‘\,,,‘. oy
TDDB29 Compilers and Interpreters. "%'g

TDDB44 Compiler Construction)
U..m‘

Error Management
in Compilers and Run-time Systems

m Classification of program errors
®m Handling static errors in the compiler

® Handling run-time errors by the run-time system
o Exception concept and implementation

Christoph Kessler, IDA,
Linkapings universitet, 2007.

Program errors ...

A
KL

® A major part of the total cost of software projects
is due to testing and debugging.

m US-Study 2002:
Software errors cost the US economy yearly ~ 60 Mrd. $

® What error types can occur?
o Classification

m Prevention, Diagnosis, Treatment
e Programming language concepts
e Compiler, IDE, Run-time support
e Other tools: Debugger, Verifier, ...

TDDB29/TDDB44 Compiler Construction, 2007

C. Kessler, IDA, Linkopings universitet. 2

SLE
Classification of program errors (1) {l o

m Design-Time Errors (not considered here)

o Algorithmic errors e.g.: forgotten special case;
non-terminating program

Accumulation of rounding errors
Violating required invariants

» Numeric errors
e Contract violation

m Static Errors

e Syntax Error forgotten semicolon,
misspelled keyword
e Semantic Error

» Static type error Wrong parameter number or type;

Downcast without run-time check
» Undeclared variable
» Use of uninitialized variable
» Static overflow Constant too large for target format

m Compiler Errors Symbol table / constant table /

stnng table / type tabl(g overflow

B29/TDDBA4 Compiler Construction, 2007

C. Kessler, IDA, Linkdpings universitet

Error prevention, diagnosis, treatmen

B Programming language concepts
- static type errors
- run-time errors

e Type safety
e Exception concept
e Automatic memory mgmt > memory leaks, pointer errors

Compiler frontend -> syntax errors, static semantic errors

- Contract violation
-> All error types

Program verifier
Code Inspection [Fagan'76]

m Testing and Debugging > Run-time errors
® Runtime protection monitor
® Trace Visualiser

- Access errors

- Communication errors,
Synchronisation errors

TDDB29/TDDB44 Compiler Construction, 2007

C. Kessler, IDA, Linkdpings universitet 5

SuE
Classification of program errors (2) {’ i

® Run-time errors — usually not checkable statically
e Memory access error e.g.
» Array index error
» Pointer error

Index out of bounds
Dereferenced NULL-pointer
Division by 0; Overflow

unexpected end of file
write to non-opened file

Wrong receiver, wrong type

o Arithmetic error
e |/O —error

e Communication error
e Synchronisation error Data "race”, deadlock

o Ressource exhaustion Stack / heap overflow,
time account exhausted

m Remark: There are further types of errors, and combinations.

C. Kessler, IDA, Linképings universitet. 4 TDDB29/TDDB44 Compiler Construction, 2007

SuE

The task of the compiler... ,f!m;
a"’*m

m Discover errors

B Report errors

m Restart parsing after errors, automatic recovery
m Correct errors on-the-fly if possible

Requirements on error management in the compiler
m Correct and meaningfull error messages

m All static program errors (as defined by language) must be
found

® Not to introduce any new errors
B Suppress code generation if error encountered

C. Kessler, IDA, Linkdpings universitet 6 TDDB29/TDDB44 Compiler Construction, 2007

o
f‘\w.w,% & %’3
TDDB29 Compilers and Interpreters < 3]
TobBet ; & Syntax errors B L/
ompiler Construction aq‘%‘ v‘f o o

Handling Syntactic Errors

in the lexical analyser and parser

Christoph Kessler, IDA,

Linkapings universitet, 2007.

m Discovered rarely by the lexical analyzer
e E.g., "unterminated string constant; identifier too long
m Mostly in the parser

m Usually local errors
-> should be handled locally by lexical analyser or parser

m LL and LR parsers have the viable prefix property,
i.e. discover an error as soon as the substring being analysed together
with the next input symbol does not form a viable prefix of the language.

Methods for syntax error management:

® Panic mode (for LL parsing)

m Coding error entries in the ACTION table (for LR parsing)
m Error productions for "typical” errors (LL and LR parsing)

C. Kessler, IDA, Linkopings universitet. 8 TDDB29/TDDB44 Compiler Construction, 2007

Synchronization points . S
y P Panic mode recovery after a syntax error : bi'
for recovery after a syntax error WP W

S

sied

els

N

N
|\
»\
N

S

/?,Ao

| lo[B

——
input prefix A->
parsed successfully

(@]
>~
fo)
=~
jo)
~)

=

)

<

in FOLLOW(A) ?

m)o.”z\,’

input prefix
parsed successfully

_y“““"”"’ui _y“““"”"’ui
Panic mode (for predictive (LL) parsing) g:jg;; Error productions g:jg;;

= A wrong token ¢ was found for current production A > .by
= Skip input tokens until either
e parsing can continue (find b), or
e a synchronizing token is found for the current production
(e.g-{ }, while, if,; ...)
» tokens in FOLLOW(A) for current LHS nonterminal A
then pop A and continue
» tokens in FOLLOW(B) for some LHS nonterminal B on the stack below A
then pop the stack until and including B, and continue
» tokens in FIRST(A)
Then resume parsing by the matching production for A
m Further details: [ALSU06] 4.4.5

© Systematic, easy to implement

© Does not require extra memory

® Much input can be removed

® Semantic information on stack is lost if popped for error recovery

C. Kessler, IDA, Linkdpings universitet 11 TDDB29/TDDB44 Compiler Construction, 2007

m For "typical beginner’s” syntax errors
e E.g. by former Pascal programmers changing to C
m Define "fake” productions that "allow” the error idiom:

e E.g., <id>:=<expr> similarly to <id> = <expr>

Error message:
"Syntax error in line 123, v := 17 should read v =17 ?”

© very good error messages

© can easily repair the error

@ difficult to foresee all such error idioms

® increases grammar size and thereby parser size

TDDB29/TDDB44 Compiler Construction, 2007

C. Kessler, IDA, Linkdpings universitet 12

i,

Error entries in the ACTION table (LR) ‘jt’f

m Empty fields in the ACTION table (= no transition in GOTO graph when
seeing a token) correspond to syntax errors.

® LR Panic-mode recovery:
Scan down the stack unti?,a state s with a goto on a particular nonterminal
A is found such that one of the next input symbols a is in FOLLOW(A]
Then push the state GOTO(s, A) and resume parsing from a.

o Eliminates the erroneous phrase (subexpr., stmt., block) completely.
u LR Phrase-level recovery:
For typical error cases (e.g. semicolon before else in Pascal) define a

special error transition with pointer to an error handling routine, called if
the error is encountered

e See example and [ALSU06] 4.8.3 for details

© Can provide very good error messages

® Difficult to foresee all possible cases

® Much coding

® Modifying the grammar means recoding the error entries

C. Kessler, IDA, Linkopings universitet. 13 TDDB29/TDDB44 Compiler Construction, 2007

o
TR
Example: LR Phrase-level Recovery IIC
u”"muv"‘i
0. §->LI- ACTION table: GOTO table:
;_ L |> IE"E state |-, a b state L E
5 Bog 0 E1 E2 S4 S5 0 1 6
b 0B 1 A S2 E4 E4 1 L
2 E1 E3 S4 S5 2 * 3
3 R1 R1 E5 E5 3 o
Error handling routines & 22 22 Eg Eg g P
triggered by new ACTION 5 . .
table error transitions: 6 R2 R2 E5 E5 6

E1: errmsg("Found EOF where element expected”);
push state 3 =the GOTO target of finding (fictitious) E

E2: errmsg("No leading comma”); read the comma away and stay in state 0
E3: errmsg("Duplicate comma”); read the comma away and stay in state 2

E4: errmsg("Missing comma between elements”);
push state 2 (pretend to have seen and shifted a comma)

E5: errmsg("Missing comma”); reduce + push state 1 as if seeing the comma
E6: errmsg("Missing comma”); reduce + push state 3 as if seeing the comma

C. Kessler, IDA, Linkdpings universitet, TDDB29/TDDB44 Compiler Construction, 2007

Error productions in Yacc

m Extend grammar with error productions of the form
A = error o
which correspond to most common errors A > o
error: fictitious token, reserved keyword in Yacc
o Example: <stmt> = error <id>:= <expr>

Panic mode for LR parsing

® When an error occurs:
o Pop stack elements until the state on top of the stack has an item of
the form [A - . error o] inits item set
o Shift error in as a token

o lfaise, reduce using semantic action for thls rule:
=errore { printf(’Error: ...”);

° Otherwise, sklp tokens until a string denvable from o is found, and
reduce for this rule:
A:=erroro {printf(’Error, continued from o”); }

m Example: A:=error;

{ prlntf(“Error continued from semicolon”);
C. Kessler, IDA, Link8pings universitet

TDDB29/TDDB44 Compiler Construction, 2007

oo,

TDDB29 Compilers and Interpreters f %3

TDDB44 Compiler Construction 5 £
Rl

Handling Semantic Errors

in the compiler front end

Christoph Kessler, IDA,
Linkapings universitet, 2007.

m Can be global
(needs not be tied to a specific code location or nesting level)

m Do not affect the parsing progress
m Usually hard to recover automatically

e May e.g. automatically declare an undeclared identifier
with a default type (int) in the current local scope — but this
may lead to further semantic errors later

e May e.g. automatically insert a missing type conversion

m Usually handled ad-hoc in the semantic actions /
frontend code

C. Kessler, IDA, Linkdpings universitet 17 TDDB29/TDDB44 Compiler Construction, 2007

s@"‘w e fo"‘“ “"'@%
- < <] TDDB29 C il d Inte t
Semantic errors Pe o s ot
%,,,G,M,d' TDDB44 Compiler Construction ";q‘%‘

Exception handling

Concept and Implementation

Christoph Kessler, IDA,
Linkapings universitet, 2007.

Exception Concept

2
i"’m 2

m PL/I (IBM) ca. 1965: ON condition ...
m J. B. Goodenough, POPL’1975 und Comm. ACM Dec. 1975
m Supported in many modern programming languages

e CLU, Ada, Modula-3, ML, C++, Java, C#

m Overview:
e Terminology: Error vs. Exception
o Exception Propagation
o Checked vs. Unchecked Exceptions
e Implementation

C. Kessler, IDA, Linkopings universitet. 19 TDDB29/TDDB44 Compiler Construction, 2007

Exception Concept

KL

L

2 sorts of run-time errors:
m Error: cannot be handled by application program — terminate execution
m Exception: may be handled by the program itself

o Triggered (thrown) by run-time system when recognizing a run-time
error, or by the program itself

[Application Error |

o Message (signal) to (f) e totcaton anut o emer.
‘Will try to recover.

o Run-time object defi ([ot | e |

» has a type (Exception ciass,

rror situation

» May have parameters, e.g. a string with clear-text error message
» Also user-defined exceptions e.g. for boundary cases

o Exception Handler:
» Contains a code block for treatment

» is statically associated with the monitored code block,
which it replaces in the case of an exception

C. Kessler, IDA, Linkopings universitet. 20 TDDB29/TDDB44 Compiler Construction, 2007

public class class1 {
public static void main (String[] args) {
L O
! System.out.printin("Hello, " + args[0]);
) y printin(os[0]);
catch (ArraylndexOutOfBoundsException e) {
System.out.printin("Please provide an argument! " + e);

}
System.out.printin(*"Goodbye");

Y SuE
Exception Example (in Java) {jg;g Propagating Exceptions %% QY

m |f an exception is not handled in the current method, program control
returns from the method and triggers the same exception to the caller.
This schema will repeat until either

e a matching handler is found, or

e main() is left (then error message and program termination).
m Optional finally-block will always be executed, though.

e E.g. for releasing of allocated resources or held locks

u To be determined:
o When does a handler match?

o How can we guarantee statically that a certain exception is eventually
handled within the program?

e Implementation?

m Exception Class Hierarchy

m User-defined exceptions
by subclassing

AN
ThreadDeath
VirtualMachineError

RunTimeException
AN

ArithmeticException

ArrayindexOutOfBoundsE

NullPointerException

—}IIIegaIAccessException ‘

m Handler catch(XYExceptione){...}

matches, if XYException is of the
same type or a supertype of the
thrown exception.

{NoSuchMethodException ‘

- ... TDDB29/TDDB44 Compiler Construction, 2007

C. Kessler, IDA, Linkdpings universitet 23

i
SLE SuE

When does a handler "match”? %fjt’é Checked and Unchecked Exceptions g‘jb;
u""muﬂ“’“ u"'»s;uyn‘"‘.

®m Checked Exception: must be
e Treated in a method, or
o Explicitly declared in method declaration as propagated exception:
void writeEntry(...) throws |IOException { ... }

m Unchecked Exception: will be propagated implicitly

® |n Java: All Exceptions are checked,
except RunTimeException und its subtypes.

m Checked Exceptions:
© Encapsulation
© Consistency can be checked statically
© become part of the contract of the method’s class/interface
© suitable for component systems, e.g. CORBA (- TDDC18)
® Extensibility

TDDB29/TDDB44 Compiler Construction, 2007

C. Kessler, IDA, Linkdpings universitet 24

- oldibgrEs)i - catch(E1)f: X ; ; ng
Implementation| try {#; Wi Exceptions: Summary, Literature TP
catch(E1 e) {...} -> catch(E2) ~ R

Simple solution: catch(E2e) {...}

fp(oar): | AR(bar)

m Stack of handlers } -> catch(E2)
® When entering a monitored block (try {...}): -> catch(...)
e Push all its handlers (catch(...) {...}) fp(foo): | AR(foo)

m When an exception occurs: main| AR(main)

o Pop topmost handler and start (test of exception type).
If it does not match, re-throw and repeat.
(If the last handler in current methode did not match either,
pop also the method’s activation record - exit method.)

m |f leaving the try-block normally: pop its handlers
© simple
® Overhead (push/pop) also if no exception occurs

More efficient solution:
m Compiler generates table of pairs (try-block, matching handler)

o kessier, B, WNBEI @XCERTION OCCurs: find try-block by binary,seasehB.G): construction, 2007

m Exceptions
e Well-proven concept for treatment of run-time errors
o Efficiently implementable
o Suitable for component based software development

M M. Scott: Programming Language Pragmatics. Morgan Kaufmann, 2000.
Bz Section 8.5 about Exception Handling.

'@ J. Goodenough: Structured Exception Handling. ACM POPL, Jan. 1975

J. Goodenough: Exception Handling: Issues and a proposed notation.
Communications of the ACM, Dec. 1975

B. Ryder, M. Soffa: Influences on the Design of Exception Handling, 2003}

C. Kessler, IDA, Linkopings universitet. 26 TDDB29/TDDB44 Compiler Construction, 2007

