TDDE65 Lab Series Intro

Sehrish Qummar

Staff

- Sehrish Qummar, course/lab assistant, lessons sehrish.qummar@liu.se
- Sajad Khosravi, lab assistant sajad.khosravi@liu.se

Lab Groups

- Two main groups: **A** and **B**
 - Different schedule slots
 - Divided into further groups A1, A2, B1, B2
- Subgroups of two students. Work in pairs
- Each session will be attended by both assistants
- Send reports to your assigned assistant

Lab Assignments

- Lab 1: Image filters
 - a) Pthreads (shared memory)
 - b) MPI (distributed memory)
- Lab 2: Heat solver, OpenMP (shared memory)
- Miniproject: **Particle simulation**, MPI (distributed memory)
 - Written report and mandatory use of DDT, ITAC

Lab Structure

Title	Lab 1a	Lab 1b	Lab 2	Miniproject	
Торіс	Image Filtering		Heat propagation	Particle simulation	
Concepts	Pthreads	MPI	OpenMP	MPI	
Tools (DDT/ITAC)	Encouraged	Encouraged	Encouraged	Mandatory	
Demonstration	Yes	Yes	Yes	Yes	
Written Report	No	No	No	Yes	
Scheduled time	4 hours	4 hours	4 hours	6 hours	
Soft Deadline	22/4 A 16/4 B	30/4 A 29/4 B	9/5 A 7/5 B	21/5 A 21/5 B	

Workflow

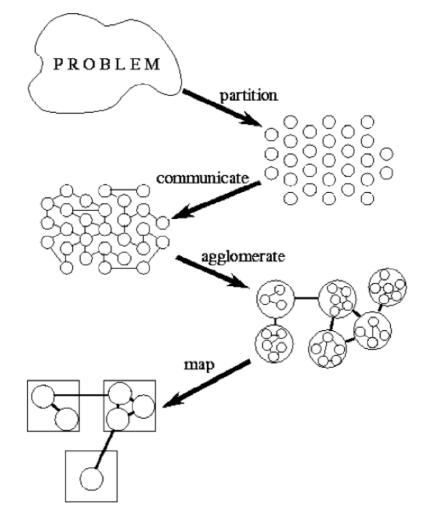
- Terminal on IDA computers -> log in to Sigma
 - ssh username@sigma.nsc.liu.se
- Also possible to use ThinLinc to access Sigma desktop env.
- Sometimes possible to develop locally (shared memory)
- Usage of own computer
 - Log in to Sigma as usual
 - Local development may require installing e.g. OpenMPI

Demonstrations

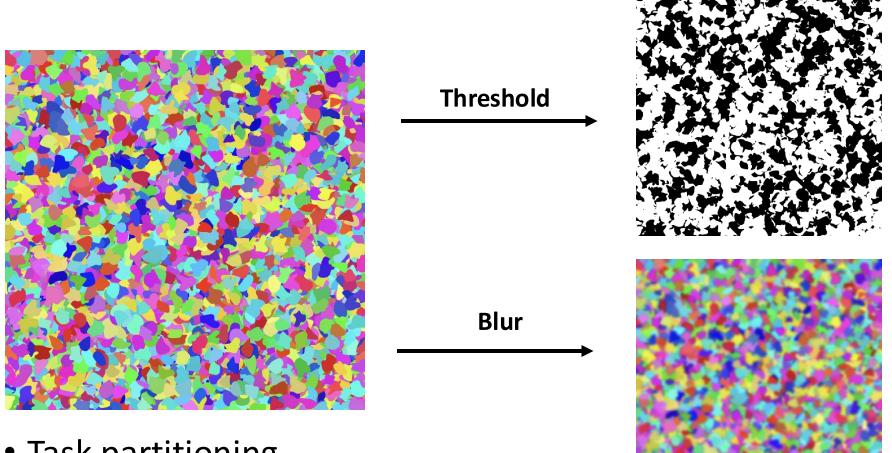
- Lab 1 a + b (separate or together), 2, and miniproject.
- Show and explain your code to the assistant.
 - Illustrations can help explaining!
- Performance measurements:
 - Have **plots** ready from multiple runs to show scaling.
- Be prepared to do at least one test run live.

Miniproject

- Demonstrate your program as usual
- Write a report:
 - aim for at least 5 pages
 - including figures and code snippets
 - explaining your approach to solving the problem.
- Suggested outline on the course web page.
- Try to follow the PCAM model
- An image says more than a thousand words! Make illustrations that
 - Show your problem decomposition, etc
 - Show performance results
- Send via email to your assistant, title "TDDE65: Report" (write LiU IDs and WebReg group number in email and document)


Information Resources

- Lab compendium
- Source files
- NSC + TDDE65 lecture, lesson slides
- NSC website + other online resources (e.g. MPI docs)
- Quick reference sheet (handout)


Assignments

"PCAM " Model

- Partitioning
 - Domain decomposition
 - Functional decomposition
- **C**ommunication + synchronization
- Agglomeration
- Mapping + Load balancing

Lab 1: Image filters

- Task partitioning
- Consider different approaches

Lab 1a: Pthreads

```
struct thread_data {
    int threadId;
    char *msg;
 };
struct thread_data thread_data_array[NUM_THREADS];
void *PrintHello(void *tParam) {
 struct thread_data *myData;
 myData = (struct thread_data *) tParam;
 taskId = myData->threadId;
 helloMsg = myData->msg;
}
int main (int argc, char *argv[]) {
    ...
    thread_data_array[t].threadId = t;
    thread_data_array[t].msg = msgPool[t];
    rc = pthread_create(&threads[t], NULL, PrintHello,
                        (void *) &thread_data_array[t]);
```

Lab 1a: Pthreads

#include<pthread.h>

}

```
pthread_mutex_t count_mutex = ... ;
long count;
```

```
void increment_count() {
   pthread_mutex_lock(&count_mutex);
   count = count + 1;
   pthread_mutex_unlock(&count_mutex);
```

```
long get_count() {
   long c;
   pthread_mutex_lock(&count_mutex);
   c = count;
   pthread_mutex_unlock(&count_mutex);
   return (c);
```

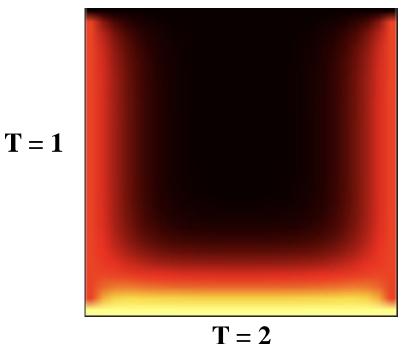
Lab 1b: MPI

- MPI concepts: (Refer to lectures and documentation)
 - Define type (a Pixel type)
 - Send / Receive
 - Broadcast
 - Scatter / Gather

MPI Type

```
typedef struct {
    int id;
    double data[10];
    } buf_t; // Composite type
buf_t item; // Element of the type
```

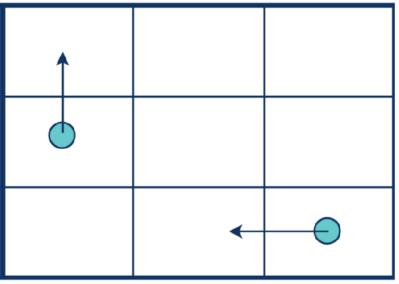
```
MPI_Datatype buf_t_mpi; // MPI type to commit
int block_lengths [] = { 1, 10 }; // Lengths of type elements
MPI_Datatype block_types [] = { MPI_INT, MPI_DOUBLE }; //Set types
MPI_Aint start, displ[2];
```


```
MPI_Get_address( &item, &start );
MPI_Get_address( &item.id, &displ[0] );
MPI_Get_address( &item.data[0], &displ[1] );
displ[0] -= start; // Displacement relative to address of start
displ[1] -= start; // Displacement relative to address of start
```

```
MPI_Type_create_struct( 2, block_lengths, displ, block_types, &buf_t_mpi );
MPI_Type_commit( &buf_t_mpi );
```

Lab 2: Heat Propagation

- **Problem:** Find stationary temperature distribution in a (NxN) square given some boundary temperature distribution
- Solution: Requires solving differential equation
 - Iterative Jacobi method
 Detailed algorithm in Compendium
- Primary concerns:
 - Shared memory, OpenMP (Refer to lectures)
 - Synchronize access
 - O(N) extra memory


 $\mathbf{T} = \mathbf{0}$

T =1

Miniproject

- Moving particles
- Validate the pressure law: pV = nRT (how?)
- Dynamic interaction patterns:
 # of particles that fly across borders is not static.
- Approximations: when to check for collisions? Your baseline sequential comparison needs to apply the same approximations!
- You need advanced domain decomposition. Motivate your choice!
- Use debugging tools, tracing, software counters to convince yourselves that the approach is good

MPI Topologies (1)

```
int dims[2]; // 2D matrix / grid
dims[0] = 2; // 2 rows
dims[1] = 3; // 3 columns
```

```
MPI_Dims_create( nproc, 2, dims );
int periods[2];
periods[0] = 1; // Row-periodic
periods[1] = 0; // Column-non-periodic
```

```
int reorder = 1; // Re-order allowed
```

MPI Topologies (2)

```
int my_coords[2]; // Cartesian Process coordinates
int my_rank; // Process rank
int right_nbr[2];
int right_nbr_rank;
```

```
MPI_Cart_get( grid_comm, 2, dims, periods, my_coords);
MPI_Cart_rank( grid_comm, my_coords, &my_rank);
```

```
right_nbr[0] = my_coords[0]+1;
right_nbr[1] = my_coords[1];
MPI_Cart_rank( grid_comm, right_nbr, &right_nbr_rank);
```

DDT

orm FORGE	Arm DDT - Arm Forge 19.0.2				+ - O X
<u>File E</u> dit <u>View Control Tools W</u> indow	Help				
🕨 🔟 🖷 🚯 📅 🔥 🛤					
Current Group: All	urrent: Group O Process O Thread D Step Threads Together				
All 0 1	2 3 4 5 6 7 8 9				
Create Group					
Project Files 💿 🗵	🗴 mpi_blur.c 🗶 🔹 gaussw.c 🗶	Locals	Current L	ine(s) Current Stack	
Search (Ctrl+K)	1 🗄 /**/	Locals			0 8
🖻 🔳 Application Code	7 #include <math.h></math.h>	Name		Value	
⊕	9 #define MAX_X 1.33	argc ⊡−argv		4 0x7ffc835dda	a68
E- 🛃 Sources	10 #define Pi 3.14159 =	my_id		9 10	
	12 /* Generate an array of weights for the gaussian filter. */	com		1140850688	
🖡 get gauss weights(int n	13 /* Input: n - number of weights to generate */	⊡ info colmax		0	
	<pre>14 /* Output: weights_out - array of weights. The element [0] 15 /* should be used for the central pixel, elements [1n] *</pre>	⊕ src ∓ w		0x49656e69	756e6547
🗈 🔳 External Code	16 /* should be used for the pixels on a distance [1n] */	E. W			
	17 ⊡ void get_gauss_weights(int n, double* weights_out) { ▲ 18 double x:				
	19 int i; 🔻				
Input/Output Breakpoints Watchp	oints Stacks (All) Tracepoints Tracepoint Output Logbook		Ev	valuate	0 8
Input/Output			Ø 🗵 Na	ame Value	
Has read the image: 3000 x 3000, ge After first step: 25.5378 secs	enerating coefficients				
Note: Arm DDT can only send input to the	e srun process with this MPI implementation				
Type here ('Enter' to send):		More	- L		

ITAC

「空」 「空」 File Options Project Wi View Charts Navigate Ad 「話」「「二」「このの181 393	ndows <u>H</u> elp	Trace Analyzer - [1: /home/x_auger/tddc78/	/lab1/blurc-trace.stf] ded in (Major Function Groups) 🔨 🏹 🗼 🚺 🏂 🛛 🍂 🛠	+ _ = ×
P0 Application P1 MPI_Bcast P2 MPI_Bcast		APMPI_SC APMPI_SC ArMPI_SC	cattery Application	
P3 MPI_Bcast P4 MPI_Bcast P5 MPI_Bcast		ApMPI_S AppMPI_S AppMPI_S	icattery Application Scattery Application	
P6 MPI_Bcast P7 MPI_Bcast P8 MPI_Bcast		AprMPI_S AprMPI_S AprMPI_S AprMPI_S	Scattery Application Scattery Application	
P9 MPI Bcast	nce Call Tree Call Graph	AnrMPL S	Performance Issue Duration (%) Duration	Ĭ
All_Processes All_Processes All_Processes Group Applicat MPI_Bcast MPI_Wtime MPI_Scatterv	▼ TSelf TSelf TSelf TSelf TSelf 275.107e-3 s 5e-6 s 115.106e-3 s	TTotal #Calls T 587.282e-3 s 0 275.107e-3 s 1 2 5e-6 s 1 115.106e-3 s 32 3	Select performance issue to see details.	

How much parallelism?

- Always measure parallel code on 1 thread/process
 - Reference for speedup
 - Note: Not the same as measuring sequential code!
- Then measure on at least "powers of 2" threads/procs.
 - 1, 2, 4, 8, 16, ...
- Shared memory: Up to all the available processor cores
- Distributed memory: Up to at least 2 nodes, at most 4 nodes

Questions?