
Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 187

Memory management and run-time systems

Run-time systems can support the execution of a
program in the form of:

 • Memory management of a program during
execution.
This includes allocation and de-allocation of
memory cells.

 • Address calculation for variable references.

 • For references to non-local data, finding the right
object taking scope into consideration.

 • Recursion, which means that several instances of
the same procedure are active (activations of a
procedure) at the same time during execution.

 • Dynamic language constructs, such as dynamic
arrays, pointer structures, etc.

 • Different sorts of parameter transfer

There are two different memory management
strategies:
static and dynamic memory management. The
underlying language determines the method.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 188

Static memory management

 • All data and its size must be known during
compilation, i.e. the memory space needed during
execution is known at compile-time.

 • The underlying language has no recursion.
 • Data is referenced to by absolute addresses.

Static memory management needs no run-time
support, because everything about memory
management can be decided during compilation.

An example of such a language is FORTRAN4,
FORTRAN77.

FORTRAN90 has recursion.

Program

Data area

Fixed

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 189

Dynamic memory management

 • Data size is not known at compile time (e.g.
dynamic arrays, pointer structures)

 • There is recursion

Examples of such languages are: PASCAL, C, ALGOL.

Run-time support is required for languages with
dynamic memory management:

 • The call chain must be stored somewhere and
references to non-local variables must be dealt with.

 • Variables can not be referenced by absolute
addresses, but by <blockno, offset>.

 • All data belonging to a block (procedure) is
gathered together in an activation record (stack
frame).

 • At a procedure call memory is allocated on the
stack and each call involves constructing an
activation record.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 190

Some concepts (Rep.)

Activation

Each call (execution) of a procedure is known as
activation of the procedure.

Life span of an activation

The life span of an activation of a procedure p lasts
from the execution’s first statement to the last
statement in p’s procedure body.

Recursive procedure

A procedure is recursive if it can be activated again
during the life span of the previous activation.

Activation tree

An activation tree shows how procedures are activated
and terminated during an execution of a program.

Note that a program can have different activation trees
in different executions.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 191

Example. Activation tree (Rep.)

program p;

procedure q;

...

end {q};

procedure r;

...

q;

end {r};

begin {p}

read (x)

if x = 0

then q

else r;

end {p}.

Two different activation trees for the program:

A-tree when x=0
p

q

A-tree when x≠0
p

r

q

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 192

An activation tree for a recursive descent parser (e.g. in
lab 2) can look like this: (Rep.)

Note that for certain input the tree shows the sequence
of all procedure activations within the program. But at
each point in time during execution it is just a straight
path from the root to the actual procedure which shows
all active procedures.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 193

Formal and actual parameters (Rep.)

Arguments in the head of the procedure declaration are
its formal parameters and arguments in the procedure
call are its actual parameters.

In the example below

i: is a formal parameter.

k: is an actual parameter

procedure A(i: integer);

begin {A}

...

A(k);

...

end {A};

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 194

Activation record

All information which is needed for an activation of a
procedure is put in a record which is called an
activation record.

The activation record remains on the stack during the
life span of the procedure.

The activation record contains:

 • Local data

 • Temporary data

 • Return address

 • Parameters

 • Pointers to previous activation records (dynamic
link, control link)

 • Static link (access link) or display for finding the
correct references to non-local data

 • Dynamically allocated data (dope vectors)

 • Space for a return value (where needed)

 • Space for saving the contents of a register

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 195

Typical memory organisation (Pascal-like
language)

Static data

The memory requirement for data objects must be
known at compile time and the address to these objects
is not changed during execution, so the addresses can
be hard-coded in the object code.

Stack

Space for activation records is allocated for each new
activation of procedures.

Heap

Allocation when necessary.

Object code

Static Data

Stack

Free
Space

Heap

Global data

Activation records

Dynamic data

 Memory fragmenting

Grows
upwards

Grows
downwards

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 196

How are non-local variables referenced?

1. Static link (access link)
2. Display

Example

program prog; { "Block0" }

var a, b, c : integer; { Block1 }

procedure p1;

var b, c : real; { Block 2 }

procedure p2;

var c : real; { Block 3 }
begin

c := b + a; { B3.c := B2.b + B1.a }

end {p2};

begin

p2;

end {p1};

begin

p1;

end {prog}.

In the procedures the variables are referenced using

<blockno, offset>: B3.c := B2.b + B1.a

or by using relative blockno: 0.c := 1.b + 2.a

(0 current block, 1 nearest surrounding block, etc.)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 197

The stack and references when p2 executes if we use:

Static link

 • The static link is a pointer to the most recent
activation record for the surrounding bloc

 • k (textual environment).

0.c := 1.b + 2.a

For a follow the static link 2 steps.

 • This method is practical and uses little space. With
deeply nested procedures it will be slow.

p2

p1

Main

Static
link

Textual environment

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 198

Display

 • Display is a table with pointers (addresses) to
surrounding procedures’ activation records.

 • The display can be stored in the activation records.

 • Display is faster than static link for deep nesting, but
requires more space.

Main

p1

p2

Display

Display

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 199

Dynamic link, control link

 • Dynamic link specifies the call chain,

 • Not the same as static link if there is a recursive call
chain,e.g.

Call chain
(on return from

p1 we continue with p3)

The stack at 2nd call for p1

main

p1

p2

p3

p1

 DynamicStatic
link

Textual
environment

PROGRAM foo;

PROCEDURE p1;

PROCEDURE p2;

PROCEDURE p3;
 BEGIN {p3}
 p1;
 ...
 END {p3};

BEGIN {p2}
 p3;

...
END {p2};

 BEGIN {p1}
p2;

 ...
 END {p1};

BEGIN {main}
 p1;
 ...
END {main}.

 link

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 200

Heap allocation (Rep.)

In some languages data can dynamically be built during
execution and its size is not known (e.g. strings of
variable length, lists, tree structures, etc).

De-allocation is not performed automatically as in stack
allocation.

 • Pascal

new(p) allocation
dispose(p) manual de-allocation:

hard work, can lead to bugs

 • LISP

garbage collection: automatic, resource-consuming.

Free list:

released space

fragmenting

Optimally it would be:

free

used

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 201

Where is data stored and how is it referenced?

(Semi-static)

 • Static data can be allocated directly (consecutive in
the activation record, data area).

 • Data is referenced by <blockno, offset>.

blockno is specified as nesting depth.

Simple variables (boolean, integer, real ...)

These have a fixed size and are put directly into the
activation record, or in registers.

Static arrays

A fixed number of elements, i.e. the size is known at
compile time.

A : array[1..100] of integer;

Stored directly in the activation record.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 202

Dynamic arrays

The size is unknown at compile time:

B: array[1..max] of integer;

max not known at compile time.

Dope vector (data descriptor) is used for dynamic
arrays. Dope vectors are stored in the activation record.

Upper limitLower limit

Start address

Dope vector

Either above
the stack
or in the heap

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 203

Dynamic arrays and block structures in ALGOL

parameters

A STACKTOP

DISPLAY

before L1

Z,B dope v.

b1 STACKTOP

parameters

A STACKTOP

DISPLAY

before L2

PROCEDURE A(X,Y); INTEGER X, Y;

L1: BEGIN REAL Z;

ARRAY B[X:Y];

L2: BEGIN REAL D,E;

L3: •••

END;

L4: BEGIN ARRAY A[1:X];

L5: BEGIN REAL E;

L6: •••

 END;

L7: END;

L8: END;

❶

❷

❸

❹

(block B1:)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 204

 array A

 array B

E

b4 STACKTOP

A dope v.

b3 STACKTOP

Z,B dope v.

b1 STACKTOP

parameters

A STACKTOP

DISPLAY

L6

 array A

 array B

A dope v.

b3 STACKTOP

Z,B dope v.

b1 STACKTOP

parameters

A STACKTOP

DISPLAY

L5, L7

 array B

D, E

b2 STACKTOP

Z,B dope v.

b1 STACKTOP

parameters

A STACKTOP

DISPLAY

L3

 array B

Z,B dope v.

b1 STACKTOP

parameters

A STACKTOP

DISPLAY

L2,L4,L8

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 205

Parameter passing (Rep.)

There are different ways of passing parameters in
different programming languages. Here are some of the
most common methods:

1. Call by reference (Call by location)

• The address to the actual parameter, l-value, is
passed to the called routine’s AR

• The actual parameter’s value can be changed.
• Causes aliasing.
• The actual parameter must have an l-value.

Example: Pascal’s VAR parameters, reference
parameters in C++. In Fortran, this is the only kind
of parameter.

2. Call by value

• The value of the actual parameter is passed
• The actual parameter can not change value

Example: Pascal’s non-VAR parameters,
found in most languages (e.g. C, C++, Java)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 206

3. Call by value-result (hybrid) (Rep.)

• The value of the actual parameter is calculated
by the calling procedure and is copied to AR for
the called procedure.

• The actual parameter’s value is not affected
during execution of the called procedure.

• At return the value of the formal parameter is
copied to the actual parameter, if the actual
parameter has an l-value (e.g. is a variable).

Found in Ada.

4. Call by name

• Similar to macro definitions
• No values calculated or passed
• The whole expression of the parameter is

passed as a procedure without parameters, a
thunk.

• Calculating the expression is performed by
evaluating the thunk each time there is a
reference to the parameter.

• Unpleasant effects!

Found in Algol, Mathematica, Lazy functional lang.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 207

Example: (Rep.)

procedure swap(x, y : integer);

var temp : integer;

begin

temp := x;

x := y;

y := temp;

end;

...

i := 1;

a[i]:=10; {a: array[1..5] of integer}

print(i,a[i]);

swap(i,a[i]);

print(i,a[1]);

Printout from both the print statements:

† The following happens:

Call by
reference

Call by
value

Call by
value-result

Call by
name

1 10 1 10 1 10 1 10

10 1 1 10 10 1 error†

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 208

† The following happens:

x = text(’i’);

y = text(’a[i]’);

temp := i; (* ⇒ temp:=1 *)
i := a[i]; (* ⇒ i:=10 since a[i]=10 *)
a[i] := temp; (* ⇒ a[10]:=1 ⇒

⇒ index out of bounds *)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 209

Static memory management in FORTRAN77

 • No procedure nesting, i.e. no block structure.

⇒ References to variables locally or globally.
⇒ No displays or static links needed.

 • No recursion (⇒ stack not needed).

 • All data are static (⇒ heap not needed).

All memory is allocated statically
⇒ variables are referenced by absolute address.

 • The data area (which corresponds to the activation
record) is often put with the code.

 • Inefficient for allocating space for objects which are
perhaps used only a short time during execution.

 • But execution is efficient in that all addresses are
placed and ready in the object code.

SUBROUTINE SUB(J)

I = 1

J = I+3*J

END

Return address

J

I

Temp

...
Code for SUB
...

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 210

At procedure call in FORTRAN77

1. Put the addresses (or values) of the actual
parameters in the data area.

2. Save register contents.
3. Put return address in the data area.
4. Execute the routine.

On return:

1. Re-set the registers.
2. Jump back.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 211

Memory management in
Algol, Pascal, C, C++, Java

 • Nested procedures/blocks (PASCAL, ALGOL)

 • Dynamic arrays (ALGOL)

 • Recursion

 • Heap allocation (PASCAL, C, C++, Java)

Problems:

 • References to non-local variables
(solved by display or static link)

 • Call-by-name (ALGOL)

 • Dynamic arrays (dope vector)

 • Procedures as parameters

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 212

Events when P calls Q

At call:

 • P already has an AR (activation record) on the stack

P's responsibility:

 • Allocate space for Q's AR.

 • Evaluate actual parameters and put them in Q's AR.

 • Save return address and dynamic links (i.e. top_sp)
in new (Q's) AR.

 • Update (increment) top-sp.

Q's responsibility:

 • Save register contents and other status info.

 • Initialise own local data and start to execute.

At return:

Q's responsibility

 • Save return value in own AR (NB! P can access the
return value after the jump).

 • Re-set the dynamic link and register contents, ...

 • Q finishes with return to P's code.

P's Responsibility

 • P collects the return value from Q, despite update of
top-sp.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 213

return value

actual parameters

dynamic link

static link

saved machine state

local data

temporary data

space for dynamic ar-
rays, if needed

return value

actual parameters

dynamic link

static link

saved machine state

local data

temporary data

space for dynamic ar-
rays, if needed

top-sp

top

old

top

old

top-sp

AR for
caller

AR for
callee

caller’s
responsibility

callee’s
responsibility

(i.e. the called
routine)

Stack
grows
downwards

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 7 Autumn 97

Lecture 7 Memory management/run-time systems Page 214

At procedure call in ALGOL, Pascal:

1. Space for activation record is allocated on the stack.
2. Display / static link is set.
3. Move the actual parameters.
4. Save implicit parameters (e.g. registers).
5. Save return address.
6. Set dynamic link.
7. Execute the routine.

At return:

1. Re-set dynamic link.
2. Re-set the registers
3. Re-set display / static link
4. Jump back.

