
Structured Empirical Evaluation of ROP-Chain Generators

Background
Arbitrary code execution exploits are among the most severe types of cyberattacks, since they
allow an attacker to implant and execute malicious code into a running process, sometimes
allowing a complete takeover of the affected system. Return-oriented programming (ROP) is the
de-facto standard technique used by attackers today when exploiting memory errors in native-
code programs, allowing the attackers to bypass code-injection protections by chaining together
snippets of the vulnerable program’s own code. Traditionally, these so-called ROP-chains were
crafted manually, which is a highly laborious and error prone task. Today, several tools that aim
to automate the process exist, lowering the bar both for attackers and white-hat security
researchers when crafting ROP-chains. However, due to the high complexity of the problem, all
existing tools have various limitations compared to a human attacker.

Aim and purpose
This project is a follow-up on a project from last year1 where we empirically investigated the
speed and effectiveness of a number of open-source ROP-chain generators. Previous years’
groups compared the tools’ ability to craft chains for a common attack (launching a process
using the execve system call). However, since different tools have somewhat different notions of
how to implement this attack, the comparison wasn’t entirely fair. In this project we will take a
more rigorous approach, where we define the exact semantics of the chain to be generated
ourselves, so that each tool is solving the exact same problem. We will also focus on a subset of
the tools considered in the previous project. (Specifically, the tools angrop, ROPium and SGC,
which turned out to be the most effective and mature ones, plus the tool GadgetPlanner, which
wasn’t thoroughly investigated due to time constraints.)

Your task will be to set up the tools, and learn how to configure them to generate a chain
according to a specification that will be provided. This step will require you to learn about the
tools by reading documentation and/or source code. Configuring the chain generation might
also entail writing some custom code/scripts. Once this step is completed, you will test the
tools on a set of binaries that will also be provided by the supervisor.

Deliverables
In addition to the written report, you are expected to provide any code you have written,
including some documentation, so that the experiments can be repeated.

Prerequisites
You are expected to have some experience with building/configuring open-source projects in
Linux. You are also expected to be able to automate experiment runs on Linux (Bash scripting,
etc.) Prior basic knowledge of binary exploits and ROP (e.g., from TDDC90) is a merit, but not
strictly necessary. A basic course on low-level or system-level programming (e.g.,
TDDB68/TDDE68) is highly recommended, however. Courses on software verification (e.g.,
TDDE34), and compilers (TDDB44/TDDE66) can be helpful for understanding how ROP-chain
generators work, but are not a strict requirement.

1 Reports can be found here:
https://www.ida.liu.se/~TDDE63/oldprojects/2024/TDDE63_rop_report.pdf
https://www.ida.liu.se/~TDDE63/oldprojects/2024/TDDE63_ROP.pdf

https://www.ida.liu.se/~TDDE63/oldprojects/2024/TDDE63_rop_report.pdf
https://www.ida.liu.se/~TDDE63/oldprojects/2024/TDDE63_ROP.pdf

