (e.g. quadruples)
that contains no branches (except perhaps its last operation)
and no branch targets (except perhaps its first operation).
o Always executed in same order from entry to exit

o Ak.a. straight-line code 1: (JEQz, 5 0, 0) Bi

Control flow graph [t (Eaz ‘5, L) ; Basic block graph
® Nodes: primitive operations 2: (ASGN, *2, o A | ® Nodes: basic blocks
(e.g., quadruples) [(A0 A 3 &) | m Edges: control flow transitions
m Edges: control flow transitions ¥
1 kaz s o o) @1 | |A GO 7 0 0 | 1 (JEQz 50, 0) B1
e T B = 5 (ASGN, 23, 0, A) | e T B = B3|5 (ASGN, 23, 0, A)
3 (ADD A, 3, B) 3: (ADD A, 3, B)
¥ 6 (SUB A 1, B)
-4 _(JUMP,_7, 0, _0) ___ |6: (SuB A 1, B) | -4 _(JUMP,_ 7, (0, _0) ___
5. (ASGN, 23, 0, A) B3 ¥ 5. (ASGN, 23, 0, A) B3 l
6 (SUB_ A 1, B) 7. (MU, A B, C)| 6 (su8 A 1. B) | glf7 (ML, A B o)
7: (MUL, A, B, C) B4 + 7: (MUL, A, B, C) B4 8: (ADD, @, 1 A)
8 (ADD, C, 1, A) [(aoD, ¢ 1 A)] 8 (ADD, C, 1, A) Lo: (NEZ, B, 2 0)
9. (JNEZ, B, 2, 0) ¥ 9. (JNEZ, B, 2, 0)
9 (INEz, B, 2 0)]
C. Kessler, IDA, Linkopings universitet. 7 TDDB?Q/A‘*D'"WWConslmclm"v 2007 C. Kessler, IDA, Linképings universitet. 8 "TDDB29/44 Compiler Construction, 2007
sywm"’a :*"WN%"%
Local optimization fx g;; Local optimization (cont.) b g;;

m Within a single basic block
e Needs no information about other blocks

m Example: Constant folding (Constant propagation)
o Compute constant expressions at compile time

A[i+1] = Bli+1];

=

tmp =

m Elimination of common subexpressions

i+1;

Altmp] = B[tmp];

D=D+C*B; |::> T=C*B;
const int NN = 4; const int NN = 4; A=D+C*B; D=D+T;
A=D+T;
i=2+NN; i=6;
j=i*5+a =06k Common subexpression elimination
ubexpression eliminatt NB: Redefinition of D
builds DAGs (directed acyclic graphs) - D+T is nota common
f . subexpression! (does not
rom expression trees and forests
refer to the same value)
C. Kessler, IDA, Lmkogmss universitet. 9 “TDDB29/44 Compiler Construction, 2007 C. Kessler, IDA, Lmkogmss universitet. 10 DDB29744 Compller Construction, 2007
_y“““"”"’ai
Local optimization (cont.) B t’; Loop optimization
a"‘muﬂ‘"“.

m Reduction in operator strength

o Replace an expensive operation by a cheaper one
(on the given target machine)

Example: x=y*™2 > x=y*y

Example: x=20"y 2> Xx=y+y

Example: Concatenation in Snobol

L :=Length(S111S2) -> L :=Length(S1)+ Length(S2)

TDDB29/44 Compiler Construction, 2007

C. Kessler, IDA, Linkdpings universitet 11

Minimize time spent in a loop
m Time of loop body

m Data locality

m Loop control overhead

What is a loop?

| A strongly connected compone|
(cycle) in the control flow graph
resp. basic block graph

m that has a unique entry

m Example: {B2, B4}

C. Kessler, IDA, Linkdpings universitet 12

B2lo (AsGN, 2, 0, A)
3. (ADD A, 3, B)
4 (JUMP, 7, 0, 0)

B3[5: (ASGN, 23, 0, A)
6 (SUB A 1, B)

A 4

B4|7: (MUL, A, B, C)
8 (ADD, C, 1, A)
9 (JNEz, B, 2, 0)

sense...

is a SCC with 2 entries - not a loop in the stric

TDDB29/44

ompiler Construction, 2007

i,

S
Rt

Loop optimization examples (1)
m Loop-invariant code hoisting

e Example:

for (i=0; i<10; i++)
afil =b[i] +c/d;

tmp=c/d;
for (i=0; i<10; i++)
afi] = b[i] + tmp;

—

C. Kessler, IDA, Linkdpings universitet. 13 TDDB29/44 Compiler Construction, 2007

B
Loop optimization examples (2) i% g;;
m Loop unrolling
e Reduces loop overhead (number of branches)
e Example:
i=1; i=1;
while (i <= 50) { |:> while (i <= 50) {
ali] = bfil; ali] = bfil;
i=i+1; i=i+1;
} al[i] = blil;
i=i+1;
}

m Loop interchange

e To improve data locality
(reduce cache misses / page faults)

e Example:
for (j=0; j<M; j++)
I:> for (i=0; i<N; i++)

for (i=0; i<N; i++)
for (j=0; j<M; j++)

e Ry
Loop optimization examples (3) ;% M} Loop optimization examples (4) %% M}

m Loop fusion
e Merge loops with identical headers

e To improve data locality and number of branches
e Example:

for (i=0; i<N; i++)

for (i=0; i<N; i++) {
|:> ali]=...;

u Loop collapsing
e Flatten a multi-dimensional loop nest
o May simplify addressing
(relies on consecutive array layout in memory) j
o Loss of structure

e Example:

for (i=0; i<N; i++) for (ij=0; ij<M*N; ij++) {
for (j=0; j<M; j++) I:> coalij]..;

alillil...; }

C. Kessler, IDA, Linkdpings universitet 17 TDDB29/44 Compiler Construction, 2007

a[j][i]=0.0; a[j][i]1=0.0; ali]=...;
) for (i=0; i<N; i++) e=..ali]..;
I
e=.eali]ag }
i =
sywm"’a sywm"’a
Loop optimization examples (5) Re i Remarks R

B Need to analyze data dependences to make sure that
transformations do not change the semantics of the code

m Global transformations (within a procedure — intraprocedural
need control and data flow analysis

m Interprocedural analysis deals with the whole program
m Will be covered in
TDDC86 Compiler optimizations and code generation

C. Kessler, IDA, Linkdpings universitet 18 TDDB29/44 Compiler Construction, 2007

Y

H
KL

P,

Target-level optimizations

Often included in main code generation step of back end:
| Register allocation

o Better register use > less memory accesses, less energy
B Instruction selection

e Choice of more powerful instructions for same code
- faster + shorter code, possibly using fewer registers too

| Instruction scheduling - reorder instructions for faster code
® Branch prediction (e.g. guided by profiling data)

@i,

R Y
KL

Postpass optimizations (1)

B ”postpass” = done after target code generation

m Peephole optimization
e Very simple and limited
o Cleanup after code generation or other transformation
e Use a window of very few consecutive instructions
e Could be done in hardware by superscalar processors...

LD A, RO INC A INC A, RO

m Predication of conditionally executed code
ADD 1, RO (removed) (removed)
! ST RO,A I:> (removed (removed)
-> See lecture on code generation for RISC and superscalar processors (TDDB44) C
-> Much more in TDDC86 Compiler optimizations and code generation D AR o AR D ARY
C. Kessler, IDA, Linkdpings universitet. 19 ‘TDDB29/44 Compiler Construction, 2007 C. Kessler, Il_--- . TDDB ...
f,m,w,%i e*”ww%"a
Postpass optimizations (2) fx g’;' Postpass optimizations (2) k¥ g;,é
Nos Nos

B ”postpass” = done after target code generation

Greedy peephole optimization (as on
previous slide) may miss a more
profitable alternative optimization

(here, removal of a load instruction)

nsformation

m Peephole optimization
e Very simple and limited
o Cleanup after code generation or
e Use a window of very few consecu ructions

e Could be done in hardware by super. processors...

LD A, RO LD A RO LD A RO

ADD 1, RO ADD 1, RO ADD 1, RO

ST RO, A |::> ST RO,A ST RO,A

LD A, RO LD A, RO |::> (load removed)
C.Kessler I - Toog] ...

C. Kessler, IDA, Linkdpings universitet 22

m Postpass instruction (re)scheduling

e Reconstruct control flow, data dependences
from binary code

o Reorder instructions to improve execution time
o Works even if no source code available

e Can be retargetable
(parameterized in processor architecture specification)

e E.g., aiPop™ tool by Absint GmbH, Saarbriicken

TDDB29/44 Compiler Construction, 2007

