Link6ping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Error management

Errors can occur at each phase of compilation.

Lexical analysis

» Characters outside the alphabet appear,
e.g."s", "s"

» Character sequences which do not result in a token,
e.g. "55ES".

Syntactic analysis

e ;" missing.
» Badly spelled reserved words, e.g. "BEGNI".

Semantic analysis
» Type conflicts of operands.
* Non-declared variables.

* Incorrect procedure calls (e.g. wrong number of
parameters).

Code optimization
¢ Uninitiated variables.

» Dead code, e.g. procedures which are never called.

Linképing University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Lecture 11 Error handling, etc. Page 299

Linképing University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Code generation
» Too large constants.
¢ Run out of memory.

Table management

¢ Overflow in the table.

And all run-time errors which can occur during execu-
tion:

e "Array index out of bounds".
* Write in or read from unopened files.

e "Illegal reference at 470105".

The task of the compiler

« Discover errors.

* Report errors.

» Restart after errors, recovery.
» Correct errors, repair.

Requirements on the error manager

» Find the error when it occurs.

» Provide correct and exact error messages which
are not redundant.

* Find all errors.
* Not to introduce any new errors.

» Effective, particularly in time-sharing systems.

Lecture 11 Error handling, etc. Page 300

Linkoping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Lecture 11 Error handling, etc. Page 301

Errors

1. Lexical errors
2. Syntactic errors

3. Semantic errors

Lexical and semantic errors are local, i.e. you do not go
backwards and forwards in the parse stack or in the to-
ken sequence to fix the error. The error is fixed where it
occurs, locally.

Lecture 11 Error handling, etc. Page 302

Link6ping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Syntax errors

Syntax errors are discovered when we can not go from
one configuration to another as decided by the stack
contents and input plus parse tables (applies to bottom-

up).

LL- and LR-parsers have a valid prefix property i.e. dis-
cover the error when the substring being analysed to-
gether with the next symbol do not form a prefix of the
language.

LL- and LR-parsers discover errors as early as a
left-to-right parser can.

Linképing University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Example. From PL/1 (where "="is also used for assig-
ment).

A =B+ C>*D THEN . . . ELSE

The error is discovered here, but the
real error is here. "IF" is missing.

Two methods:

1. Methods that assume a valid prefix (called phrase
level in ASU).

2. Methods based on a valid prefix (called global
correction in ASU).

Lecture 11 Error handling, etc. Page 303

Linképing University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Minimum distance error correction

Definition:

The least number of operations (such as removal,
inserting or replacing) which are needed to
transform a string with syntax errors to a string
without errors, is called the minimum distance
(Hamming distance) between the strings.

Example. Correct the string below using this principle.

yA =B+ C*D THEN ... ELSE

IF

Inserting IF is a minimum distance repair.

The principle leads to a high level of inefficiency as you
have to try all possibilities and choose the one with the
least distance!

Lecture 11 Error handling, etc. Page 304

Linkoping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Parser-defined errors

LetGbe a CFG andw = xty anincorrect string, i.e. w
¢ L(Q).

If x is a valid prefix while xt is not a valid prefix, t is
called a parser defined error.

AA = B+C*D THEN_... ELSE

Parser-defined error 1:
Change THEN to ;"

Parser-defined error 2:
Change ELSEto ;"
Minimum distance repair:
Insert IF

Lecture 11 Error handling, etc. Page 305

Lecture 11 Error handling, etc. Page 306

Link6ping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Linképing University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Methods for syntax error management

1. Panic mode
2. Coding error entries in the ACTION-table
3. Error productions

4. Language-independent methods (not included in
this course)

4a) Continuation method, Réchrich (1980)

4b) Automatic error recovery, Burke & Fisher
(1982)

1. Panic mode
a) Skip input until either
i) Parsing can continue, or

i) An important symbol has been found
(e.g. PROCEDURE, BEGIN, WHILE,...)

b) If the parsing can not continue:

Pop the stack until the important symbol is
accepted.

If you reach the stack bottom:

"Quit --Unrecoverable error."

- Much input can be removed.
- Semantic info on the stack disappears.
+ Systematic, easy to implement.

+ Efficient, very fast and does not require extra
memory.

Lecture 11 Error handling, etc. Page 307

Linképing University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

2. Code error entries in the ACTION-table

* Inthe ACTION-table there are many entries
corresponding to ERROR.

e Study first what types of error occur most and go
into the table and instead of ERROR insert a
pointer to an error management routine which is
to be activated when this particular error state
arises.

- Difficult to foresee all possible cases.
- Much coding.

- Modifying the grammar means recoding the
error entries.

+ Can provide very good error messages.

Lecture 11 Error handling, etc. Page 309

Lecture 11 Error handling, etc. Page 308

Linkoping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

3. Error productions

Extend the grammar with extra productions that
allow certain errors.

Example. From Pascal:

IF P THEN A := X ; ELSE B := X ;

3

A kinder grammar which allows "; " here but
provides an error message.

Lecture 11 Error handling, etc. Page 310

Link6ping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Linképing University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Error productions in Yacc (Controlled panic mode)
Extend the grammar with error productions of the form

A ::= error o
which correspond to the most common errors.
A: is a nonterminal in the grammar
error: fictitious token, reserved word in Yacc
o is a string of vocabulary symbols or the empty string.

When an error occurs:

1. Pop the stack elements until some state at the top
of the stack has an item of the following form in its
item-set:

A ::= ® error Qo

2. Shift error in as a token.

3. If ais the empty string, reduce using this rule
A ::= error {semantic action}

and perform the rule’s semantic action which in this
case is a user-defined syntax error management
routine.

If o is not the empty string, Yacc jumps over all
symbols until it finds a string derivable from o, and
reduces it using this rule:

A ::= error o
Example. Yacc jumps over all input symbols until the
next symbol is a semicolon (inclusive) if the

error prediction is:

A ::= error ;

Lecture 11 Error handling, etc. Page 311

Linképing University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

4. Language-independent error management
methods

» Allinformation about a language is in the parse
tables.

» By looking in the tables you know what is allowed in
a configuration.

4a) "Rdéhrich Continuation Method"
Input: w

rest of
token sequence

w=X¢ty

J—

valid prefix

(already parsed) parser-defined

error

Lecture 11 Error handling, etc. Page 313

Lecture 11 Error handling, etc. Page 312

Linkoping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

The algorithm

1. Construct a continuation u, ue ¥, and
w’ = xu € L(G).

Example:

program foo;
begin
while a > b then begin

Parser-defined error
end
end;

x = program foo; begin while a > b
u=do € end . !

2. Remove input symbols until an important symbol is
found (anchor, beacon) e.g. while, if,
repeat, begin etc.

In this case: then is removed as begin is the
anchor symbol.

Lecture 11 Error handling, etc. Page 314

Link6ping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

3. Insert parts of u after x, and provide an error
message.

"DO" expected instead of "THEN".

"Réhrich Continuation Method"

+ Language-independent

+ Efficient
— A valid prefix can not cause an error.

— Much input can be thrown away.

Linképing University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

4b) "Automatic error recovery", Burke & Fisher

Takes into consideration that a valid prefix can be error-
prone.

Problem: you have to "back up” the stack:

normal

stack input

if an error occurs

This works if information is still in the
stack but this is not always the case!

if a > b then

¢ := d; = isreduced to <statement>
else
e := 1;

Solution: delay a predetermined number of reductions
in a buffer.

Lecture 11 Error handling, etc. Page 315

Linképing University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

The algorithm has three phases:

1. Simple error recovery
2. Scope recovery
3. Secondary recovery

Phase 1: Simple Error Recovery (a so-called token er-
ror)

¢ Removal of a token

* Insertion of a token

* Replace a token with something else

* Merging: Concatenate two adjacent tokens.
¢ Error spelling (BEGNI — BEGIN)

Lecture 11 Error handling, etc. Page 317

Lecture 11 Error handling, etc. Page 316

Linkoping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Phase 2: Scope Recovery

Insertion of several tokens to switch off open

scope.
Opener Closer
PROGRAM BEGIN END.

PROCEDURE BEGIN END;

BEGIN END
()
[1
REPEAT UNTIL identifier ;
UNTIL identifier
ARRAY OF identifier ;
OF identifier
Lecture 11 Error handling, etc. Page 318

Link6ping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Linképing University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Phase 3: Secondary recovery

Similar to panic mode.

Phase 3 is called if phase 1 and 2 did not succeed
in putting the parser back on track.

"Automatic error recovery", Burke & Fisher

+

Language-independent

Provides very good error messages

+ Able to make madifications to the parse stack
(by "backing up” the stack)

— Consumes some time and memory.

+

Test program for error recovery

PROGRRAM scoptest (input,output) ;
CONST mxi dlen = 10

1

2

3

4

5 VAR a,b,c;d :INTEGER;

6

7 arrl0 : ARRAY [1..mxidlen] ;
8

10 PROCEDURE foo (VAR k:INTEGER) : BOOLEAN;
12 VAR i, : INTEGER;

14 BEGIN)* foo *)

16 REPEAT

18 a:= (a + c);

20 IF (a > b) THEN a:= b ; ELSE b:=a;
22 PROCEDURE fie (VAR i,j:INTEGER) ;

24 BEGIN (* fie *)

28 END (* fie *);

Lecture 11 Error handling, etc. Page 319

Linképing University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 11 Autumn 99

Error messages from Hedrick Pascal

1 PROGRRAM scoptest (input,output) ;

p* %% Fok ok kK Kk A
1.%: V"BEGIN" expected
2.%: ;=" expected

3 CONST mxi dlen = 10

P* 1% A wk
1.” "END" expected
2.%: "=" expected
2.%: Identifier not declared
5 VAR a,b,c;d :INTEGER;
P* 1x% ~ A
1.%: ;" expected
2.%: Can't have that here (or something extra or missing
before)
2.%: ;" expected
7 arrl0 : ARRAY [1..mxidlen] ;
pP* 1% AnA
1.” Identifier not declared
2." Incompatible subrange types
3.%: U"OF" expected
10 PROCEDURE foo (VAR k:INTEGER) : BOOLEAN;
P* 1x% Ak ko ok kK
1.% Can't have that here (or something extra or missing
before)
12 VAR i, : INTEGER;
P* 1% ~

1.”: 1Identifier expected

14 BEGIN)* foo *)
P* 1% Ak kok kkk
1.%: Can't have that here (or something extra or missing
before)
20 IF (a > b) THEN a:= b ; ELSE b:=a;
p* 1% Ak ko k
1.”: ELSE not within an IF-THEN (extra ";","END",etc. before

Lecture 11 Error handling, etc. Page 321

Lecture 11 Error handling, etc. Page 320

Linkoping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

it?)
22 PROCEDURE fie (VAR i,J:INTEGER) ;
px 1k% ~
1.”: U"UNTIL" expected
1.%: "END" expected
1.%: ";" expected
26 a=a+1;
px 1k Ak kok kxR
1.%: Can't have that here (or something extra or missing
before)
2.%: ":=" expected
32 A :=B + C;
px 1a% Ak ko ko ke

1.%: Can't have that here (or something extra or missing
before)

34 END.
Pk 1kk kkx

? Unexpected end of file

Lecture 11 Error handling, etc. Page 322

Link6ping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Error messages from Sun Pascal

1 PROGRAM scoptest (input,output) ;

e -- --- Inserted '['
E -- --- Expected ']
3 CONST mxi dlen = 10
€ —------eom- “--- Deleted identifier
5 VAR a,b,c;d :INTEGER;
e -- “--- Inserted ';'
e -- “--- Replaced ';' with a ',
ARRAY [1..mxidlen] ;

E -- - --*- Expected keyword of
E -- - -"- Inserted identifier

PROCEDURE foo (VAR k:INTEGER) : BOOLEAN;
E------n-- Procedures cannot have types

12 VAR i, : INTEGER;
E -- --- Deleted ','

14 BEGIN)* foo *)
E —---ommmmmmmoe- *--- Malformed statement

20 IF (a > b) THEN a:= b ; ELSE b:=a;
g “--- Deleted ';' before
keyword else

22 PROCEDURE fie (VAR 1i,Jj:INTEGER) ;
E -- -"--- Expected keyword until
E -- Expected keyword end
E -- Inserted keyword end matching begin on line 14
e -- Inserted ';'

26 a a + 1;
e -- Replaced '=' with a keyword (null)

Linképing University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture 11 Autumn 99

Error messages from Burke & Fisher's

"Automatic Error Recovery"
1 PROGRRAM scoptest (input,output) ;

**%* Lexical Error: Reserved word "PROGRAM" misspelled
3 CONST mxi dlen = 10

*%% TLexical Error: "MXIDLEN" expected instead of "MXI" "DLEN"
3 CONST mxi dlen = 10

%% Syntax Error: ";" expected after this token
5 VAR a,b,c;d :INTEGER;

**%* Syntax Error: "," expected instead of ";"
7 arrl0 : ARRAY [1..mxidlen] ;

%% Syntax Error: "OF IDENTIFIER" inserted to match "ARRAY"
10 PROCEDURE foo (VAR k:INTEGER) : BOOLEAN;

*%% Syntax Error: "FUNCTION" expected instead of "PROCEDURE"
12 VAR i, : INTEGER;

*** Syntax Error: "IDENTIFIER" expected before this token

14 BEGIN)* foo *)

**%* Syntax Error: Unexpected input

20 IF (a > b) THEN a:= b ; ELSE b:=a;
%% Syntax Error: Unexpected ";" , ignored
20 IF (a > b) THEN a:= b ; ELSE b:=a;

***% Syntax Error: "UNTIL IDENTIFIER" inserted to match "REPEAT"
**%* Syntax Error: "END" inserted to match "BEGIN"

26 a=a+ 1;

32 A :=B + C;
R “--- Inserted keyword (null)
34 END.
E -- --- Malformed declaration
E -- --- Unrecoverable syntax error - QUIT
Lecture 11 Error handling, etc. Page 323

Linképing University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 11 Autumn 99

**%* Syntax Error: expected instead of "="
32 A :=B + C;
**% Syntax Error: "BEGIN" expected before this token

12 errors detected

Lecture 11 Error handling, etc. Page 325

Lecture 11 Error handling, etc. Page 324

