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Abstract—This study aims to compare and measure the differ-
ences between various open-source ROP-chain generation tools
to better understand their capabilities, limitations, and efficiency
across various binary file sizes and functionalities. The analysis
focuses on the generators angrop, Gadget-Planner, ROPgadget,
ropium, Ropper, and Gadget Synthesis. The methodology for this
study is designed to empirically evaluate the capabilities of the
selected generators when generating chains from various binary
files of different sizes. The qualitative evaluation focused on
identifying supported architectures and exploring additional code
reuse attacks. The quantitative analysis revealed a polynomial
relationship between the executable size of a binary and the
time required by each generator to find the first chain. The
study also revealed that the number of gadgets identified by the
selected ROP generators generally increased with the size of the
binary, confirming an polynomial relationship across all tools.
The results of the qualitative evaluation highlight that most of
the analyzed tools support x86-64, ARM, and MIPS. Ropper and
ROPgadget extend compatibility further to PowerPC and Sparc,
while Gadget Synthesis remains restricted to x86-64. Regarding
attack types, all tools support ROP, while JOP is supported by all
except angrop. Notably, Gadget Synthesis is the only tool observed
to support COP, making it uniquely versatile for advanced code
reuse attack scenarios.

Index Terms—Return oriented programming, Code-reuse at-
tacks, ROP-chain generators, gadgets

I. INTRODUCTION

Arbitrary code execution exploits are among the most severe
types of cyberattacks since they allow an attacker to implant
and execute malicious code into a running process, sometimes
allowing a complete takeover of the affected system. Return-
oriented programming (ROP) has become a widely-used tech-
nique for exploiting memory vulnerabilities in programs, as
it allows attackers to bypass defenses designed to prevent
code injection. Instead of injecting new code, chains of small
snippets of existing code within the target program are used,
effectively circumventing the restrictions. For example, one
such defense against code injection is Write xor eXecute
(W⊕X), which prevents memory pages from being writable
and executable at the same time. However, ROP-attacks bypass
W⊕X by utilizing the program’s executable code, forming
chains of “gadgets” that are already marked as executable.

Since ROP-chains do not rely on injecting new code, they
can avoid protections like W⊕X, making it challenging for
traditional defense mechanisms to detect and prevent such
attacks. This has led to the widespread adoption of ROP in
modern exploit techniques, highlighting the need for more

advanced mitigation strategies that can counteract ROP at-
tacks effectively. Consequently, analyzing and evaluating the
efficiency of different ROP-chain generation tools has become
critical in understanding how these attacks are constructed and
how they can be defended against.

II. BACKGROUND

A. Return-Oriented Programming

Code-reuse attacks occur when an attacker manipulates
existing code to achieve a malicious outcome by controlling its
flow[1]. These attacks pose a significant threat to the integrity
and confidentiality of a system by being able to bypass
standard security measures, sometimes even well-established
ones[2]. One prominent example of a code reuse attack is
Return-Oriented Programming (ROP).

Return-oriented programming works by an attacker string-
ing together short sequences of machine instructions, called
gadgets, that already exist within the program’s memory. These
gadgets create a chain of instructions that redirects a program’s
intended control flow, allowing an attacker to execute arbitrary
instructions instead [3].

A gadget is typically a small set of instructions that performs
a simple operation such as moving data, arithmetic, logic and
system calls. Each gadget typically ends with a ret (return)
instruction, which allows the program’s execution to continue
at the next address on the stack, possibly controlled by an
attacker. By carefully selecting and combining these gadgets,
complex behaviors can be constructed, enabling control over
systems without the need to inject new code [4].

B. Other Code-Reuse Attacks

This section describes other types of code-reuse attacks that
an attacker could utilize.

1) Return-To-Libc: Return-to-libc is a technique used to
bypass security measures by exploiting existing functions in
the C standard library (libc). Instead of injecting new code,
an attacker can manipulate the program’s stack via a buffer
overflow to overwrite the return address, redirecting execution
to a libc function. By supplying their arguments to these
function calls, leveraging the program’s existing library code
to bypass defenses. [5].



2) Jump-Oriented Programming: Jump-oriented program-
ming (JOP) is another code-reuse attack similar to ROP, where
an attacker aims to create a chain of gadgets to take control of
the system. The difference is that JOP abandons all reliance on
the stack and ret instructions, instead, their gadgets end with a
jmp (jump) instruction. Knowing how to do this attackers can
use jump instructions to manipulate the program’s control flow,
bypassing defenses designed to protect against ROP attacks
[6].

3) Call-Oriented Programming: Call-oriented program-
ming (COP) is similar to both ROP and JOP, as all involve
chaining gadgets to control a program’s execution. But while
ROP uses ret instructions and JOP relies on jmp instructions,
COP uses gadgets that end with indirect calls. Comparable
to JOP, COP does not depend on the stack, but instead, it
uses memory-indirect locations to guide the program’s flow.
This method helps attackers achieve their objectives while
bypassing defenses specifically designed to counter ROP [7].

C. ROP-Chain Generation

There are various ways to leverage ROP for exploiting a
program. While gadgets can be identified and assembled into
chains manually, several tools are available that automate this
process. These tools first identify a set of gadgets from the
program’s binary and then propose chains designed to achieve
specific goals.

Common goals of ROP-chains include executing a system
call to spawn a shell on the host system or marking a memory
region as executable, allowing redirection of execution to
shellcode. The techniques used in the synthesis of these chains
vary among tools, and the following sections explore these
different approaches.

1) Hard-Code Based Chaining Rules: The simplest ap-
proach to automation of ROP-chains relies on hard-coded reg-
ular expressions [8], [9]. Tools that fall into this category are
e.g. Ropper [10] and ROPGadget [11]. ROP-chain generators
in this category work in two stages: first, they search the
target binary for gadgets; and second, attempt to chain gadgets
together in a predefined way [9]. Relying on hard-coded rules
and limitations on gadgets limits the flexibility of this type
of ROP-chain generator, typically only supporting the most
common chain i.e. an execve call to launch a shell on the
target system [8].

2) Heuristics Based-ROP-chaining: ROP-chain generators
that fall into this category tend to use dependency graphs and
different search algorithms to locate suitable gadgets to form a
chain [12]. Compared with hardcoded-based, heuristics-based
can sometimes utilize more complex gadgets with side-effects
e.g. writing to memory but still discard many gadgets that
could be usable [12]. ROP-chain generators belonging to this
category include angrop [13] and ropium [14].

3) Exploratory approach with Satisfiability Modulo Theo-
ries (SMT) solver: An exploratory approach that uses an SMT
solver discovers exploitable gadget sequences by constructing
the problem as a set of logical constraints and deciding the
satisfiability of logical formulas. These types of solvers are

particularly effective in symbolic execution, which is often
applied to explore all possible execution paths in a program
by treating inputs as symbolic values rather than concrete
ones. This approach is put to use in the tool Gadget Synthesis
[8][15]. The design of Gadget Synthesis, as described by
Schloegel et. al [8], is based on establishing preconditions
and postconditions that describe the initial state and the desired
state of the CPU during the exploitation process. These precon-
ditions are defined before the execution of a possible gadget
chain which could include specific register values, memory
states or set flags. The postconditions describe the expected
state after the execution. Using a logical formula, the effect
of each gadget is matched against the constraints required
to transition from the preconditions to the postconditions,
effectively generating a usable ROP-chain.

While SMT solvers are a powerful tool for systematically
exploring potential ROP-chains, they also represent a signifi-
cant performance bottleneck. As highlighted by Schloegel et.
al [8], the solver may require considerable time to identify
valid gadget chains.

One of the earliest fully automated ROP-chain generators, Q
[16], uses symbolic execution to assist in discovering gadgets
within a target binary, and it relies on weakest precondition
checks to verify whether a given instruction sequence can
be used as a specific gadget type. This process is related
to the principles of SMT solving, as Q employs logical
constraints to ensure that each gadget meets the required
postconditions for its intended function. However, Q primarily
focuses on verifying and categorizing gadgets based on their
functionalities, such as load, store and arithmetic operations,
using an SMT solver. It then chains the categorized gadgets
using traditional compiler algorithms.

4) Exploratory Approach with Partial-Order Planning:
Partial-order planning is a technique utilizing AI to find a
sequence of gadgets that can be used to build a ROP- chain.
This type of approach is used in the tool Gadget-Planner [17].
It differs from total-order planning that works by building
a directed tree graph where each node represents a specific
system state and each edge indicates a specific action used
to change the state of the system from one state to another
[18]. Partial-order planning’s key difference is that the order
of gadgets is only partially specified where order is only
enforced on actions that are dependent on each other while
non-interfering gadgets’ position is flexible. Because of that
the state space became significantly smaller and faster to
search. Partial-order planning starts at the goal state and
searches backward for gadgets to fulfill its preconditions [9].

III. PROBLEM DEFINITION

The performance, usability and efficiency of ROP generators
can significantly differ based on the size and structure of the
target binary. This project aims to compare and measure the
differences between various ROP-chain generation tools to
better understand their capabilities, limitations, and efficiency
across various binary file sizes and functionalities. The goal



is to highlight the differences between the different ROP
generators and assess their qualities.

IV. RESEARCH QUESTIONS

To guide the study, the following research questions are
formulated which address both quantitative and qualitative
aspects of the generators:

1) How many gadgets can each selected generator identify
in binary files ranging in executable size from 1 kB to 8
MB?

2) What is the time required by each selected generator to
identify a ROP-chain in binary files ranging from 1 kB
to 8 MB in executable size?

3) Is there variability in number of gadgets and execution
time to first chain between multiple runs of the same
generator on identical binary files?

4) What architectures are supported by the different ROP-
chain generators?

5) What types of code reuse attacks are supported by the
different generators?

V. METHODOLOGY

The methodology for this study is designed to empirically
compare several ROP-chain generators based on both quantita-
tive and qualitative factors. The goal is to evaluate the perfor-
mance and capabilities of the selected ROP-chain generators
when generating chains from various binary files of different
sizes. The criteria for selecting the ROP-chain generators and
binary files used in the study will be outlined, alongside
an explanation of the testing setup. The methodology will
describe how the experiments were conducted and establish
the methods for collecting and evaluating the results.

A. Selecting ROP-chain generators

The ROP-chain generators were selected to create a diverse
and representative subset of the available tools while sup-
porting x64 Linux binaries. The diversity of software could
be quantified in a multitude of ways, as such two aspects
of the ROP-chain generators were selected for this purpose:
origin and category. The origin of each ROP-chain generator
was determined to be either academic or non-academic. Non-
academic does not include proprietary ROP-chain generators,
since source code and documentation availability were deemed
a necessity for testing purposes. GitHub was used to find open-
source candidates. The categorization presented by Zhong et
al. in [12] was used for the categorization in this project,
due to it being quite recent and comprehensive. This catego-
rization includes three categories: Hardcode-based approaches,
Heuristics-based approaches and exploratory approaches. At
least one ROP-chain generator per category should be se-
lected to have a diverse enough set. Furthermore, ROP-chain
generators in the exploratory category should use different
strategies, e.g. two ROP-chain generators utilizing an SMT-
solver would reduce the diversity. For the selection of ROP-
chain generators to be representative, actively used and main-
tained projects should be preferred. By inspecting repository

meta-data: Last commit, number of contributors, stars, forks,
watchers, dependents and documentation quality, the level of
representativeness could be used to gauge repository activity.
The selected ROP-chain generators are listed in Table I.

TABLE I
SELECTED ROP-CHAIN GENERATORS

Name Category Academic
Gadget-Planner Exploratory Yes

ROPGadget Hardcoded No
Ropper Hardcoded No
angrop Heuristics No

Gadget Synthesis Exploratory Yes
ropium Heuristics No

B. Selecting binary files

The selection of binary files was based on a combination of
file size, executable content and functionality. The goal was
to select a diverse set of binaries to evaluate the performance
of ROP-chain generators across different types of binaries. A
requirement for the selection was that all binaries had to be
compiled for the x86-64 architecture to guarantee compatibil-
ity with the test environment.

The criteria for the binary files were as follows:
• File size variability: Binaries were selected to represent a

wide range of sizes, from small utilities to large libraries
and server software. The goal was to understand how
ROP-chain generators perform when handling binaries
with differing complexity. The range of the size was
determined to be between 20 kilobytes (kB) and 12
megabytes (MB).

• Functional categories: The selection aimed to cover a
variety of functional domains, including networking tools,
cryptographic libraries, file management utilities, process
and memory management and system libraries.

A binary file consists of multiple sections each with a
specific purpose. The executable portion of a binary is just
one part of its overall structure, containing the actual machine
code that can be run by the processor. For this reason, the
share of executable code within each binary was considered
important, as this can influence how much of the binary is
involved in the ROP-chain generation, potentially affecting
the number of gadgets and chains generated. The size of the
executable code was determined by executing the readelf
-s <binary> command on each binary and summarizing
the sections with executable privileges. Additionally, to ensure
the reproducibility of the study, the version of each binary was
documented. This allowed the same versions to be used across
tests. The selected binaries can be seen in Table II.

C. Qualitative evaluation

In this study, the evaluation of the qualitative factors of the
ROP-chain generators is based on a static analysis of the code
base and reviewing available documentation for each tool.
The qualitative evaluation focused on identifying supported
architectures and exploring additional code reuse attacks. The



TABLE II
SELECTED BINARIES

Binary Version Size (kB) Executable
section size (kB)

Share of
executable Category

/usr/bin/gdb Gdb 15.0.50.20240403-0ubuntu1 11470 7045 61.42% Debugger
/usr/python3.12 Python3 3.12.3-0ubuntu2 7832 2955 37.73% Library

/lib/x86 64-linux-gnu/libc.so.6 Libc6 2.39-0ubuntu8.3 2076 1567 75.49% Library
/usr/bin/bash GNU bash, version 5.2.21(1)-release 1430 953 66.63% Shell utility

/usr/bin/openssl Openssl 3.0.13-0ubuntu3.4 982 464 47.26% Cryptography
/usr/sbin/sshd Openssh-server 1:9.6p1-3ubuntu13.5 896 578 64.48% Server utility
/usr/bin/wget 1.21.4-1ubuntu4.1 460 279 60.72% Network

/bin/tar Tar 1.35+dfsg-3build1 422 293 69.33% File Management
/bin/netstat Net-tools 2.10-0.1ubuntu4 155 77 49.47% Network

/bin/ls Coreutils 9.4-3ubuntu6 139 83 60.01% File listing
/bin/touch Coreutils 9.4-3ubuntu6 95 56 59.02% File Management
/bin/ping ping from iputils 20240117 88 43 48.73% Network

/sbin/ifconfig Net-tools 2.10-0.1ubuntu4 78 43 54.62% Network
/bin/sleep Coreutils 9.4-3ubuntu6 35 13 38.42% General utilities
/bin/free procps 2:4.0.4-4ubuntu3.2 27 7.7 28.57% Memory Management
/bin/kill procps 2:4.0.4-4ubuntu3.2 23 4.1 17.76% Process Management

/usr/bin/clear 6.4+20240113-1ubuntu2 15 1.4 9.13% Shell utility

documentation for the tools varies in source and compre-
hensiveness, where only a README.md file in the GitHub
repository is obtainable for non-academic tools, but academic
tools also have an associated research paper available. The
analysis of the code base supplements the documentation
review to find discrepancies and validate what is stated by
the authors and the actual functionality the generator provides
in the context of the qualitative factors.

D. Test environment

The test environment is built using the open source container
service provider Docker where Docker Compose is utilized
to manage multiple containers. Each container runs a service
representing a ROP-chain generator, except for one dedicated
container responsible for collecting the binaries. This binary
container installs the binaries in specified versions within a
base image and copies them to a shared directory mounted as
a Docker volume. This shared volume enables all ROP-chain
generator containers to access the binaries in a consistent ver-
sion, as previously presented in Table II. The binary container
uses a Dockerfile based on the Ubuntu 24.04 operating system.

The purpose of this container setup is to establish a clean,
isolated test environment where each generator can operate
independently but under identical conditions, accessing the
same set of binaries through the shared volume. By isolating
each tool in its own container, the setup avoids conflicts in
dependencies and configurations which can vary across ROP-
chain generators.

The experiments were run on a Dell T5810 with an Intel
Xeon E5-1650 v4 3.6GHz with 64GB DDR4 2400 MT/s
running Proxmox Virtual Environment. The virtual machine
used to run the experiments had the following resources
allocated.

• CPU: Intel Xeon E5-1650 v4 10-threads 3.6GHz
• Memory: 60GB 2400MT/s DDR4 RAM
• Hard Drive: 1TB SDD
• Operation system: Ubuntu 22.04

E. Experiment setup

The primary objective of the experiment is to evaluate
the ability of the selected ROP-chain generators to construct
execve chains. These chains are a fundamental type of ROP-
chain which is commonly used to execute a system call to
spawn a shell on the target system. Focusing on execve
chains ensures consistency in the evaluation across all tools, as
this type of chain represents a standard use case in ROP-based
exploits. The setup involves specifying the target function
(execve) as the desired goal for each generator and assessing
their ability to construct such a chain of gadgets.

Without any system calls in a binary, it is infeasible to
construct execve chains. To address this issue, the exe-
cutable .init section of each x86-64 compiled binary is
injected with a system call gadget containing a syscall and
ret instruction. The syscall instruction is essential for invoking
system calls within the chain, and its availability significantly
impacts the success rate of chain generation. By injecting
such gadgets, the experiment eliminates variability in the
availability of critical gadgets, allowing for a fair comparison
of the capabilities of the tools. This also ensures that the focus
remains on the ability of each generator to identify and chain
gadgets rather than being limited by the specific properties of
the binaries used.

F. Execution and data collection

To evaluate the performance and capabilities of the selected
ROP-chain generators, each binary was executed 15 times on
each generator. The time required to generate the first chain
is extracted from the log files produced during each run. This
data is used to address the research question concerning the
time to generate the first chain. The logs are also analyzed to
extract the total number of gadgets identified by each generator
for a given binary. This metric supports answering the research
question regarding the number of gadgets found across binaries
of different sizes. To evaluate the variability in the number
of gadgets and the time to generate a chain, the mean and



standard deviation are calculated from the 15 runs for each
binary-generator pair. This analysis provides insights into the
consistency of the generators.

To ensure the feasibility of the quantitative evaluation, a
preliminary test was conducted on each generator using the
ls binary as a benchmark. The purpose of this test was to
determine whether the generator could complete its execution
within a one-hour time limit. Generators that failed to meet
this time limit were excluded from the main experiment.
Importantly, the one-hour time limit applied only to this initial
screening process and was not enforced during the actual
experiments for the generators that passed the preliminary test.

VI. RESULT

This section provides the results of the qualitative and
quantitative evaluation of the different ROP-chain generators
included in the study.

A. Quantitative comparison

One of the tools evaluated, Gadget-Planner [17], exceeded
the one-hour time limit for the binary ls (see Table II), failing
the preliminary test stated in V-F. Consequently, the generator
was not included in the main experiment.

The experiments revealed that the generators were able to
find chains of gadgets in only a subset of the 17 binaries tested,
as summarized in Table III. Among the binaries, python3 and
gdb were the only ones for which all generators successfully
produced chains. In contrast, the generator ROP-gadget failed
to generate a chain for libc and tar, even though these
binaries were successfully handled by the other tools. Notably,
ropium demonstrated the highest compatibility, successfully
generating chains for 7 binaries, more than any other generator
included in the study, while Gadget Synthesis was only able
to construct a chain in the libc.so.6 binary.

Gadget Synthesis was the only tool in the experiments to
trigger its built-in timeout. The generator timed out for binaries
larger than netstat, except for libc.so.6. Additionally, it crashed
for several binaries, such as clear and tar.

Further results for each generator will be presented in the
following sections.

1) angrop: The binaries for which angrop was successful
in generating chains, along with the mean time to the first
chain and the standard deviation, are presented in Table IV.
The binary tar exhibited the shortest mean time and the lowest
standard deviation among all tested binaries, whereas gdb had
the highest mean time and standard deviation, significantly
surpassing the others.

The executable size of the binaries had a notable impact
on the mean time, with larger executable sizes resulting in
longer times to find the first chain, as illustrated in Figure 1.
This trend was also observed for most binaries concerning the
mean number of gadgets identified by angrop, where larger
executable sizes generally resulted in more gadgets, as shown
in Figure 2. However, notable discrepancies were observed
with the binaries ping, ifconfig and touch. For instance, despite
ping and ifconfig having the same executable size, ifconfig

TABLE III
THE BINARIES THAT RESPECTIVE GENERATOR FOUND A CHAIN IN.

Binaries angrop ROPgadget ropium Ropper Gadget Synth.
clear ✗ ✗ ✗ ✗ ✗
kill ✗ ✗ ✗ ✗ ✗
free ✗ ✗ ✗ ✗ ✗

sleep ✗ ✗ ✗ ✗ ✗
ifconfig ✗ ✗ ✗ ✗ ✗

ping ✗ ✗ ✗ ✗ ✗
touch ✗ ✗ ✗ ✗ ✗

ls ✗ ✗ ✗ ✗ ✗
netstat ✗ ✗ ✗ ✗ ✗

tar ✓ ✗ ✓ ✓ ✗
wget ✗ ✗ ✓ ✗ ✗
sshd ✗ ✗ ✓ ✗ ✗

openssl ✗ ✗ ✗ ✗ ✗
bash ✗ ✗ ✓ ✓ ✗

libc.so.6 ✓ ✗ ✓ ✓ ✓
python3 ✓ ✓ ✓ ✓ ✗

gdb ✓ ✓ ✓ ✓ ✗
4 / 17 2 / 17 7 / 17 5 / 17 1 / 17

TABLE IV
angrop TIME TO FIRST CHAIN MEAN AND STANDARD DEVIATION

Binary Name Mean Time [s] Standard Deviation [s]
tar 83.91 1.16

libc.so.6 573.3 1.6
python3 769.69 3.15

gdb 2290.14 44.23

yielded a higher number of gadgets found. Additionally, if-
config identified more gadgets than touch, even though touch
has a larger executable size. Moreover, openssl, regardless of
having an executable size larger than ls, netstat, wget, and tar,
consistently identified fewer gadgets on average compared to
these binaries.

As shown in Table V, the number of gadgets identified
across tests exhibited slight variation for the binaries tar, sshd,
openssl, bash, libc, python3, and gdb.

TABLE V
angrop NUMBER OF GADGETS MEAN AND STANDARD DEVIATION

Binary Name Mean Gadgets Standard Deviation
tar 862.67 0.49

sshd 1264.73 0.46
openssl 675.47 0.64

bash 2777.2 0.86
libc.so.6 6224.47 0.64
python3 10176.8 1.37

gdb 16240.13 1.13

2) ROPgadget: The tool ROPgadget only successfully gen-
erated chains for the binaries python3 and gdb. Among these,
python3 had roughly half the mean time to the first chain
and nearly one-quarter of the standard deviation in time
compared to gdb. Due to the limited number of binaries for
which ROPgadget was able to generate chains, the relationship



Fig. 1. Time to first chain for binaries successfully processed by angrop.
Both axes are presented on a logarithmic scale.

Fig. 2. Number of gadgets found by angrop. Both axes are presented on a
logarithmic scale.

between execution time and executable size, as presented in
Figure 3, did not provide as much insight as observed with
angrop.

TABLE VI
ROPgadget TIME TO FIRST CHAIN MEAN AND STANDARD DEVIATION

Binary Name Mean Time [s] Standard Deviation [s]
python3 15.63 0.71

gdb 31.09 3.56

Figure 4 illustrates the mean number of gadgets ROPgadget
identified relative to binary size. The tool demonstrated a pat-
tern similar to angrop, with the number of gadgets increasing
according to a polynomial relationship as the executable size
of the binary increased. Additionally, the number of gadgets
found between runs indicated no variability.

3) ropium: The binaries for which ropium successfully
generated a chain are presented in Table VII, along with
the mean time to the first chain and the standard deviation
between the 15 runs. The tool was successful in generating

Fig. 3. Time to first chain for binaries successfully processed by ROPgadget.
Both axes are presented on a logarithmic scale.

Fig. 4. Number of gadgets found by ROPgadget. Both axes are presented on
a logarithmic scale.

a chain for seven binaries, with the smallest binary being tar
with an executable size of 422 kB. On the whole, ropium
was able to generate chains for all binaries larger than tar,
except for the opnessl binary. Likewise, the size of the binary
also had an impact on the time for the first chain, as depicted
in Figure 5 where it exhibited polynomial growth compared
to the executable size of the binary. While a polynomial
relationship can be observed in the number of gadgets the
generator can find in each binary, as presented in Figure 6. A
notable discrepancy to the growth was the jump between the
bash and the lib.c.so.6 binaries which are similar in size, but
the tool can find more than twice as many gadgets in lib.c.so.6
than in bash. Furthermore, there was no variance between each
run for ropium.

4) Ropper: The tool Ropper successfully generated chains
for five binaries: tar, bash, libc, python3, and gdb. As shown
in Table VIII, tar exhibited the highest variation in execution
time to the first chain, despite having the smallest executable
size among these binaries. Furthermore, libc demonstrated a
relatively high standard deviation in execution time compared
to its size, in contrast to the other binaries except tar.



TABLE VII
ropium TIME TO FIRST CHAIN MEAN AND STANDARD DEVIATION

Binary Name Mean Time Standard Deviation [s]
tar 2.63 0.07

wget 2.2 0.05
sshd 3.03 0.05
bash 5.87 0.19

libc.so.6 11.86 0.21
python3 17.64 0.24

gdb 41.02 0.78

Fig. 5. Time to first chain for binaries successfully processed by ropium.
Both axes are presented on a logarithmic scale.

Fig. 6. Number of gadgets found by ropium. Both axes are presented on a
logarithmic scale.

TABLE VIII
Ropper TIME TO FIRST CHAIN MEAN AND STANDARD DEVIATION

Binary Name Mean Time [s] Standard Deviation [s]
tar 3.88 1.43

bash 7.3 0.47
libc.so.6 14.74 1.24
python3 17.78 0.48

gdb 58.7 1.3

Fig. 7. Time to first chain for binaries successfully processed by Ropper.
Both axes are presented on a logarithmic scale.

Fig. 8. Number of gadgets found by Ropper. Both axes are presented on a
logarithmic scale.

The mean execution time to the first chain for Ropper
follows a pattern similar to that observed in other generators,
as illustrated in Figure 7. Notably, the mean execution time
for the binary libc shows a significant increase compared to
bash, which was also observed with the tool ropium, as shown
in Figure 5.

The mean number of gadgets found by Ropper compared
to the executable size in each binary is presented in Figure 8.
The binary with the smallest executable size (clear) contained
the least amount of gadgets and the binary with the largest
executable size (gdb) contained the most. On average, ifconfig
contained more gadgets than touch, despite having a smaller
executable size. The same pattern can be seen for tar, wget,
openssl and sshd.

There was no indication of any variability between runs
concerning the number of gadgets.

5) Gadget Synthesis: The generator Gadget Synthesis was
only successful in generating chains for the binary libc.so.6.
For the other binaries, Gadget Synthesis either was unsuccess-
ful in finding a chain or failed to complete one of the two
phases, gadget discovery or chain assembly, due to the tool’s



Fig. 9. Mean number of gadgets found by Gadget Synthesis. Both axes are
presented on a logarithmic scale.

built-in one-hour timeout for each phase. For more information
the reader is directed to Table XIII in the Appendix.

Table IX presents the mean of found gadgets in each binary,
the variation between runs and how many of the runs for each
binary completed. Additionally, the table indicates for which
binaries the generator experienced a timeout in the gadget
discovery phase or simply crashed during execution.

Figure 9 illustrates the mean number of gadgets Gadget
Synthesis identified relative to the binary executable size.
Gadget Synthesis demonstrated a similar pattern to the other
tools, with the number of gadgets growing according to a
polynomial with the executable size of the binary, but from
binaries larger than netstat (size 159kB) the executable size
does not seem to significantly affect the number of gadgets.

TABLE IX
Gadget Synthesis NUMBER OF MEAN GADGETS, STANDARD DEVIATION

AND THE NUMBER OF TIMEOUTS TRIGGERED.
* = THE TOOL’S TIMEOUT WAS TRIGGERED IN THE GADGET DISCOVERY

PHASE.
** = THE TOOL’S TIMEOUT WAS TRIGGERED IN THE GADGET DISCOVERY

PHASE AND THE TOOL CRASHED IN THE CHAIN DISCOVERY PHASE.
*** = THE TOOL CRASHED IN THE CHAIN DISCOVERY PHASE.

Binary Name Mean Gadgets Standard Deviation Completed
clear*** 19 0.0 0 / 15

kill 59 0.0 15 / 15
free 53 0.0 15 / 15

sleep 110 0.0 15 / 15
ifconfig 811 0.0 15 / 15

ping 356 0.0 15 / 15
touch 428 0.0 15 / 15

ls 1084 0.0 15 / 15
netstat*** 1176 0.0 0 / 15

tar** 3615.40 171.65 0 / 15
wget** 2374.53 465.9 0 / 15
sshd* 3393.93 206.27 0 / 15

openssl** 2034.07 319.24 0 / 15
bash* 2646.73 206.44 0 / 15

libc.so.6 2956.33 276.87 15 / 15
python3** 3428.27 303.55 0 / 15

gdb** 463.4 125.08 0 / 15

B. Qualitative comparison

This subsection will present the findings of the in-depth
quantitative comparison of the selected ROP-chain generators.

1) Supported code reuse attacks: The evaluation of possible
code reuse attacks with each generator indicates, as seen in
Table X, that all support the generation of the ROP-chain.
The code base of angrop [13] suggests that it is not built to
support other code reuse attacks and no indication of this is
observed in the tool documentation.

According to Zhang et. al their tool Gadget-Planner can
generate chains that do not necessarily end with ret instruc-
tions, where it can also leverage gadgets that include direct,
indirect and conditional jumps [9], which is a type of jump-
oriented programming chain attack. This is also the case for
ROPGadget [11], which incorporates a JOP search engine in
the tool.

In the code base of ropium [14] and Ropper [10] it was
observed that the tools, in addition to the ret instruction tools,
are also able to categorize JMP gadgets as well. This indicates
that the tool can perform JOP chain attacks.

The only generator that supports ROP, JOP and COP is
Gadget Synthesis [15]. It is explained by Schloegel et. al
in the paper Towards automating code-reuse attacks using
synthesized gadget chain [8] that the tool utilizes all of the
aforementioned code reuse attacks for chain generation.

TABLE X
THE TYPE OF CODE REUSE ATTACKS SUPPORTED BY THE CHAIN

GENERATORS.
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COP ✗ ✗ ✗ ✗ ✗ ✓
JOP ✗ ✓ ✓ ✓ ✓ ✓
ROP ✓ ✓ ✓ ✓ ✓ ✓

2) Supported CPU architectures: The results of the sup-
ported architectures are divided into two tables. The supported
architectures found in the documentation of each tool are pre-
sented in Table XI, while the results of supported architectures
observed during code analysis are found in Table XII.

Zhang et al. mention in their paper that Gadget-Planner
uses the binary analysis framework angr for disassembly [9].
The framework [19] can decompile binary code from various
architectures into an intermediate state, called VEX, on which
Gadget-Planner will perform the search operation. Therefore,
Gadget-Planner is able to create chains for all architectures
that angr supports [9].

Schloegl et. al [8] does not mention in their paper, that Gad-
get Synthesis supports any architecture other than the AMD
X86-64 processor, for which they conducted their experiments.
They do mention that they use the binary disassembler Binary
Ninja1 which does support binaries for various architectures,

1Features of Binary Ninja is available at https://binary.ninja/features/.

https://binary.ninja/features/


including x86-64, ARM and MIPS. It is, however, unclear if
the generator also supports these architectures.

The architectures for the other generators are presented in
their respective GitHub repository’s README.md file. It is
observed that the documentation of ropium states that the tool
is ”soon to be extended with ARM” [14].

TABLE XI
SUPPORTED CPU ARCHITECTURES FOR EACH GENERATOR FOUND IN THE

DOCUMENTATION.
■ = USES ANGR FOR DISASSEMBLY.

□ = USES CAPSTONE FRAMEWORK FOR DISASSEMBLY.
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ARM ✓ ✓ ✓ ✗ ✓ ✗
ARV8 ✗ ✓ ✗ ✗ ✗ ✗
MIPS ✓ ✓ ✓ ✗ ✓ ✗

PowerPC ✗ ✓ ✓ ✗ ✓ ✗
RISC V ✗ ✓ ✓ ✗ ✗ ✗

Sparc ✗ ✓ ✓ ✗ ✓ ✗
x86-64 ✓ ✓ ✓ ✓ ✓ ✓

From the static code review, it was determined that Gadget-
Planner [17] is able to load the architecture of the binary
dynamically during runtime, which is done by using the angr
framework [19]. For example, the registers of the current
architecture, on which the binary file is compiled, are fetched
with an API call to the angr framework.

Many of the ROP-chain generators have a hard-coded
implementation for different architectures. In the code base
of ROPGadget [11] it was observed that the architectures
supported are hard coded into the binary loader. The archi-
tectures for ropium [14] are also implemented as hard-coded
structures and Ropper [10] implements them as classes. All
of these generators utilize Capstone2 framework for binary
disassembly; however, they do not support all the architectures
that Capstone itself supports.

Gadget Synthesis [15] utilizes a similar approach to the
generators that are leveraging the Capstone framework, im-
plementing a hard-coded structure for each architecture it
supports. In the current version of the code, it only has the
implementation for x86-64.

The result of which architectures are supported by each
generator according to the code analysis can be seen in Table
XII.

2Supported architectures for the Capstone framework can be seen here:
http://www.capstone-engine.org/arch.

TABLE XII
SUPPORTED CPU ARCHITECTURES FOR EACH GENERATOR FOUND IN

CODE ANALYSIS.
■ = USES ANGR FOR DISASSEMBLY.

□ = USES CAPSTONE FRAMEWORK FOR DISASSEMBLY.
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ARM ✓ ✓ ✓ ✓ ✓ ✗
ARV8 ✗ ✓ ✗ ✗ ✗ ✗
MIPS ✓ ✓ ✓ ✗ ✓ ✗

PowerPC ✗ ✓ ✓ ✗ ✓ ✗
RISC V ✗ ✓ ✓ ✗ ✗ ✗

Sparc ✗ ✓ ✓ ✗ ✓ ✗
x86-64 ✓ ✓ ✓ ✓ ✓ ✓

VII. DISCUSSION

The discussion section aims to interpret the results obtained
from the study in the context of the research questions
and objectives. Limitations observed from generators and the
approach of the study are also discussed.

A. Gadgets Found

The first question in this study sought to determine how
many gadgets each selected generator could identify in binary
files in varying sizes, from the smallest at 15 kB (clear) to
the largest at 12 MB (gdb). The result of the study confirms
the association between larger binaries and the number of
identified gadgets for a giving binary for all generators, see
Figures 2, 4, 6 and 8. Likewise, the growth for all generators
was polynomial for all binaries, which includes a possibility
of following a linear trend. ROPgadget consistently finds the
most gadgets across all binaries, whereas angrop is the tool
that identifies the least amount of gadgets. For example for
the largest binary, gdb, ROPgadget is able to identify 23 times
as many gadgets as angrop. Surprisingly, ropium, which uses
ROPgadget for the gadget discovery phase, identifies slightly
fewer gadgets than ROPgadget. This could be due to the
developers of ropium choosing slightly different parameters
for running the tool than was done in this study. Even though
Ropper and angrop use the same framework to disassemble
binaries, the angr framework, Ropper was able to find a
magnitude more gadgets than angrop. But still less than the
tools that use the Capstone framework for binary disassembly.
The discrepancy could also be explained by the different types
of gadgets the tools support, as seen from Table X, angrop is
only able to identify the ROP-type gadget, whereas Ropper
also supports JOP-type gadgets.

Notably, the one-hour timeout during the gadgets disas-
sembly process in Gadget Synthesis seems to impact the
otherwise polynomial behavior observed in the rest of the
generators. In Figure 9 the polynomial relationship can be seen
for binaries not experiencing a timeout, while further increase
in executable size does not significantly affect the number of
gadgets found.

http://www.capstone-engine.org/arch


B. Time to First Chain

When addressing the second research question of this study,
it is important to note a significant limitation: the generators
successfully found a chain in only a small subset of the
seventeen binaries tested. As a result, it is challenging to
provide a comprehensive answer regarding their performance
across the full range of executable file sizes, from 1 kB to
8 MB. However, meaningful insights can still be drawn from
the observed results.

Notably, the generators angrop, ROPgadget, ropium, and
Ropper demonstrated consistent behavior in execution time
for finding the first chain. As illustrated in Figure 1, 3, 5 and
7, each presented on logarithmic axes, there is a polynomial
relationship between the executable size of a binary and the
execution time required to generate a chain. Larger binaries,
such as gdb, consistently required the most time across all
tools, whereas smaller binaries, such as tar, had the shortest
execution times for generators like angrop, ropium, and Rop-
per.

The performance of ROPgadget was distinct, with the
best results observed for python3 (executable size: 2955 kB,
mean time: 15.63 seconds) and gdb (executable size: 7045
kB, mean time: 31.09 seconds). Meanwhile, ropium slightly
outperformed Ropper concerning finding a chain in binaries
with executable sizes between 293 kB and 7045 kB, achieving
mean times ranging from 2.63 to 41.02 seconds. In compari-
son, Ropper exhibited mean times ranging from 3.88 to 58.7
seconds within the same size range. The generator angrop,
however, showed significantly poorer performance, with mean
execution times ranging from 862.67 seconds to 16240.13
seconds for the same range of executable sizes.

As presented in the results, Gadget Synthesis was only
able to assemble a chain for one of the 17 binaries tested,
specifically libc. This outcome can be attributed to the unique
properties of libc, which contains many of the essential UNIX
programs and system calls needed for constructing chains [20].
Additionally, Gadget Synthesis mitigates performance issues
by utilizing only a subset of the identified gadgets, 100 to
300, when processing binaries with a large number of gadgets
[8]. While this approach helps reduce computational overhead,
it may have contributed to the tool’s inability to find chains
in the other binaries.

C. Variability between Runs

This section examines whether the number of gadgets
identified and the execution time to the first chain vary between
multiple runs of the same generator on identical binary files.

1) Number of Gadgets: Among the five generators tested,
two exhibited variability in the number of gadgets identified,
angrop and Gadget Synthesis. For the latter generator, this
variability was observed exclusively in binaries that timed
out during the gadget discovery process, which were larger
ones. In the case of angrop, deviations could be due to its ap-
proach to gadget identification. Additionally, when deviations
occurred, they were often greater for larger binaries, although
there were a few exceptions. System conditions, such as other

running processes, may impact the performance of Gadget
Synthesis, causing it to find fewer gadgets before a timeout
and contributing to the observed variability. This behavior can
be seen in Table IX.

2) Execution Time to First Chain: All generators showed
some degree of variability in the execution time to generate the
first chain, though not consistently across all binaries. Similar
to the number of gadgets, the deviations in execution time were
often more significant for larger files, with occasional excep-
tions. System conditions, such as other running processes, may
have influenced performance even in cases where no timeouts
occurred, contributing to this variability.

D. Supported Architectures
1) Architecture discrepancy: The results show an inconsis-

tency regarding the supported architectures for ropium [14]. As
presented in Table XI, ropium does not support the ARM archi-
tecture based on what was found in the documentation. How-
ever, the code analysis indicated that ARM, on the contrary,
is supported. One reasonable argument for the discrepancy is
that the code base may include partial support or groundwork
for the ARM architecture, such as placeholder functions or
initial implementation efforts. The analysis may have identified
elements of ARM support without evaluating whether they are
operational or integrated into the main functionality of the tool
and the architecture support might not be fully implemented.
This would explain why the documentation lists ARM as a
future expansion of the tool.

Another possibility is a lack of synchronization between
the code and the documentation. As highlighted by Emad
Aghajani et. al [21], a delay in documentation updates after
code development is a frequent issue in open-source projects
which could apply to the ropium tool.

Supplying an answer to whether ropium supports the
ARM architecture would require further analysis, for example,
running experiments on the ropium generator with ARM-
compiled binaries.

2) General observations: The results indicate a significant
variation in the number and types of architectures supported
by different generators. Tools leveraging the angr framework,
such as angrop and Gadget-Planner, demonstrate broader
architecture support, likely due to angr’s ability to abstract
and handle multiple architectures dynamically. In contrast,
tools like Gadget Synthesis and ROPgadget rely on hard-
coded implementations, limiting their flexibility to specific
architectures.

Most tools support common architectures like x86-64 and
ARM, reflecting the dominance of these platforms in the cur-
rent computing landscape. However, support for architectures
such as RISC-V is limited, with only Gadget-Planner and
ROPgadget showing support. This indicates potential areas for
future development to accommodate the growing adoption of
RISC-V [22] in both academic and industry contexts.

E. Type of Code Reuse Attacks
In the analysis, the types of code reuse attacks supported by

the different generators were evaluated, specifically focusing



on Call-Oriented Programming (COP), Jump-Oriented Pro-
gramming (JOP), and Return-Oriented Programming (ROP).
While ROP was universally supported across all tools tested,
JOP was implemented in all but one generator, angrop. COP,
on the other hand, was supported exclusively by Gadget
Synthesis.

F. Limitations

It is important to be aware of the limitations of the approach
this study employed to evaluate the qualitative and quantita-
tive properties of the ROP-chain generators, as well as the
limitations some generators have displayed.

1) Time Constraints and Tool Exclusion: The results
demonstrated that Gadget-Planner [17] was unable to meet
the time constraints set for the experiments. The tool exceeded
the one-hour time limit when running the binary ls (see
Table II). This led to the decision to exclude Gadget-Planner
from further testing, as completing the experiments within the
defined timeframe was not feasible.

A similar challenge was observed with Gadget Synthesis,
which failed to process binaries with larger executable size
than about 90 kB, except libc, within the set time limit. This
limitation highlights the tool’s inability to scale effectively
with increasing binary sizes, which must be considered when
evaluating its practicality for real-world applications involving
large programs.

Although all generators demonstrated an polynomial in-
crease in runtime as the executable binary size grew, the aca-
demic tools seem to have displayed a greater issue concerning
the time to complete the execution and significantly limits their
usability for larger binaries. These issues might stem from the
increased complexity of finding gadgets and ways to assemble
them into chains.

This experience underscores the importance of time effi-
ciency in automated ROP-chain generation tools. Long run-
times not only hinder scalability but also become a bottleneck
in environments where quick analysis is critical. Future work
could explore optimization strategies for tools like Gadget-
Planner and Gadget Synthesis, potentially improving their
scalability and practicality for larger binaries. However, such
optimizations were beyond the scope of this study.

2) Lack of qualitative testing: The approach of combining
manual code analysis with documentation review was chosen
to enhance the reliability of the results. However, there are
some challenges using this approach. For instance, in manual
code analysis, the subjectivity of the reviewer must be taken
into account. Also, the documentation varied significantly
in scope and detail. Non-academic tools only had a basic
README file accessible on GitHub [23], whereas the aca-
demic tools came with detailed associated research papers
about a specific tool. Despite the additional resources available
for academic tools, much of the information provided was not
relevant to the specific research questions regarding supported
architectures and additional code reuse attacks. A significant
limitation of this study is the absence of concrete experiments
to confirm the results obtained from the code analysis and

documentation review. Without validation, the findings may
not fully capture the actual capabilities of the tools in real-
world scenarios.

VIII. CONCLUSION

This study aimed to evaluate the capabilities of ROP-chain
generators by answering the predetermined research questions.

• How many gadgets can each selected generator iden-
tify in binary files ranging in executable size from 1
kB to 8 MB?
The study revealed that the number of gadgets identified
by the selected ROP-chain generators generally increased
with the size of the binary, confirming a polynomial
pattern across all tools. Among the generators, ROPgad-
get consistently identified the highest number of gadgets
across all binaries, outperforming the other tools signifi-
cantly. For instance, in the largest binary (gdb, 12 MB),
ROPgadget identified 23 times more gadgets than angrop,
which consistently found the least number of gadgets.

• What is the time required by each selected generator
to identify a ROP-chain in binary files ranging from
1 kB to 8 MB in executable size?
The study revealed a polynomial relationship between
the executable size of a binary and the time required by
each generator to find the first chain. This relationship
is consistent across all generators, with larger binaries
generally requiring more time. ROPgadget demonstrated
the fastest times for finding chains with binaries like
python3 (mean time: 15.63 seconds) and gdb (mean time:
31.09 seconds). ropium achieved mean times ranging
from 2.63 seconds to 41.02 seconds for binaries sized
between 293 kB and 7045 kB, slightly outperforming
Ropper. Ropper’s mean execution times ranged from
3.88 seconds to 58.7 seconds for binaries within the
same size range as ropium. It performed better than
angrop but was slightly less efficient than ropium. angrop
consistently exhibited the longest execution times, with
mean times ranging from 862.67 seconds to 16240.13
seconds for binaries in the 293 kB to 7045 kB range.
Gadget Synthesis successfully assembled a chain for libc
binary with a mean time of 4664 seconds.

• Is there variability in number of gadgets and execu-
tion time to first chain between multiple runs of the
same generator on identical binary files?
The study revealed limited variability in the number of
gadgets identified but was more evident in the execution
time to generate the first chain when running the same
generator multiple times on identical binaries. Only an-
grop and Gadget Synthesis showed variability in gadget
counts, primarily in larger binaries or those that timed
out during the gadget discovery phase. In contrast, all
tested generators showed some variability in execution
time, particularly with larger binaries. Despite these de-
viations, the variability did not significantly impact the
overall results, and the generators demonstrated relative
consistency across runs.



• What architectures are supported by the different
ROP-chain generators?
The study revealed the following about the architec-
tures supported by the evaluated generators. angrop sup-
ports x86-64, ARM, and MIPS via the angr framework.
Gadget-Planner utilizes angr for disassembly, making
it compatible with all architectures supported by angr,
including x86-64, ARM, MIPS, and others. ROPgadget
hardcoded support for x86-64, ARM, MIPS, and Pow-
erPC through the Capstone framework, though it does
not support all architectures that Capstone itself sup-
ports. ropium limited to x86-64 but includes experimental
support for ARM, as mentioned in its documentation.
Ropper supports x86-64, ARM, MIPS, PowerPC, and
Sparc, leveraging the Capstone framework. Gadget Syn-
thesis restricted to x86-64, with no observed support for
other architectures despite using Binary Ninja, which
theoretically supports a wider range of architectures.

• What types of code reuse attacks are supported by
the different generators?
All evaluated tools supported ROP, while all tools except
angrop demonstrated additional support for JOP. Gadget
Synthesis uniquely supported COP, making it the most
versatile in this regard.
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APPENDIX

TABLE XIII
HOW MANY MEAN GADGETS EACH GENERATOR FOUND IN EACH BINARY.

*=THE TIMEOUT WAS TRIGGERED IN THE GADGET DISCOVERY PHASE.
**=THE TIMEOUT WAS TRIGGERED IN THE GADGET DISCOVERY PHASE AND THE TOOL CRASHED IN THE CHAIN DISCOVERY PHASE.

***=THE TOOL CRASHED IN THE CHAIN DISCOVERY PHASE.

Binaries angrop ROPgadget ropium Ropper Gadget Synthesis
clear 30 141 82 109 19***
kill 70 342 184 172 59
free 77 547 316 213 53

sleep 150 1154 500 329 110
ifconfig 403 2811 2284 1024 811

ping 274 2462 1348 682 356
touch 381 3726 1724 860 428

ls 730 6375 4323 1910 1084
netstat 581 4229 3277 1306 1176***

tar 863 20018 17066 8438 3615.4**
wget 731 15932 12055 4020 2374.53**
sshd 1265 25663 21146 6620 3393.93*

openssl 675 24105 13757 3388 2034.07**
bash 2778 60904 47965 17031 2646.73*

libc.so.6 6224 106877 105611 50662 2956.33
python3 10179 233690 161710 53563 3428.27**

gdb 16240 376809 365352 142587 463.4**

TABLE XIV
THE AVERAGE EXECUTION TIME TO FIND A CHAIN IN A BINARY.

Binaries angrop ROPgadget ropium Ropper Gadget Synthesis
clear ✗ ✗ ✗ ✗ ✗
kill ✗ ✗ ✗ ✗ ✗
free ✗ ✗ ✗ ✗ ✗

sleep ✗ ✗ ✗ ✗ ✗
ifconfig ✗ ✗ ✗ ✗ ✗

ping ✗ ✗ ✗ ✗ ✗
touch ✗ ✗ ✗ ✗ ✗

ls ✗ ✗ ✗ ✗ ✗
netstat ✗ ✗ ✗ ✗ ✗

tar 83.01 ✗ 2.55 6.5 ✗
wget ✗ ✗ 2.28 ✗ ✗
sshd ✗ ✗ 3.02 ✗ ✗

openssl ✗ ✗ ✗ ✗ ✗
bash ✗ ✗ 5.79 6.79 ✗

libc.so.6 572.46 ✗ 11.85 14.87 4804.27
python3 765.3 14.88 17.41 18.41 ✗

gdb 2256.19 30.47 40.51 58.13 ✗
4 / 17 2 / 17 7 / 17 5 / 17 1 / 17

TABLE XV
Gadget Synthesis TIME TO FIRST CHAIN MEAN AND STANDARD DEVIATION.

Binary name Mean Time [s] Standard Deviation [s]
libc.so.6 4664.90 1137.63



Fig. 10. The number of gadgets found by each tool in every binary.
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