
Implementation of Secure Multipath Resilience in
HIPLS using Mininet and SDN Integration for

Dynamic Path Failover
Emma Siklosi

Linköping University
Linköping, Sweden

emmsi015

Fabian Johansson
Linköping University
Linköping, Sweden

fabjo285

Mattias Johansson
Linköping University
Linköping, Sweden

matjo680

Morgan Uvelid
Linköping University
Linköping, Sweden

moruv297

Robin Ngo
Linköping University
Linköping, Sweden

robng725

Abstract—In modern networking, security, and resilience is
vital for continuous data transmission. With users increasingly
demanding faster and uninterrupted network performance, this
study explores the integration of the Host Identity Protocol (HIP)
with Virtual Private LAN Service (VPLS) into Software-Defined
Networking (SDN) to achieve secure multipath resilience and
dynamic path failover. Using Mininet for simulation and Ryu
as the SDN controller, we evaluate both reactive and proactive
failover mechanisms. The reactive approach recalculates routes
dynamically in the case of link failures, while the proactive one
precomputes and installs backup paths. Key performance metrics
analyzed include recovery time and bandwidth utilization. Results
show that proactive failover reduces the maximum ping latency
by 69.5% compared to the reactive failover mechanism. As the
network grows, the reactive SDN controller experiences increased
processing time depending on the number of introduced switches,
whereas the proactive controller maintains consistent processing
time.

Index Terms—SDN, Mininet, Ryu, Path failover, HIPLS

I. INTRODUCTION

In modern networks, ensuring resilience and security is
critical, especially when data must traverse multiple paths
to reach its destination. The Host Identity Protocol (HIP)
combined with Virtual Private LAN Service (VPLS) is called
HIP-VPLS (HIPLS). Combining this with Software-Defined
Networking (SDN) provides centralized control and dynamic
management of network flows, enabling multipath resilience
and failover mechanisms. This integration allows for dynamic
recovery in case of path failure, making networks more reliable
and adaptable to changing conditions. This study explores
how secure multipath resilience can be achieved by integrating
HIPLS with SDN, using Mininet and Ryu for simulation and
testing.

Additionally, this paper examines the differences between
reactive and proactive routing strategies in achieving reliable
and efficient recovery during link failures. Proactive routing
involves pre-computed backup paths activated when ports
are detected as down. Reactive routing, on the other hand,
computes new paths after a failure is detected. A reactive
routing strategy reacts to changes in network conditions as
they occur. By comparing these approaches in the context
of HIPLS-SDN, this paper will highlight their differences in

terms of recovery time, resource utilization, and adaptability
to dynamic network environments.

II. RESEARCH QUESTIONS

1) How can a path fail-over mechanism that detects real-
time link failures and attacks be implemented using
SDN?

2) To what extent can traffic be dynamically rerouted to
alternative paths during network transmission?

3) How can Mininet and Ryu simulate a real-world network
scenario to evaluate the recovery time and bandwidth of
SDN-enabled routing during link failures?

III. BACKGROUND

This section provides the background information necessary
for understanding the remainder of the project.

A. Host Identity Protocol (HIP)

The Host Identity Protocol (HIP) enhances Internet architec-
ture by introducing a cryptographic namespace and separating
host identity from location, known as the identifier or locator
split. A Host Identity (HI), represented by a cryptographic
key pair, replaces IP addresses for secure host identification.
Its compact form, the Host Identity Tag (HIT), is a 128-bit
hash of the HI used in protocols and applications.

HIP also supports local scope identities for efficient traf-
fic management within limited domains, such as regional
networks or specialized environments like network-on-chip
systems [1].

1) HIPv2: Builds on the previously mentioned HIP by
enhancing its capabilities and addressing known limitations
observed in earlier versions. HIPv2 uses public cryptographic
keys as host identifiers, increasing security and accountabil-
ity [2]. In HIPv2, public cryptographic keys replace the IP
addresses at the application level of communications, while
IP addresses remain essential for routing processes. It fully
supports mobility and multihoming, allowing hosts to change
their network attachment points without disrupting ongoing
sessions [3]. It also enhances the security by integrating IPsec
(Internet Protocol Security).



B. Virtual Private LAN Service (VPLS)

VPLS is a Virtual Private Network (VPN) that runs on
Layer 2 making it an L2VPN. It emulates a Local Area Net-
work (LAN) environment over a Wide Area Network (WAN),
enabling multiple geographically distributed sites to connect
seamlessly. By linking hosts to a multipoint network, VPLS
provides a unified and transparent networking experience, as
if all connected sites were part of the same LAN [4].

C. Software-Defined Networking (SDN)

Allows networking devices to focus only on data plane
functions since the SDN controller handles all control plane
functionality. Control plane functionality covered by the SDN
controller includes monitoring the network and computing
forwarding rules. The SDN controller’s most important task is
maintaining end-to-end connectivity between nodes. Therefore
when a link between nodes fails or breaks the controller has
to reconfigure the network so the end-to-end connectivity for
all paths are restored [5].

D. Ryu

Ryu is a controller for an SDN network. It is designed as
a centralized control platform that separates the control plane
from the data plane and provides programmable network con-
figurations [6]. Ryu can handle multiple southbound protocols,
such as OpenFlow. These protocols are essential for managing
communication between the SDN controller and the network
devices responsible for forwarding the data [7].

E. Open Flow

OpenFlow is a protocol that separates the control plane
from the data plane. This means that centralized management
and dynamic configuration can be used. OpenFlow is used
for the communication between the SDN (Software-Defined
Networking) controller and the network devices (switches).
The SDN controller manages forwarding paths for packets by
programming flow tables in the switches with specific rules
[8].

The OpenFlow flow table contains fields shown in Table I.
In a flow table, some or all fields can be present. The fields
are defined as follows [9]:

• Rule, identifier for that rule.
• Match Fields, defines what fields the switch should map

on e.g. IP, HIT, MAC, etc. This could include wildcard
characters *.

• Priority, defines the order the incoming packets will be
matched against the rules, higher priority will be matched
first.

• Action, how the switch should handle that packet e.g.
forward packet to interface two.

• Counter, used to track statistics e.g. number of packets
matched entry.

• Timeout, determines how long the rule is active.
• Cookie, an identifier used by the controller to manage

and track flow entries.

Rule Match Fields Priority Action Counter Timeout Cookie
R1 IP, Port 1 Forward 2 100 30 s 1
R2 IP, MAC 2 Drop 50 60 s 2
R3 IP 3 Forward 3 75 None 3

TABLE I: A Flow table example

Group tables extend OpenFlow configuration rules from ver-
sion 1.1, enabling more advanced monitoring and forwarding
capabilities. They play an important role in managing network
traffic and increasing the flexibility of network operations.
For instance, a fast failover group table can be configured
to monitor the status of ports and interfaces, ensuring rapid
response to link or port failures [5]. Implementing complex
forwarding behaviors that standard flow tables would struggle
to achieve, group tables enhance network functionality. One
of the group table’s key benefits is traffic distribution across
multiple paths or links, improving resource utilization. In
cases where a single packet needs to be delivered to multiple
destination group tables aggregate traffic into a single flow
table entry per switch, saving significant link resources and
reducing the number of flow entries needed. In the event of
a link failure, fast failover groups ensure high availability by
providing backup paths. If a primary path fails, the group table
can quickly switch to a predefined backup path, minimizing
downtime and maintaining service continuity [10].

F. Open vSwitch (OVS)

An OpenFlow switch consists of flow tables or group
tables that perform packet lookups and forwarding. Using an
OpenFlow switch the controller can add, update, and delete
flow entries. These switches are responsible for forwarding at
the data layer. This can refer to a physical or virtualized switch
or router. A switch that forwards packets entering the switch
based on the flow table, which sets rules for what to do with
the incoming traffic. These flow entries are maintained and
generated by the controller. The switches are classified into
two types based on their support for OpenFlow[11]:

• Dedicated OpenFlow switch: Only supports OpenFlow
forwarding. It can only process all traffic that passes
through it in OpenFlow mode. Can’t perform Layer 2
or Layer 3 forwarding on traffic.

• OpenFlow-compatible switch: Supports both OpenFlow
forwarding and Layer 2/3 forwarding. It also supports
OpenFlow features such as flow tables.

G. Network Layers

The network can be divided into multiple layers, and one
commonly used method for partitioning is the Open Systems
Interconnection (OSI) model. The seven layers of the OSI
model are illustrated in Figure 1. The HIP protocol is run
between the network layer and the transport layer, hence it is
sometimes referred to as running on layer 3,5. Open vSwitches
are SDN-enabled devices that run on the data link layer and
the network layer, therefore they can be used as both switches
and routers.



Fig. 1: Network layers

H. IPv6

Is the latest version of IP, replacing IPv4. The key features
of IPv6 are:

• Increased Address Space: This is crucial for the contin-
ued growth of the internet and the increasing number of
devices in the context of IoT [12].

• Seamless Network Management: Simplifies subnet ad-
dresses management and includes features like state-
less autoconfiguration, which allows devices to configure
themselves automatically when connected to a network
[13].

• Improved Security: Built-in support for IPsec, which
was previously optional for IPv4, now provides end-to-
end security for Internet communications [12].

I. Multipath Routing

Multipath routing is the general technique of utilizing
multiple routes to balance concurrent traffic across different
potential paths in a network. This approach helps distribute
traffic load across multiple paths, preventing congestion on
a single path, which could otherwise increase latency and
cause packet loss. By doing so, it increases the data the net-
work can handle concurrently, thereby improving the overall
network performance [14]. It also ensures faster reactions to
network failures since it establishes alternative paths for traffic
flow ahead of time. With pre-established connections between
sources and destinations, in the case of congestion or other
suspected issues, the traffic can be redirected to an alternative
path without the need to search for new routes, which would
otherwise slow down the recovery time [15].

J. Path Failover

Existing failure detection protocols at the data-link layer,
such as the Spanning Tree Protocol (STP), are often classified
as slow because they can take seconds to detect failures.
These protocols work by updating port statuses in switches to
maintain the network distribution tree. This process involves
monitoring and modifying the state of switch ports - marking
them as active, blocked, or forwarding traffic- to ensure that
the network avoids loops and continues functioning correctly
even when links fail [5].

Precomputing primary and backup paths using OpenFlow
and integrating fast failover detection mechanisms like BFD
recovery time can be reduced. This approach ensures consis-
tent and minimal recovery time, regardless of the length of the
paths or the size of the network [5].

K. Bidirectional Forwarding Detection (BFD)

The BFD protocol checks the liveliness of paths to predeter-
mined endpoints, a monitored link. A session for a monitored
link is set up with a three-way handshake and then each node
sends control and echo messages. When a control message
containing the status of the monitored link is sent to the
endpoint, the endpoint replies with an echo of its status. By
using control and echo messages BFD can detect path failure.
BFD can be implemented over any transport protocol, over
OpenFlow switch it can be implemented using UDP/ IP stream
[5].

L. Mininet

Mininet is a network emulation tool designed to create and
test SDN applications in a controlled environment. It allows
the creation of virtual network typologies [16].

M. Dijkstra’s

Algorithm 1 shows Dijkstra’s algorithm, which computes
the shortest path from a source vertex s to all other vertices
in a weighted graph G = (V,E). The algorithm is based on
a priority queue implementation.

Algorithm 1 Dijkstra’s Algorithm [17]

1: Input: Graph G = (V,E), source vertex s
2: Output: Shortest distance from s to all vertices in V
3: Initialize distances: d[v]←∞ for all v ∈ V , d[s]← 0
4: Initialize priority queue Q and insert (s, 0) into Q
5: while Q is not empty do
6: Extract u from Q with the smallest distance d[u]
7: for each neighbor v of u do
8: if d[u] + w(u, v) < d[v] then
9: Update d[v]← d[u] + w(u, v)

10: Insert or update v in Q with priority d[v]
11: end if
12: end for
13: end while
14: Return d (shortest distances to all vertices)

The time complexity of Dijkstra’s algorithm using a priority
queue in the worst case is given by Equation 1, where V is
the number of vertices and E is the number of edges.

O((V + E) · log V ) (1)

N. Link Layer Discovery Protocol (LLDP)

LLDP is a standard protocol operating on layer 2 (data-link)
in the OSI model. The protocol is used by switches to advertise
information such as the MAC address and port information to
its neighbors in the local network. The usage of LLDP allows



network discovery which enables the construction of network
topologies [18]. Network discovery is particularly beneficial
in SDN network environments where the controller relies on
an extensive network map.

LLDP can also detect link failure by sending heartbeats
every 16 ± 8 ms over links without an active session. The
receiver needs to respond within a 50-150 ms time window. If
no response is received, the link is presumed to be down [5].

IV. RELATED WORK

This section examines existing approaches to network relia-
bility and recovery in SDN, focusing on key contributions that
address backup forwarding rules and recovery mechanisms
while highlighting their strengths and limitations.

A. Computing Backup Forwarding Rules in SDN
This paper introduces two algorithms designed for proactive

and reactive routing. However, the rerouting algorithms pre-
sented are not the most efficient due to several limitations [19].
One significant drawback is their higher computational com-
plexity, as additional processing is required to determine alter-
native paths during proactive and reactive routing scenarios.
This complexity can lead to increased latency, particularly in
dynamic environments where rapid changes occur. Moreover,
the algorithms may fail to fully optimize the use of available
network resources, potentially causing increased congestion
due to the use of longer backup paths.

While these algorithms offer valuable alternatives to existing
methodologies, they lack the incorporation of advanced tech-
niques such as real-time traffic analysis or machine learning,
which could significantly enhance their efficiency and adapt-
ability in routing decisions.

An alternative approach involves precomputing all backup
paths for every node by simulating the removal of individual
links. This algorithm systematically traverses each node in
the network and iterates through all its associated links. The
algorithm removes each link from the network and recalculates
the shortest path to generate a corresponding backup path.
This process is repeated for every node and its links, ensuring
all nodes have precomputed backup paths available for any
potential link-down scenario.

B. Fast Recovery in SDN
The study introduces a fast recovery scheme in SDN that

leverages per-link Bidirectional Forwarding Detection (BFD)
together with preconfigured primary and backup paths man-
aged by an OpenFlow controller [5]. This approach achieves
recovery times averaging 3.3 ms, significantly better than
traditional methods that often average over 30 ms. Through
experimental evaluations, the authors demonstrate that the
recovery time remains stable, regardless of the network size
or length of the paths involved. The findings emphasize
the limitations of conventional failure detection mechanisms,
which can lead to longer recovery periods in high-demand and
availability networks. Finally, this proposed method improves
network resilience and ensures the delivery of high-availability
services.

V. METHODS

Our method is based on a literature study and scientific ex-
perimentation in a simulated environment, with measurements
conducted to evaluate the performance of the implemented
SDN controllers.

A. Literature Study

A thorough literature review was conducted to prepare for
implementation and methods. The literature study involved
analyzing materials provided by our supervisor, which in-
cluded background information, tools, and software programs.
To get a more comprehensive understanding we also reviewed
additional, relevant, scientific papers and books.

To find research papers, we utilized Google Scholar with
keywords such as SDN, fast failover, link failure, fast recovery,
and link failure detection. These keywords formed the basis
for our paper.

We also took advantage of the university library’s database,
especially Scopus and Scopus AI, to locate related work.
Relevant abstracts and summaries were extracted using queries
formulated with keywords that were related to the topic.

B. Experimentation

The lost throughput during link failure was measured with
iperf and the elephant flow method. Iperf was used to transfer
the maximum amount of data possible between two nodes in
the network. Two Mininet nodes (hosts), the pair H1–H2 and
H1–H5, were used for this measurement. One node acted as a
server using the iperf -s command, while the other node was
used to send data using iperf -t 10 -c ”IP of the server”. The
-t flag was used to specify the amount of transmission time in
seconds. Two separate tests were made using iperf, one with
the link up and one with the link down. The mean of the tests
was computed after 10 runs to limit possible outliers that may
have occurred during the tests.

To measure and evaluate ping times during link failure,
automated tests were run. The flow method used is often
referred to as mice flow, which consists of smaller short-
lived data transmissions. The automated script is run with
the command ping ”IP of the host” -c 100 -i 0.05 and
automatically shut down a link between the involved hosts
after 1 second of delay. The flag -c specifies the number of
pings to send and -i is used for the ping interval.

A real-world network scenario was simulated to evaluate
the performance of the SDN controller implementation. Two
specific scenarios were considered: one with general traffic and
another with HIP-VPLS traffic. These experiments assessed
the controller’s ability to manage dynamic path failover and its
multipath resilience capabilities. The simulations were carried
out using Mininet, with the Ryu controller managing the
topology.

1) Measurements: The metrics of recovery time and band-
width utilization during link failures, and dynamic path rerout-
ing will be measured for conducting a performance evaluation.

The scenarios that will be evaluated consist of a combination
of the following alternatives:



• Reactive vs Proactive SDN controller
The reactive controller is the SDN controller that reac-
tively reroutes the traffic by removing affected switches’
flow entries containing the broken link. The switches
will then send a new pack-in and the controller will re-
compute the shortest path and install those connected
flows in the switch. The proactive controller precomputes
all paths and utilizes group tables with fast failover and
watch port that automatically re-routs to a backup path if
the port from the primary path currently is down.

• General flow data vs HIP-VPLS data
The general flow data will be represented as pings run-
ning with delays on network topology, shown in Figure
2. Compared to pings running with delays encrypted and
sent as HIP-VPLS packets on network topology as shown
in Figure 3.

• Link failure vs no link failure
The scenarios will be tested both handling link failure
and running without failures.

The SDN controller is conceptually placed at the center of
the network topology. To simulate this configuration, a delay
will be added between the switches and the controller. The
delay will vary based on the propagated distance between the
switch and the controller. This simulates a scenario where the
controller operates remotely instead of locally on the same
machine as the network topology is simulated.

The following scenarios will be considered, with the sim-
ulated SDN controller being conceptually placed in center
within the network topology:

1) Reactive SDN controller sending general flow data with-
out link failure

2) Reactive SDN controller sending general flow data with
link failure

3) Proactive SDN controller sending general flow data
without link failure

4) Proactive SDN controller sending general flow data with
link failure

5) Reactive SDN controller sending HIP-VPLS data with-
out link failure

6) Reactive SDN controller sending hip HIP-VPLS data
with link failure

7) Proactive SDN controller sending hip HIP-VPLS data
without link failure

8) Proactive SDN controller sending hip HIP-VPLS data
with link failure

For each scenario, the following measurements were con-
ducted using 100 packets and a ping interval of 0.05 seconds:

1) Controller processing time
A timer was implemented within the SDN controller
where it starts initialization to measure its process-
ing time, stopping the timer at the packet-in handler
method’s end. The packet-in handler method is triggered
only when a switch communicates with the controller
during the initialization or removal of network links.

Fig. 2: Network Scenario 1

2) Lost packets during link down
The link included in the ping path was marked as down
during the pinging process. An automated script with a
delay of 1 second was used to bring the link down after
1 second. This was automated with the same delay to
ensure the average time remained consistent across all
iterations. The number of packets lost during the link
down was measured.

3) Throughput loss during link failure
Using iperf, one host was set up as a server and one as a
client. The client sent the maximum bandwidth available
in under ten seconds to the server. Ten tests were run
for both link down and link up.

4) Number of flows installed
A counter was used to count all installed flows within the
SDN controller, in the install and delete path methods.

The network scenarios are represented using a map of the
USA to give a conceptual overview of the system’s structure.
The network is based on the American network Abilene [20]
and is only used to get a topology over a real network that is
currently in use. By real-world standards, one SDN controller
is not enough to control a whole country and is only used
for evaluation measures in this paper. The scenarios are not
modeled as exact real-world scenarios.

2) Network Scenario – general traffic: A scenario with
general traffic is shown in Figure 2.

3) Network Scenario – general traffic: A scenario with
HIP-VPLS traffic is shown in Figure 3.

4) Experimentation Setup: The experiments were supposed
to be conducted with two network traffic scenarios; one
with general traffic and another with HIP-VPLS traffic. The
Mininet-based network topologies were configured with arti-
ficial propagation delays due to distances between switches,
hosts, and the controller. The distances were calculated with
Google Maps between nodes from the Abilene topology [20].
The distances were then fed into an Ethernet cable propagation
calculator tool [21] where corresponding delays were deter-
mined. Calculated delays between links are shown in Table II.
Delays between switches and the SDN controller are shown
in Table III. The chosen delays would reflect around 50-55 ms
Round Trip Time (RTT) from the east to the west coast.



Fig. 3: Network Scenario – HIP-VPLS traffic

Link Endpoint 1 Link Endpoint 2 Delay
H1 S1 1ms
H2 S3 1ms
H3 S9 1ms
H4 S10 1ms
H5 S11 1ms
S1 S2 6ms
S1 S4 9ms
S2 S3 3ms
S2 S4 8ms
S4 S5 5ms
S3 S6 11ms
S5 S6 6ms
S5 S8 4ms
S6 S7 5ms
S8 S7 4ms
S8 S9 1ms
S7 S10 4ms
S9 S11 5ms

S11 S10 1ms

TABLE II: Link delays corresponding to propagated distances
including switches and hosts

The controllers were implemented in two configurations, a
reactive SDN controller that dynamically responds to events
such as flow installations and a proactive SDN controller
that pre-configures routes in the switches. The communication
paths used during the experimentation are illustrated in Figures
4 and 8. These paths are defined as follows:

Path 1: Host1 ↔ Host2, Path 2: Host1 ↔ Host5.

Switch Delay
S1 14ms
S2 13ms
S3 16ms
S4 5ms
S5 1ms
S6 6ms
S7 8ms
S8 4ms
S9 5ms

S10 11ms
S11 10ms

TABLE III: Link delays corresponding to propagated distances
between switches and SDN controller

Fig. 4: Network Scenario H1-H5 primary path

The controlled variables during experimentation included the
network topology configurations (hosts, routers, and switches)
and the traffic volume sent through the network. Uncon-
trolled consistent variables included HIP-VPLS, OpenFlow,
and the Open vSwitch type. Mininet served as the simulation
environment, while Ryu was used for the SDN controller
implementation. OpenFlow facilitated communication between
the switches and the controller, enabling dynamic path failover
mechanisms.

5) Procedure: Our data collection process was divided into
two distinct procedures, one for each of the described con-
trollers. The first procedure, focused on gathering minimum,
average, maximum, and standard deviation latency metrics
during the ping process, began with configuring the Abilene
network topology [20], see Figure 2, in Mininet and linking
it to the Ryu controller.

Traffic generation was initiated using an automated script,
where we connected to a specific host within the topology and
configured a ping command. This command was customized
with parameters such as the interval between packets, specified
using the -i argument, and the total number of packets to
be sent, specified using the -c argument. The generated ping
traffic created a consistent data flow, enabling us to observe
the network’s behavior under various conditions.

To simulate a link failure, we automatically triggered a link-
down event one second after the ping operation started. This
deliberate timing ensured that the failure occurred mid-ping,
allowing us to capture its impact on traffic flow and get an
accurate reading on all relevant metrics. The link failure event
and the subsequent re-routing for each communication path
are illustrated in Figures 5, 6 and 9.

During the experiments, we recorded key metrics such as
packet loss, minimum, average, maximum, and standard devi-
ation of latency and the aggregated controller compute time.
These measurements were output to a measurements text file
using the Linux pipe utility. By specifying the interval of the
ping messages, we calculated the rerouting completion time by
multiplying the number of lost packets by the given interval.
This process was repeated ten times for each controller to
ensure the reliability and consistency of the results.

We implemented two counters in both the reactive and



Fig. 5: Network Scenario H1-H5 with proactive-rerouting

Fig. 6: Network Scenario H1-H5 with reactive-rerouting

proactive controllers to collect additional data on the number
of flows affected by the link-down event. One counter tracked
the number of flows that were installed, while the other tracked
the number of flows that were removed.

C. Limitations

All implementations were done on IPv4 instead of IPv6.
The networks are simulated on a single computer. Running
the same network configuration on a real network could induce
unexpected issues, such as increased latency, packet loss, or
unoptimized performance due to hardware or environmental
changes. Each switch has at most three ports. We are solely
developing for Ubuntu 22.04. Our proactive solutions do not
implement back-propagation. Our implementation does not
consider backtracking making it possible for our network
packets to get stuck in an infinite loop, or until TTL is
achieved, effectively cutting off communication.

VI. SOFTWARE ANALYSIS

The current implementation of Dijkstra’s algorithm is opti-
mized to minimize the number of hops in the network. The
rationale behind this decision is to prioritize reducing the
number of intermediary nodes a packet traverses, which can
lead to lower latency and simpler routing paths. If one instead
wants to prioritize latency that could be implemented in the
Dijkstra algorithm by changing the cost consideration without
further modifications of the code base.

An asymmetric latency is introduced while rerouting using
the proactive SDN controller as shown in Figure 5. This occurs
since the Dijkstra only computes the least hops required to
the destination. If the same amounts of hops are required then
the algorithm could return a different path depending on the
direction. This could lead to TCP performance degradation
as discussed in the paper by Hari B et al. [22] among other
potential problems. If this is considered crucial, modification
to the proactive SDN controller software is needed.

Larger networks need more than one controller due to the
amount of overwhelming traffic that can occur [23]. Due to
this reason, the Abilene scenario [20] with one controller is
not suitable for real-life usage.

The HIP integration with Abilene [20] was not able to be
completed during the time frame. The introduction of HIP
routers broke links in the network and pinging between hosts
was unreliable, making testing impossible. Adding to this,
introducing link failures completely crashed the simulated
network. The cause of this is still unknown and needs to be
further explored. Although the Abilene scenario [20] failed,
the example scenario, see Figure 7, worked without problems.
This may be due to misconfiguration of the Abilene scenario
[20], using a larger network, or the controllers need rework to
properly handle HIP traffic on a larger scale.

A. Example HIP Scenario

Fig. 7: Example HIP scenario

VII. RESULTS AND ANALYSIS

In the following sections, we will present and discuss the
implementation of our dynamic path failover using Mininet
and SDN.

A. Link Failure Detection

To detect when a link between two network devices goes
down, Ryu generates a link-down event. This event is listened
for in the controller and allows actions to be made such as
removal, installation, and modification of any affected flows.
In the controller, a data structure is implemented to keep track
of the current network topology. The data structure is used to
map pairs of network devices and the port that connects them.
On each event where the topology might change, the controller
rediscovers the links and devices and updates this internal data
structure. This is not limited to just link-down events; changes
to switches and ports are also watched.



Fig. 8: Network Scenario H1-H2 with primary path

B. Throughput loss during link failure

Table IV presents the impact on throughput during a link
failure with the reactive controller, while Table V shows the
corresponding results for the proactive controller.

Hosts
Average Throughput
Before Link Failure

Average Throughput
After Link Failure

H1-H5 1.748 Gbits/s 1.421 Gbits/s
H1-H2 6.853 Gbits/s 2.091 Gbits/s

TABLE IV: Throughput before and after link failure with
reactive controller

Hosts
Average Throughput
Before Link Failure

Average Throughput
After Link Failure

H1-H5 1.751 Gbits/s 1.457 Gbits/s
H1-H2 6.852 Gbits/s 2.158 Gbits/s

TABLE V: Throughput before and after link failure with
proactive controller

C. Rerouting

After a link failure has been detected, a new path must be
calculated through the network. The controller uses Dijkstra’s
algorithm with a hop-based cost to accomplish this. The
distance, equal to the number of hops, is calculated from the
source to every other node in the network. This creates a graph
that is traversed to find the path from each node to the host.
This path is reversed to find the actual path from the source to
the destination. Furthermore, default flows are added to each
switch during the controller initialization. This flow states that
the packet should be forwarded to the controller if no other
flow is matched.

1) Reactive Rerouting: In the reactive controller, the rout-
ing algorithm is run each time a new host is discovered in
the network. This occurs when the first packet from the host
enters the network. A data structure in the controller is used to
keep track of the MAC address of each host. This is mapped
to their neighboring switch and the port on which their packets
are received. When a new host is discovered, it is added to
the data structure. If the destination of the packet is not yet
known, the network is flooded until it is found.

Fig. 9: Network Scenario H1-H2 with rerouting. Both con-
trollers resulted in this rerouting path

When both the source and destination are known, Dijkstra’s
algorithm is run to discover the shortest path between them.
This path is traversed, and a flow is installed in each affected
switch accordingly. The packet is matched on the source and
destination MAC addresses, and the receiving port on the
switch.

The algorithm described here can be seen in Algorithm 2.
If a link-down event is observed, the controller takes action.
Each path calculated during initialization was saved to be
used during this step. Each flow that is included in a path
through the affected link is deleted. The next time a switch
receives a packet that is used to take one of these paths, no
flows are matched and it is forwarded to the controller. The
controller reruns Dijkstra’s algorithm and installs new flows
corresponding to the new path.

Algorithm 2 Reactive link failure

1: INPUT:
2: G: Network topology graph with switches and their link

data
3: link: The link that is detected as down.
4: path: The current path from src to dst
5: source: The source node in the network.
6: destination: The destination node in the network.
7:
8: if link is down then
9: Remove link from G

10: for all switch ∈ affected switches do
11: Remove flow entries in switch related to link
12: end for
13: shortest path← Dijkstra(G, start node =

source, end node = destination)
14: Update flow entries along shortest path
15: end if

2) Proactive Rerouting: In the proactive controller, the
routing algorithm is also run at initialization. However, it cal-
culates the paths differently. Just as in the reactive controller,
a flood is generated if the destination is unknown. Once both
relevant hosts are discovered, the paths are calculated.



For a packet to be able to take a backup path, each switch
must know how to reach each host. Dijkstra’s algorithm is
run twice from both the source and destination if the hosts
are previously unknown. These paths are traversed from both
hosts to each switch. For each switch, a unique group table is
generated to accommodate the backup paths. Two buckets are
installed in each group table: One for the primary path and one
for the backup. In contrast to the primary path, the backup is
not calculated in its entirety with Dijkstra’s algorithm. The
controller simply checks its available ports, excluding the
primary and ones leading out of the network, and selects the
first one. Each bucket is assigned a watch-port equal to the
flow out-port. Algorithm can be seen in Algorithm 3.

Algorithm 3 Proactive link failure

1: INPUT:
2: G: Network topology graph with switches and their link

data
3: hosts: List of known hosts in the network.
4: detect new host(): Function to detect newly added

hosts.

5:6: INITIALIZE: known hosts← ∅
7: while True do
8: new host← detect new host()
9: if new host ̸= None ∧ new host /∈ known hosts

then
10: Add new host to known hosts
11: for all switch ∈ G do
12: shortest path← Dijkstra(G, start node =

switch, end node = new host)
13: if shortest path.next == new host then
14: update f(switch, new host, shortest path)

{Update flow table}
15: else
16: update p(switch, new host, shortest path)

{Update group table primary bucket}
17: if Another port available from switch then
18: update b(switch, new host,

shortest path)
19: {Update group table backup bucket}
20: end if
21: end if
22: end for
23: end if
24: end while

D. Measurements

The baseline of the measurements is given in Figures
10 and 11 in Appendix A. These metrics are compared to
Figures 12, 13, 14 and 15 in Appendix A, where link failures
occur for the reactive and proactive controller. The proactive
approach installs significantly more flows in conjunction with
considerably higher processing times compared to the reactive
approach. This is expected as the reactive algorithm installs

backup paths alongside the primary path per switch for every
new host. The reactive algorithm on the contrary, only installs
flows in the switches along the computed path.

Measurements with link-down events are presented in Fig-
ures 12, 13, 14 and 15 in Appendix A. The proactive approach
remains similar in installed flows and processing time. Due to
precomputed backup paths, each switch can act accordingly
without additional assistance from the controller. The reactive
approach on the other hand exhibits greatly increased process-
ing time and number of flows modified. The explanation is that
the reactive controller reactively deletes existing links in the
affected path and installs new ones each time a link failure
event is detected. This process entails intervention from the
controller. Due to controller delay an additional RTT of around
100ms is added to the reactive max ping time. Additionally
the processing time for computation of a new path is also
incorporated in the max ping. The average is therefore slightly
higher in the reactive controller due to the massive spike in
the max ping time.

VIII. CONCLUSION

This section answers and summarizes the research questions
using the results discussed in the chapters above.

A. How can a path fail-over mechanism that detects real-time
link failures and attacks be implemented using SDN?

An SDN-based path failover mechanism can be imple-
mented either reactively or proactively. Different link failure
detection methods can be most effective for each approach.

Reactive Approach: The SDN controller detects link fail-
ures in real time by monitoring LLDP packets. The controller
dynamically removes flow entries from the affected switches’
flowtable upon identifying a failure. The affected switches in
this case are all switches that are a part of a path containing
the broken link. All flow entries connected to those paths in
the affected switches are removed.

Proactive Approach: The SDN controller configures group
tables with the ”watch port” property in advance. These group
tables monitor specific ports for failure and automatically
reroute traffic to backup paths without requiring interaction
with the controller.

B. To what extent can traffic be dynamically rerouted to
alternative paths during network transmission?

In SDN, traffic rerouting can be achieved through reactive
or proactive path failover mechanisms:

Reactive Approach: The controller dynamically removes
flow entries from affected switches’ flowtable if a link failure
is detected. The switch will send a new packet-in to the
controller that will recalculate the shortest path using the
Dijkstra algorithm, using a hop-based cost metric. This means
the shortest path is determined by the number of hops.
The controller then installs the shortest path by updating
flow entries in the affected switches’ flowtables, enabling the
rerouting of traffic.

The provided reactive algorithm in this paper works for
all network scenarios as long as a path to the destination



exists, however, the algorithm only works if one link is
down at a time. Another flaw is that a processing time is
induced whenever a link goes down, this is due to the reactive
recomputation of paths. The processing time will be dependent
on the number of switches involved in the path, more switches
equals higher processing time.

Proactive Approach: When a new host is discovered in
the network, the controller precomputes the shortest paths
from each switch to this host as a destination using Dijkstra’s
algorithm with a hop-based cost metric. These paths are
installed in the switches group tables with the primary path
set as the default action for routing traffic to the host. If an
additional output port is available, a backup action is added
in another bucket with less priority. The group table uses the
fast failover mechanism and the watch port functionality to
monitor the status of the port related to each bucket. If the
primary port is active, traffic is routed through it. However, if
the primary port fails, the group table automatically switches
to the backup path.

The given proactive algorithm does not handle backtracking
or provide any method for neighboring nodes to detect link
failures occurring elsewhere in the network. As a result,
depending on the packet path, it may end up in a loop, making
this approach unsuitable for certain network topologies.

The proactive approach has zero processing time since it
does not rely on communication from the controller and has all
backup paths preinstalled. Consequently, rerouting will solely
depend on the time it takes for the watch bucket to detect
port failure. The proactive algorithm can handle multiple link
failures in contrast to the reactive algorithm.

C. How can Mininet and Ryu simulate a real-world network
scenario to evaluate the recovery time and bandwidth of SDN-
enabled routing during link failures?

Simulations of real-world network topologies can be done
using Mininet. This virtual Mininet network should include
hosts, switches, and links configured to emulate the desired
network. There are also options to specify bandwidth limi-
tations and latencies between the links. These options could
be used to represent real-world scenarios artificially. The
Ryu controller is then integrated to control the network,
providing programmability for custom routing logic. Ryu
can also integrate rerouting algorithms and failure detection
mechanisms by installing, modifying, and removing flows in
affected switches.

Once the setup is ready, traffic flows are generated between
hosts using tools like iperf or ping, accessed through the
Mininet CLI or API, to simulate traffic. Link failures are
introduced in the network by disabling specific links within
Mininet, which triggers Ryu’s failure event. Ryu captures link
failure events and actions can be taken accordingly.

During the simulation, key metrics are monitored. Recovery
time is the delay between the link failure event and the
successful traffic restoration on an alternate path. Bandwidth
performance is assessed by observing throughput before, dur-
ing, and after the failure to understand how efficiently the

network adapts to changes. The collected data is analyzed to
evaluate how effectively the SDN-enabled network responds
to link failures.

ACKNOWLEDGMENT

E. F. M. M. R. would like to thank Mohammad Borhani for
patiently answering all our questions. We are also grateful to
Andrei Gurtov for his research guidance and Ulf Kargen for
making this opportunity possible.

REFERENCES

[1] Yong-Gang Pan, Li-Ping Ni, Xiao Liu, and Zeng-
Xiang Li. “Innovational network protocol - HIP”. In:
Zhongshan Daxue Xuebao/Acta Scientiarum Natralium
Universitatis Sunyatseni 45.SUPPL. (2006), pp. 164–
166.

[2] Pekka Nikander, Andrei Gurtov, and Thomas R. Hen-
derson. “Host Identity Protocol (HIP): Connectivity,
mobility, multi-homing, security, and privacy over IPv4
and IPv6 networks”. In: IEEE Communications Surveys
and Tutorials 12.2 (2010), pp. 186–204. DOI: 10.1109/
SURV.2010.021110.00070.

[3] Sang-Il Choi and Seok Joo Koh. “Enhanced mobility
management schemes in HIP-based mobile networks”.
In: 2013, pp. 306–311.

[4] Kuntal Gaur, Anshuman Kalla, Jyoti Grover, Mo-
hammad Borhani, Andrei Gurtov, and Madhusanka
Liyanage. “A Survey of Virtual Private LAN Services
(VPLS): Past, Present, and Future”. In: Computer Net-
works 196 (2021).

[5] Niels L. M. Van Adrichem, Benjamin J. Van Asten,
and Fernando A. Kuipers. “Fast Recovery in Software-
Defined Networks”. In: Third European Workshop on
Software Defined Networks (2014), pp. 61–66. DOI: 10.
1109/ewsdn.2014.13.

[6] Yubaraj Gautam, Bishnu Prasad Gautam, and Kazuhiko
Sato. “Experimental Security Analysis of SDN Network
by Using Packet Sniffing and Spoofing Technique on
POX and Ryu Controller”. In: 2020, pp. 394–399. DOI:
10.1109/NaNA51271.2020.00073.

[7] Grace T. Shalini and S. Rathnamala. “A RYU-SDN
Controller-Based VM Migration Scheme Using SD-
EAW Ranking Methods for Identifying Active Jobs in
the 5G Cloud Framework”. In: International Journal of
Cloud Applications and Computing 13.1 (2023). DOI:
10.4018/IJCAC.319031.

[8] Xuan Thien Phan, Nam Thoai, and Pierre Kuonen.
“A collaborative model for routing in multi-domains
OpenFlow networks”. In: 2013, pp. 278–283. DOI: 10.
1109/ComManTel.2013.6482405.

[9] R. Gopakumar, A. M. Unni, and V. P. Dhipin. “An
adaptive algorithm for searching in flow tables of Open-
Flow switches”. In: 2016. DOI: 10.1109/NATSYS.2015.
7489115.



[10] Rafael George Amado, Kim-Khoa Nguyen, and Mo-
hamed Cheriet. “OpenFlow rule placement in carrier
networks for augmented reality applications”. In: 2022,
pp. 952–959. DOI: 10.1145/3477314.3507101.

[11] Huawei Technologies Co., Ltd. OpenFlow: A Key Com-
ponent of SDN. Webpage. Accessed: 2024-11-26. 2024.

[12] Nuno Miguel Carvalho Galego, Rui Miguel Pascoal,
and Pedro Ramos Brandão. “IPv6 in IoT”. In: Lecture
Notes in Networks and Systems 773 (2024), pp. 89–94.
DOI: 10.1007/978-3-031-44131-8 9.

[13] Melvyn Wray. “The sixth protocol”. In: New Electron-
ics 41.22 (2008), pp. 43–44.

[14] Soonyong Sohn, Brian L. Mark, and John T. Brassil.
“Congestion-triggered multipath routing based on short-
est path information”. In: 2006, pp. 191–196. DOI: 10.
1109/ICCCN.2006.286271.

[15] Pascal Merindol, Jean-Jacques Pansiot, and Stéphane
Cateloin. “Providing protection and restoration with
distributed multipath routing”. In: 2008, pp. 456–463.

[16] Jason Liu, Cesar Marcondes, Musa Ahmed, and Rong
Rong. “Toward scalable emulation of future internet ap-
plications with simulation symbiosis”. In: 2016, pp. 68–
73. DOI: 10.1109/SLSA.2016.020.

[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms.
Second. MIT Press and McGraw-Hill, 2001. Chap. 24.3:
Dijkstra’s algorithm, pp. 595–601. ISBN: 0-262-03293-
7.

[18] Deben Bhattarai. “Link Layer Discovery Protocol”. In:
Cisco Learning Network (2020). Accessed: 2024-12-09.
URL: https://learningnetwork.cisco.com/s/article/link-
layer-discovery-protocol-lldp-x.

[19] Niels L. M. Van Adrichem, Farabi Muhammad Iqbal,
and Fernando A. Kuipers. “Computing backup forward-
ing rules in Software-Defined Networks”. In: CoRR
abs/1605.09350 (2016). arXiv: 1605.09350. URL: http:
//arxiv.org/abs/1605.09350.

[20] Simon Knight. Topology Zoo. https://topology-zoo.org/
gallery.html. Accessed: 2024-11-18. Mar. 2011.

[21] Omni Calculator. Propagation Delay Calculator. https:
/ / www. omnicalculator. com / other / propagation - delay.
Accessed: 2024-12-09.

[22] Hari Balakrishnan, Venkata N. Padmanabhan, and
Randy H. Katz. “The effects of asymmetry on TCP
performance”. In: Mobile Networks and Applications
(1999). URL: https://link.springer.com/article/10.1023/
A:1019155000496.

[23] Gang Wang, Zhifeng Zhao, Jialiang Peng, Rongpeng Li,
and Honggang Zhang. “An approximate algorithm of
Controller configuration in multi-domain SDN archi-
tecture”. In: 9th International Conference on Commu-
nications and Networking in China (Aug. 2014). DOI:
10.1109/chinacom.2014.7054366.

APPENDIX

A. Graph – Scenario 1 and 3: Reactive and Proactive SDN
controller sending general flow data without link failure

Fig. 10: Scenario 1 and 3 H1-H2

Fig. 11: Scenario 1 and 3 H1-H5

Reactive Proactive
H1-H2 H1-H5 H1-H2 H1-H5

Flows installed 6 12 74 80
Flows deleted 0 0 0 0
Processing time 8.82 ms 16.35 ms 28.45 ms 20.95 ms
Amount of lost packets 0 0 0 0

TABLE VI: Scenario 1 and 3



Fig. 12: Scenario 2 and 4 H1-H2 without controller delay

Fig. 13: Scenario 2 and 4 H1-H5 without controller delay

B. Graph – Scenario 2 and 4: Reactive and Proactive SDN
controller sending general flow data link failure

Fig. 14: Scenario 2 and 4 H1-H2 with controller delay

Fig. 15: Scenario 2 and 4 H1-H5 with controller delay

Reactive Proactive
H1-H2 H1-H5 H1-H2 H1-H5

Flows installed 14 26 74 80
Flows deleted 4 10 0 0
Processing time 14.05 ms 32.71 ms 29.23 ms 20.93 ms
Amount of lost packets 0.7 1.2 0.2 0.7
Percentage of lost packets 0.7% 1.2% 0.2% 0.7%

TABLE VII: Scenario 2 and 4

C. Scenario 5, 6, 7 and 8: Reactive and Proactive SDN
controller sending HIP-VPLS data with and without link

failure

It was not possible to obtain results with HIP-VPLS within
the time frame of the project.


