
Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 215

Code optimization

Have we achieved optimal code? Impossible to answer!

We make improvements to the code.

Aim: faster code and/or less space

Types of optimization

 • machine-independent

In source code or internal form.

 • machine dependent

In the object program (peephole-optimization).

Source
code

Front-end
Internal

optimiza-
tion

Back-end
machine

code optimi-
zation

Code transformations

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 216

What are the disadvantages?

 • Debugging is made difficult because of code
optimization (e.g. moving code around). Important
to be able to switch off optimization.

 • The compiler runs more slowly.

 • Unpleasant effects!
Example:

A:=B*C-D+E ⇒ A:=B*C+E-D

Can lead to overflow.

The effects of optimization:

 • Register use and choice of instruction

 • Inner loops (locality, 90-10 rule: 90% of the time
goes on 10% of the code).

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 217

Types of optimizations

1. Algorithm optimization
• Replace a slow algorithm with a quicker one e.g.

bubble sort ⇒ quick sort.

• Poor algorithms are the main source of
inefficiency but difficult to optimize.

• Machine and compiler independence.

2. Intermediate code optimization
• Performed on intermediate code
• Examples of optimizations:

• Local optimization, within basic blocks.

• Loop optimization

• Address calculations on arrays and records

• Global optimization

• Inter-procedural optimization

• Compiler-dependent but machine-independent.

3. Peephole optimization
• Transformations performed on machine code
• machine-dependent

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 218

Basic block

A basic block is a sequence of operations with an entry
and an exit.

No jump instructions may appear within the block
(except for the very last instruction).

Exercise:

Divide the quadruples on the enclosed paper into
groups of basic blocks and provide the
corresponding control flow graph.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 219

Local optimization

Is performed within a basic block without information
from any other block.

Example:

1. Constant folding
Constant expressions are calculated during
compilation.

Example
const NN = 4;

...

i:=2+NN; (* ⇒ i := 6 *)

j:=i*5+a; (* ⇒ j := 30 + a *)

(* constant propagation *)

Example:: Constant folding if we know that
 b = -1

a:=5+b*c-3+d ⇒ a:=2-c+d

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 220

2. Elimination of common sub-expressions

Example:

A[I+1] := B[I+1]

is transformed to

T := I+1;

A[T] := B[T];

Example:

D := D + C*B;

A := D + C*B;

is transformed to:

T := C*B;

D := D + T;

A := D + T;

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 221

3. Reduction in strength

Replace an expensive operation by a cheaper one.

Example:
x:=y**2 ⇒ x:=y*y

x:=2.0*y ⇒ x:=y+y

Example: Concatenation in Snobol

L := Length(S1||S2)

⇓

L := Length(S1)+Length(S2)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 222

Loop optimization

 • Loop optimization aims to minimise the time spent
in the loop, often by reducing the number of
operations in the loop.

Control flow graph:

A number of nodes and edges where the nodes are
basic blocks and edges are jumps.

Definition: loop

A number of nodes which
1. are strongly connected, i.e. all nodes in a loop

can be reached from the others.

2. has a unique entry.

The loop in the diagram is {2, 3, 4}

1 2 3 4 5

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 223

Example of loop optimizations:

1. Move loop invariants

Example:
for i := 1 to 10 do begin

z := i + b/c

.

.

end;

can be rewritten

t := b/c;

for i := 1 to 10 do begin

z := i + t;

.

.

end;

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 224

2. Elimination of induction variables

Has the greatest effect on the intermediate form.
Can remove variables which makes debugging
more difficult:

’’What is the value of I?’’

debug> I=

"Excuse me, optimizer killed me."

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 225

3. Loop unrolling

Example:
i:=1;

while (i<=50) do begin

a[i]:= b[i];

i:= i + 1

end;

can be written as

i:=1;

while (i<=50) do begin

a[i]:= b[i];

i:= i + 1;

a[i]:= b[i];

i:= i + 1;

end;

Reduce the number of tests and jumps by doubling
the code:

+ more efficient in time
- increased memory load

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 226

4. Loop fusion

Merge several loops to one loop:

for i:= 1 to n do

for j:= 1 to m do

a[i,j]:= 1;

can be written as

for i:=1 to n*m do
{at the internal form level }

a[i]:= 1;

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 227

Global data flow analysis: on whole procedures

A higher level of optimization can be achieved if the
whole procedure is analysed.

(Inter-procedural analysis deals with the whole
program)

Concepts:

Definition: A := 5 A is defined
Use: B := A*C A is used

The analysis is performed in two phases:

1. Forwards
Reaching definitions
Which definitions apply at a point p in a flow graph?

 •••
A := •••

•••

 •••
A := •••

•••

 •••
A := 3

•••

 •••
B := A

•••
⇒ B := 3

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 228

Available expression

For example, to manage to eliminate common sub-
expressions over block borders.

•••

•••
A + C

•••

•••
A + C

•••

•••
A + C

•••

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 229

2. Backward analysis

Live variables
A variable v is live at point p if its value is used after
p before any new definition of v is made.

.

.
v := A;

... ← is there a new definition of v?
c := v;

Example: If variable A is in a register and it is
dead (will not be referenced) the register
can be released.

Very busy expressions
An expression is very busy if all paths from the
expression use it later in the program.

 •••
D := B * C

•••

 •••
F := B * C + D

•••

 •••
E := 3 + B * C

•••

 •••
B := 3

•••

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 230

Global data flow analysis provides optimization:

1. Remove variables which are never referenced.
2. Do not make calculations whose results are not

used.
3. Remove code which is not called or reachable

(dead code elimination).
4. Code motion
5. Find uninitialised variables

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 231

Examples of other machine-independent
optimizations

1. Array-references

C := A[I,J] + A[I,J+1]

Elements are beside each other in memory.
Ought to be ’’give me the next element’’.

2. Expand the code for small routines

x := sqr(y) ⇒ x := y * y

3. Short-circuit evaluation of tests

while (a > b) and (c-b < k) and ...

 ↑

if false the rest does not need to be
evaluated.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 232

4. Fixed references

A[3,5] := B[1,5,4]

Calculate the addresses during compilation as if:

C := D

5. Exploit algebraic manipulations

K := -C*(B-A) ⇒ K := C*(A-B)

Eliminate multiplication by 1 and addition with 0.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 233

Machine-dependent optimization: Peephole
optimization

 • We have a window of 3-4 instructions.

 • We try to optimize within the window and then move
the window one instruction forwards.

 • Several passes over the code are often required.

Redundant load and store instructions

MOV R0,A

MOV A,R0

equivalent to MOV R0,A

MOV A, R0
ADD 1,R0

MOV R0,A

MOV A,R0

ADD 2,R0

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 8 Autumn 99

Lecture 8 Code optimization Page 234

Recognize a pattern which is appropriate for a
special instruction

MOV A,R0

ADD 1,R0

MOV R0,A

equivalent to

INC A

Algebraic simplifications

ADD 0,R0 Eliminate!
MUL 1,R0 Eliminate!

Reduction in strength

MUL 2,R0

are written

SHIFT 1,R0

Improvement of jump over jump

GOTO L1 { is changed to GOTO L2 }
•

•

•

L1: GOTO L2

