
Implementation of Secure Multipath Resilience in
HIPLS using Mininet and SDN Integration

Fabian Aronsson
IDA

Linköping university
Linköping, Sweden

fabar453@student.liu.se

Viktor Bergström
IDA

Linköping university
Linköping, Sweden

vikbe588@student.liu.se

Sandeep Chiru Kandoth
IDA

Linköping university
Linköping, Sweden

sanch066@student.liu.se

Axel Eklöf
IDA

Linköping university
Linköping, Sweden

axeek324@student.liu.se

André Koch
IDA

Linköping university
Linköping, Sweden

andko485@student.liu.se

Abstract—This project explores the implementation of multi-
party key exchange with the Host Identity Protocol (HIP) using
Mininet and Software defined networking (SDN). This is done
by implementing Burmester-Desmedt (BD) key exchange with
an elliptic curve in an open source HIPLS implementation. The
result is a more efficient implementation that still can establish
trust in a zero trust environment. A hub-spoke topology was
adopted to reduce full-mesh tunnels and decrease attack surface.
The results demonstrate enhanced security and scalability com-
pared to previous implementations, while addressing limitations
like computational overhead. This work contributes to advancing
secure communication in decentralized, zero trust networks.

Index Terms—Multi-party key exchange, Host identity proto-
col, HIP, Mininet, Burmester-Desmedt, Diffie-Hellman, Elliptic
curves, zero trust.

I. INTRODUCTION

This report presents the project for implementation of
Secure Multipath Resilience in HIPLS using Mininet and
SDN Integration. It does this by describing the background,
methodology, result, discussion and conclusion. The goal of
the project was to implement secure multi-party key exchange
in the open-source Python implementation of HIPLS [1]. The
result is meant to improve the already existing implementation,
so it can be further developed in the future. The proposed
implementation aims to make the current one more efficient
by enabling better scalability for use with more nodes. In this
first chapter the motivation and purpose behind the project,
the research questions as well as the context of the project is
presented.

A. Motivation

In an increasingly interconnected digital landscape, the need
for secure and efficient communication is growing increasingly
relevant. The Host Identity Protocol (HIP) was designed to
address certain design flaws in the basic TCP/IP architecture.
These flaws are primarily related to the IP address being used
for both identity and location [2].

HIPLS is an open-source Python implementation of HIP.
However the current implementation lacks support for multi-
party key exchange, which is critical for scaling communica-
tions in a zero trust environment.

Linköping University

This project aims to address this problem by implementing
secure multi-party key exchange in the current implementa-
tion. Multi-party key exchange would allow multiple parties
to establish a shared secret key, reducing the need for pairwise
key generation. This would greatly improve efficiency and
scalability. The key exchange also provides integrity, while
the HIP provides authentication, which both are requirements
to establish trust in a zero trust network.

B. Purpose

The purpose of the project is to make the HIPLS imple-
mentation more efficient and scalable to larger networks. As
well as determine if it is possible to implement multi-party key
exchange in the current implementation in an effective way.
The result of this project also serves to give the participants
experience working with network-protocols and advanced sub-
jects in computer security such as cryptology and networking.
The purpose of the report is to document the project.

C. Research Questions

This project aims to implement and evaluate secure HIP
multi-party key exchange, ensuring a more efficient but still
secure communications. To do this it answers the following
research questions:

1) How to implement the Burmester-Desmedt key ex-
change protocol into the current Python HIP implemen-
tation?

2) How do the changes to the Python implementation affect
the performance of the Host Identity Protocol?

3) What differences can be identified between the proposed
and current implementation with regards to trust, com-
plexity, attack surface and IPsec mode?

D. Limitations

The project and the report will only cover multiparty key ex-
change in HIPLS and not how to secure multi-path resilience.
In the implementation of the HIPLS the group will have to
use IPsec as a base, but it will not be thoroughly explained in
this report as it is outside the scope of the project. For further
reading on IPsec see [3].



E. Context

This project was done by five students. It is part of the
advanced project course in information security: TDDE63
(6hp) for the secure systems master at Linköping University.
All participants are in their fifth year of studies. The purpose
of the course is to do a project in the student’s master’s area
before they do their master’s thesis. In the context of this
report, all mentions of HIP refers to the second version of the
protocol HIPv2 [4].

II. BACKGROUND

This section describes the necessary background knowledge
to understand the project, as well as the background of the
group members and the project itself.

A. Abbreviations and Acronyms

The abbreviations and acronyms in table I are used in the
report.

TABLE I
LIST OF ABBREVIATIONS AND ACRONYMS

Acronym Definition

LAN Local Area Network

HIP Host Identity Protocol Version 2

HI Host Identity

HIT Host Identity Tag

LSI Local-scope Identifier

HIPLS Host Identity Protocol-based Virtual Private LAN Service

BD Burmester-Desmedt

DH Diffie-Hellman

SDN Software Defined Networking

BEX Base exchange

IPsec Internet Protocol Security

CE Customer Edge

MTU Maximum transmission unit

ESP Encapsulating Security Payload

AH Authentication Header

B. Zero trust environment

To give a better understanding of the reasoning behind the
motivation of the project, zero trust must be explained.

A zero trust environment is, as the name implies, an environ-
ment where no device or resource is to be trusted. It operates
under the principle ”never trust, always verify” [5]. This puts
an emphasis on developing tools and systems to be able to
authenticate and authorize resources and devices to ensure
security. In a zero trust environment the assumptions are
that the network constantly operates in a hostile environment,
facing threats both internal and external throughout its life
cycle. Therefore, the credibility of the network cannot be

determined by location alone, and all devices, users, and traffic
must be continuously authenticated and authorized [6].

C. IPsec

The current implementation uses IPsec in Encapsulating Se-
curity Payload (ESP) mode to secure communications. While
ESP provides confidentiality, integrity, and authentication, it
introduces additional overhead by encrypting the payload
data. In the setup, where information is already encrypted by
other mechanisms, ESP results in double encryption, which
is computationally redundant and adversely impacts efficiency
[3]. To address this, the group attempted to change to Au-
thentication Header (AH) mode. AH ensures data integrity
and authentication without encrypting the payload, thereby
eliminating the unnecessary computational burden associated
with double encryption.

1) ESP vs AH: The ESP and AH are two IPsec modes that
do different things. ESP is designed to encrypt the contents of
IP packets, so the data is confidential. It can also do optional
authentication and integrity checks to ensure that the data
hasn’t been tampered with during transit. AH on the other
hand is focused on integrity and authenticity of the data by
securing the entire IP packet including certain fields in the
header. But AH doesn’t encrypt the packet contents, so the
data is visible. The main difference is that ESP provides
encryption for privacy and AH provides authentication and
integrity without confidentiality [3].

2) ESP NULL Encryption: An alternative to AH is ESP
NULL Encryption. ESP NULL Encryption works the same
way as normal ESP but it uses an encryption algorithm called
NULL encryption [7]. This algorithm doesn’t encrypt the
packet. In practice and for the purposes of this project this
achieves about the same effect as AH. This is because the
reason to use AH in this project is to not double encrypt the
packages.

D. Multi-party key exchange

Regardless of which mode is used, IPsec requires a key
exchange mechanism in order to establish symmetric keys
between its participants. The current HIPLS implementation
establishes a unique key for each pair of connected nodes
in the network by running a Diffie-Hellman key exchange.
This approach, while conventional and secure, leads to a large
number of keys needing to be generated in order to provide
the benefits of IPsec for the network.

An alternative method is to implement a multi-party key
exchange, for example Burmester-Desmedt. In such a scheme
all nodes are able to agree on a single shared key, thus
dramatically reducing the performance cost of securing the
network as it scales.

1) Diffie-Hellman: Diffie-Hellman key agreement is a cryp-
tographic protocol in which two participants agree on a secret
shared key. The protocol can be performed over a public
or unsecured channel without revealing the shared key to a
potential eavesdropper [8].



The method works as follows. Both participants must first
agree on a public generator (g) and a public prime number
(p). The two participants (A,B) then each generate a private
secret (xa and xb). Each participant then computes and sends
the following public values to each others using equations 1
and 2.

YA = gxa mod p (1)

YB = gxb mod p (2)

Both participants can now compute the same shared key, using
the equations 3 and 4.

K = Y xa

B mod p (3)

K = Y xb

A mod p (4)

2) Burmester-Desmedt: The Burmester-Desmedt Key
Agreement protocol is a conference keying scheme which
allows an arbitrary number of participants to agree on
a shared secret key over a potentially insecure channel.
Burmester-Desmedt can be viewed as a generalization of
Diffie-Hellman for three or more participants.

The protocol consists of two rounds and works as following
[9].

First, all participants must agree on a public generator (g)
and a public prime number (p). Then each participant i ∈
[0, n] generates a private secret (ri). After this each participant
computes and broadcasts a public value given by equation 5.

zi = gri mod p (5)

Upon receiving all public zi values each participant now
starts the second round by computing and broadcasting another
public value given by equation 6

Xi =

(
zi+1

zi−1

)ri

mod p (6)

Upon receiving all public Xi values each participant now
computes the shared key using equation 7

K = zrini−1·X
n−1
i ·Xn−2

i+1 ·. . .·Xi−2 = gr1r2+r2r3+...+r1rn mod p
(7)

E. Elliptic curves

Diffie-Hellman and Burmester-Desmedt can be extended to
make use of elliptic curve cryptography (ECC). In the context
of this project an elliptic curve is a plane curve over a finite
field which consists of the points that satisfy equation 8.

y2 = x3 + ax+ b (8)

With elliptic curves the generator is represented as a point on
the curve G instead of an integer modulo n. Elliptic curves
have grown in popularity [10] due to its smaller key size
needed to maintain proper security, for example a 256 bit key
created with an elliptic curve gives the same security as a 3072
bit RSA key. This is because the security of the elliptic curve

discrete logarithm problem has a solution with worse time
complexity than the ”normal” discrete logarithm problem [11]

There are many different elliptic curves used in cryp-
tographic contexts that come with different drawbacks and
benefits. Two common ones being secp256k1 and curve25519.
For this project the group chose secp256k1 V-B2.

1) The Host Identity: It achieves this separation of identity
and location by the introduction of a new namespace, the
Host Identity (HI). The host identity is derived from a self-
generated public-private key-pair, so a host using the private
key can prove it owns the public key and thereby prove its
identity [12]. Since the public-key is too large for use in a
packet and to keep compatibility with existing applications,
two other identifications are used. First the Host Identity Tag
(HIT) which is a hash of the public-key with the same length
as an IPv6 address, and secondly The Local-Scope Identifier
(LSI). The LSI can be constructed by taking the last bytes
of the HIT. IPsec is used to carry the HIP packets, using
Encapsulating Security Payload (ESP) in transport mode [2].

2) Base exchange: For a visual overview of the exchange,
see fig. 1. The base exchange is initiated when the initiator
first sends a packet (I1) containing its HIT and the responders
HIT, which it gets from the DNS server.

The responder then responds by sending back the HITs
together with the Diffie-Hellman key (DH), the public-key of
the responder and a puzzle used to combat Distributed Denial-
of-Service (DDoS) attacks. This packet (R1) is also signed.

The initiator then sends back the HITs together with the
solution to the puzzle and DH, this packet (I2) is also signed.

The final packet (R2) from the responder is only a signature
which the initiator verifies [2].

Fig. 1. Diagram of the HIPv2 base exchange

What these steps accomplish is a four-way handshake where
the initiator and responder authenticate each other and share
DH public values which results in the generation of a shared
session key [12].



F. Topology

A network topology defines the arrangement of nodes and
connections in a network [13]. To integrate BD into the
existing HIP implementation, the previous mesh topology
required modification. A hub-and-spoke topology was selected
for this purpose, as illustrated in fig. 2. Every node in the figure
except the switch is a router.

Fig. 2. Hub-spoke topology

The hub-spoke topology is beneficial because adding more
spokes will not affect the other nodes, which provides flexi-
bility. It is also more economical in terms of use of resources
since there are less edges in total compared to a topology
where everything is connected [14].

For the purpose of multi-party key exchange there is also
a demand for a separation between different types of nodes.
One of them (spokes) has to initiate the key exchange and one
has to wait until the initiation is complete (hubs).

One advantage with the hub and spoke topology is that it
avoids the full mesh problem, were all nodes are connected to
each other, see fig. 3. The problem with full mesh is that
it makes the amount of edges grow quadratically for each
node added. With the hub-spoke topology only the hubs grow
quadratically when a hub node is added while the spokes have
a linear growth for each spoke added to a hub. This allows
for a less computationally complex topology and a ”cheaper”
setup [15].

G. Host Identity Protocol

This project will implement multi-party key exchange into
HIP, which is a protocol that aims to address certain flaws in
the basic TCP/IP protocol. These flaws mostly stem from the
fact that the IP address is used for both identity and location
in a conventional network. The Host Identity Protocol (HIP)
was therefore designed to separate the identity from it.

Fig. 3. Full mesh topology

H. Tools

During the project several tools will be used.
• Python - This programming language will be used to

write the implementation [16].
• Mininet - Used to create virtual networks that can be used

to experiment with the HIPLS implementation, as well as
for testing future code-changes [17].

• Github - Used for collaboration between team-members,
to manage tasks and to version control the code [18].

• Virtual Machine - To run the environment for implement-
ing the proposed HIPv2 the groups used different virtu-
alization programs. The Windows users used VirtualBox
[19] and the Mac users used UTM [20].

I. Project background

A basic version of HIPLS, with Diffie-Hellman key ex-
change is already implemented in Python and the repository
on Github is regularly updated [1]. The group will also have
regular meetings with a supervisor who is experienced in
HIPLS and Mininet.

J. The groups earlier experience

The group consists of final-year Computer Science students,
all specializing in cybersecurity. Collectively, the group have
solid understandings in computer networks, gained through
courses taken at Linköping University and other professional
experiences. This shared background provides the group with
practical insights into network protocols and secure commu-
nications. Three members of the group have also completed a
course in cryptology, giving them understanding cryptographic
protocols. No group member has previously worked with
HIPLS or Mininet. The combination of expertise in networks
and cryptography ensures a well-rounded skill set for this
project allowing the group to efficiently design a solution.

III. METHODOLOGY

This section will explain how each research-question was
answered.

A. Literature review

To find the information about which key exchange protocols
are currently available and how they work the group conducted
a literature review wherein the members searched for infor-
mation by themselves. They also received some introductory
papers and books from the course supervisors. The course



supervisor also gave a presentation on some of the concepts
and their opinion on the different key exchange protocols.
Besides choosing a protocol the group also had to decide on a
topology, this was done during meetings with the supervisor.
The group also studied documentation for different python
libraries and for Mininet.

To find more papers and books Google search, Google
scholar and Linköping University’s own search tool was used.
The criteria for the source were that it was either a published
book or that the paper was linked to a scientific institution. If
someone in the group found a good source to use and read they
shared it with the rest of the group. The group then discussed
whether or not source was relevant for the project.

B. Experimentation

To implement multi-party key exchange the group first had
to conduct experiments to get an understanding of how the
current implementation worked.

The experiments were conducted on a virtual machine run-
ning Ubuntu 22.04.1 [21]. They mostly consisted of examining
log-files while running Mininet, with the HIPLS configuration.
The group also modified the source code of the HIPLS and
the setup-script to investigate what changes occurred in the
log output. Finally the group also sent different commands in
the Mininet command line interface, for example they pinged
different routers or looked at the interfaces of the routers and
hosts.

A small mock version of the BD protocol was also imple-
mented. This small mock version served to demonstrate the
functionality of BD to the supervisor and other students taking
the course, as well as a proof of concept for the group. It also
gave the group a better understanding of how the final version
of the protocol should look and function.

To calculate the time for the BEX in the current implemen-
tation two more routers were added so that there were an equal
number of nodes in the proposed and current implementation.
To get the correct timings for the BEX the time span that
was counted was from the first I1 packet sent from the
spoke/router to when they received the R2. For the proposed
implementation only, the spoke was timed as they initialize and
are the end of the BEX. The timings were timed on Windows
laptop running VirtualBox with Ubuntu 24.04 [22]. To make
sure the performance was the same for all runs they were done
while the laptop was not charging and in a normal performance
mode.

C. Implementation

As stated earlier, the existing code was only functional for
key exchange between two parties and it used a topology
similar to the one in fig. 3. This code therefore needed to be
changed and improved to allow for more parties. The first step
was to review the existing implementation. From the review
the group got a better understanding of how the code worked
and where to implement the changes to allow for the multi-
party key exchange.

The group broke the issue down into different parts. The
first part was to rewrite the code for the cryptology and key
exchange. The second part was to rewrite the topology setup
to conform to the hub-spoke topology. The third part was to
rewrite the BEX to implement the newly written cryptology
into the new topology. The first and second tasks were done
in parallel.

IV. RESULTS

This section describes the result of the project, which
includes the literature review, the implementation of the multi-
party key exchange and the technical documentation.

A. Literature review

From the information gathered during the literature review
the group decided to use BD with an elliptic curve, together
with a hub-spoke topology. The literature review also served
as the foundation for the background and theory used in the
report.

B. Implementation

The results of the implementation is a working version
of HIPv2. It uses the Burmester-Desmedt algorithm for the
key establishment, and a reworked topology with hubs and
spokes. It also uses ESP with NULL-encryption to avoid
double encryption of packets.

1) Topology: To conform to a hub-spoke topology with
three hubs and three spokes, the Mininet setup-script was
altered. This involved updating the IP addresses and names of
existing nodes, as well as adding new nodes and reconfiguring
the switches to establish new connections.

Since the base HIPLS implementation uses one directory per
node the folder structure was also changed to follow the altered
setup script. This means the router directories were replaced
with three spoke- and three hub-directories. Each directory
consisting of the same content as the routers from before.
The exception being that the files in the config-directory were
changed to conform to the new topology. This included the
following files:

Mesh: Which describes the mesh by mapping the HITs
of the different nodes to each other. This was changed so
every hub was connected to one of the spokes and all the
other hubs, while the spokes were only connected to one
hub.
Hosts: Which maps the IP addresses of each node to their
HIT. This was changed so the hubs file included the other
hubs and their own spoke and so every spokes file only
included only their own hub.
config.py: This file includes configurations like interfaces
and IPs for the specific node. Here the interface name and
IP was changed to correspond to the one specified in the
Mininet setup. Later a list of HITS for the connecting
spokes were added to the config of the hubs.
rules: This file acts like a form of firewall, which
allows or disallows different nodes from connecting to



each other. It was modified so the correct nodes can
communicate with each other.
public.pem & private.pem: Are both keys used to
generate HITs and keys. New ones had to be generated
for spoke two and three. The other nodes could reuse the
HITs and keys from router 1 to 4.

The new keys and HITs were generated using utility files
included in the current implementation, these were located in
the Util directory of each router. There were also changes
made specifically in the hubs BEX-related files and specifically
in the spokes BEX-related files, this was to ensure that the
BEX was working correctly.

2) HIP Base exchange: The final implementation uses the
BD with an elliptic curve for key establishment.

To implement BD for HIP, the structure of the HIP packets
had to be changed, this will be the same for I1, R1, I2 and
R2. Each packet was replaced by a collection of segments,
where the original HIP packet, see fig. 4 was the first segment.
This first segment was also modified to not include any
DH parameters, and instead make use of Burmester-Desmedt
for key establishment. There are also added segmentation
parameters. These consist of the id for the packet (shared
by each of its segments) as well as the id for the individual
segment and a flag signifying whether or not this was the last
segment (both are zero for the first segment).

Fig. 4. Current HIP packet

After the first packet follows several identical HIP packets
(segments), each containing a HIP header, trailer and two pa-
rameters. The first parameter is a segment parameter (same as
in the first segment), the second is a BD parameter containing
one point on the elliptic curve. The number of packets scales
linearly with the number of participants in the BEX. The HIP
segments are reassembled by the receiver by gradually adding
them into a list. For a visual representation of the parameters
in the segments, see fig. 5.

Fig. 5. segments 0 to n

Following is a detailed step by step for the proposed BEX:

1) Spokes send I1 to their respective hub (containing zi for
that spoke)

2) Once one I1 per spoke has been received and processed
the hub attempts to initiate the BEX with the other hubs
by sending an I1 (containing zi for spokes belonging to
the hub together with hubs zi)

3) The hubs process each others I1 and respond with R1
(containing zi for spokes belonging to the hub together
with the hubs zi)

4) The hubs now have completed lists containing all zi.
5) The hubs respond to each spoke with another R1 (con-

taining all zi)
6) Spokes send I2 to their respective hub (containing their

xi)
7) Once each spokes I2 has been received and processed,

the hub sends I2 to the other hubs (containing xi for
spokes belonging to hub together with hubs xi)

8) The hubs process each others I2 and respond with R2
(containing xi for spokes belonging to the hub together
with the hubs xi)

9) Now the hubs have a complete lists containing all xi

10) The hubs respond to each spoke with another R1 (con-
taining all xi)

11) Every participant now has the complete x list, the key
can be computed and the BEX is complete.

Note that for steps 2-4 and 7-9 for any pair of hubs only one
will send I1/I2 and one R1/R2.

For the DH version n2 ·2 packets in total are needed, where
n is the number of participants. Comparatively the BD version
only requires s · 4 + h2 · 2 where s is the number of spokes
and h is the number of hubs. This comparison can be seen
in fig. 6, where the blue dots represent the number of packets
required for the proposed solution and the red represents the
number of packets for the current implementation.



Fig. 6. Comparison of number of packets. BD is blue and DH is red.

From this it is clear that a small number of hubs relative
to spokes results in good performance for bd, especially when
the number of participants approach to infinity. For a visual
overview of the steps mentioned, see fig. 7. This shows the
steps between spoke and hub as well as the steps between hub
and hub.

3) Benefits of proposed protocol in the HIP: The benefits
from using HIP with the proposed key exchange protocol
can be seen in table II. The key exchange still provides
authentication through the use of self-owned public and private
keys. It still also provides DDoS protection through the use
of a puzzle, as well as resilience to IP spoofing through the
use of HITs. Finally multi-party key exchange makes the
implementation more efficient since only one shared key has
to be generated.

TABLE II
BENEFITS OF THE HIP WITH THE PROPOSED IMPLEMENATION

Benefit Explanation

Authentication By providing self-owned public and
private keys

DDoS protection By using a puzzle

Resilience to IP spoofing By using HITs

Multi-party key exchange Single shared key is more efficient than
one key for each pair

By comparing the proposed implementation of the HIP
BEX to the current one, its clear that the proposed one offers
improvements over the current one. This can be seen in table
III, where the Attributes of the packets are compared, as well
as if the solutions provide trust or not. In the proposed one
trust is achieved on the spokes. The number of messages need
to complete the BEX stays the same (four). However, it is
overall decreased since less nodes are connected and there are
therefore less BEX’s being completed.

TABLE III
COMPARISON BETWEEN PROPOSED AND CURRENT IMPLEMENTATION

Parameters Proposed Current

Trust Yes,
on CE (spoke) No, on provider

Number of
messages (BEX) 4 4

Number of
messages (growth)

per node (n), spoke (s)
and hubs (h).

s · 4 + h2 · 2 n2

Data plane IPsec ESP with
null-encryption

IPsec with
regular ESP

I1 Packet size (s),
with number of participants (n) s s · n

The proposed implementation of the HIP BEX also helps
with resource efficiency of the overall HIP-based VPLS net-
work by using ESP with null-encryption instead of regular
ESP. This achieves about the same result as using AH, since
it does not double encrypt the packages which results in a
quicker BEX.

Even without AH the proposed implementation is more
efficient for a large number of nodes. However, when only six
routers are used the current implementation is mostly faster.
This can be seen by comparing fig. 8, which is the timing
of the current BEX, and fig. 9, which is the timing of the
proposed one. The timings of the BEX were measured using
Pythons Time library and the times in the graphs show time
taken from when the I1 packet was sent to when the R2 packet
was received. For the current implementation six routers were
used in a mesh network and all of them were timed. For
the proposed network three spokes and three hubs was used
instead and the time was only measured for each spoke. It was
considered unnecessary to measure the timing of the Hubs,
since when the key-exchange is complete for the spokes it is
also complete for the Hubs.

Fig. 8. Timing of current BEX

For the current BEX it’s also possible to see major inconsis-
tencies with the timing for different nodes, where the slowest
one is more than 20 seconds slower than the fastest in some



runs. Dissimilarly, in the proposed BEX the timings of every
node (spoke) is very consistent, and the slowest and fastest
times never deviate more than a second. This results in a
more dependable and measurable network. The consistency
of results also shows that there exist some outlier times in the
original implementation that are not present in the proposed
implementation.

Fig. 9. Timing of proposed BEX

Fig. 10 shows the average time to complete the BEX
for both implementations. The time for BEX completion is
calculated by measuring R2 received times, from this it’s
clear that on average the original full mesh implementation is
approximately 1.39272 faster compared to the proposed Hub-
Spoke implementation.

Fig. 10. Average timing of proposed vs. current BEX

C. Technical documentation

Technical documentation was written to compile informa-
tion and to provide a clear description of the implemented
changes. This documentation was written in the README file
of the groups Github repository. The documentation includes
how to setup the environment as well as how to run the Mininet
network.

V. DISCUSSION

This chapter discusses the chosen methodologies and the
result of the project.

A. Methodology

This section presents a discussion about the chosen method-
ologies and how they could have been improved.

1) Literature review: Overall the literature review phase of
the project went well and gave members a good understanding
of the underlying theory for the code implementation. The
discussion the group had among itself and with the supervisor

Fig. 7. Spoke to hub and hub to hub BEX with BD



were an important part in information sharing, giving all
participants a similar level of knowledge. Most of the sources
found with the different search functions, as well as the ones
from the supervisor were of high quality and gave relevant
information. The exception was the source used to implement
elliptic curve, which had incorrect information. The criteria
written in the methodology for the sources used ensured a
high quality of the sources used.

The literature review was a smaller part of the project which
meant that the methodology was not as rigid and fleshed out
as it should be if more time could be spent on it. Things to
improve would be to have a more systematic criteria for how
to search for information and to save specific search words.

2) Experimentation: Experimentation played a big role in
the groups understanding of the HIP implementation. During
the implementation, functionality was regularly tested with
simpler setups in order to effectively develop without getting
stuck at bigger parts.

When reading the code it is very hard to keep track of
the BEX timeline because there are several things going on.
When the topology was then increased to more hubs and
spokes knowing how the BEX worked was very important
in order to troubleshoot issues. Logging the I1, R1, I2 and
R2 packets was a good and commonly used method to see
progress and troubleshoot issues. At times the group found
the previous HIP implementation quite confusing, especially
because hlib.py was such a large file. However, understanding
its functionality was made easier by running the network and
logging information about the state of the BEX.

The experimentation could have begun at an earlier stage to
allow all group members to get a better understanding of the
current implementation. To allow for this, the literature study
could have been done concurrently to the experimentation,
which might have resulted in a better understanding of the
code. This could however have slowed down the experimenta-
tion, since the group would have had less of an understanding
of the problems they were solving.

3) Implementation: While implementing the code the group
could have worked on one task at a time instead of splitting up
the problem into smaller tasks. This could have improved the
understanding of the code, but at the same time it would have
slowed down the process, since less code could be written at
any given moment.

Sources for using BD with ECC in Python code were hard
to find and often did not have a correct implementation even
if they claimed to have it. This made the implementation take
more time and it was difficult to find problems with the code,
since the sources were trusted to be true.

The group could also have tried to make contact with the
author of the original implementation, this could have sped up
the process of understanding the code.

B. Result

This section presents a discussion about the results that
were found during the project. This includes discussing the

efficiency and scalability, as well as the security of the
proposed implementation.

1) Efficiency and Scalability: A difference between the
original Diffie-Hellman implementation and the proposed
Burmester-Desmedt implementation is the use of elliptic curve
cryptography (ECC). Therefore the proposed implementation
makes use of ECC’s inherently smaller key size to increase
efficiency of the implementation. The smaller key size itself
makes the implementation more efficient compared to the
current implementation.

The results in fig. 10 show that the average time until
the BEX completes is better than expected with the pro-
posed implementation of BD compared to the current DH
implementation. This was surprising as the expectation was
that the proposed implementation would be much slower
because of the proposed implementations larger overhead.
The believed reason for the proposed implementations above
expectation performance, is because of the pseudo-threading
of the packet handling, removing the wait time that can be seen
in the current implementation. This is what we believe causes
the long outlier times seen in the current implementation.
With this we can also note that the proposed implementation
doesn’t suffer from outliers or inconsistent timings and is
instead consistent and predictable for all spokes. However, the
proposed implementation is still slower than the current one
for six nodes, but since it’s such a small difference for such a
small network it should be much better with a larger network.

The reasoning behind the change from Diffie-Hellman to
Burmester-Desmedt is the scalability problem that comes with
Diffie-Hellman in large networks. The Burmester-Desmedt key
exchange effectively reduces the complexity of key sharing
from O(n2) to O(n) reducing the potential network load
when n is big. However, to achieve this there is some loss
of efficiency of the overall key exchange protocol which can
lead to slight performance losses at lower network loads. The
final implementation manually sends each Z and X value
in separate packets to avoid MTU issues. This can lead to
inefficiencies as this might not always be necessary if the
entire Z and/or X list can fit within the MTU. It is also slightly
counterproductive in that it does not decrease the workload of
the client as it needs to manually reassemble these packets
correctly when received.

2) Secp256k1: The final implementation makes use of
the secp256k1 elliptic curve which outside this work is
prominently used in Bitcoin’s cryptographic framework [23].
The reason for choosing this elliptic curve is the existence
of previous Python implementations for conducting point
mathematics on it. The use of these tools streamlined the
development of the implementation and greatly reduced the
time needed. The choice was also motivated by its established
security, efficiency and wide use within Bitcoin. However,
using secp256k1 comes with limitations. This elliptic curve
was chosen for Bitcoin for many reasons that are irrelevant
to this projects use case. Because of this it might not offer
the best performance or security characteristics compared to
other available elliptic curves that can be used for this purpose.



Exploring these characteristics is outside the scope of this
project, however exploring alternative elliptic curves could
be an area of interest for future study in order to further
increase the efficiency of this solution. Curves developed by
the National Institute for Standards & Technology (NIST)
and other popular curves such as Curve25519 [24] comes to
mind. NIST curves, though occasionally criticized for potential
weaknesses, remain industry standards and are supported by
extensive cryptographic infrastructure.

3) General Security: Compared to pair-wise key exchange,
with multi-party key exchange the risk of key compromise
is the same. However, if the shared key and a private key
is compromised it affects all of the nodes instead of only
affecting one pair. BD is also not resistant to malicious
participant attacks, which involves a malicious participant
disrupting the key agreement [25].

Complexity is also minimized by the use of a hub-spoke
topology, because since the spokes only have to be connected
to one of the hubs there are fewer connections between the
nodes. This also results in a decrease in the number of attack
surfaces, and it makes a compromised spoke less difficult to
isolate. A more efficient use of connections also means it is
easier to add more nodes later.

The group choose to use three hubs instead of only using
one centralized one, this was to provide fault tolerance since
if one hub fails or is compromised the whole network will not
go down.

4) Zero trust: The implemented key exchange protocol
does still enable zero trust. Firstly it does this by establishing
a shared secret among all participants while not exposing each
participants secret key. Secondly it minimizes complexity by
minimizing key management and the number of keys.

HIP itself is also beneficial for zero trust, it is based
on decentralized identity where each node has a self-owned
credentials (used for its identity) [2]. So these credentials
are used to provide secure communication channels, provid-
ing confidentiality, removing a requirement for a centralized
authentication service. The key exchange will also provide
integrity, while the HIP provides authentication, both of these
are requirements to establish trust in a zero trust network.

5) Tables and graphs: The timings measured in the graphs
in section IV-B2 are dependent on the hardware of the machine
that was running them. For a more definite result the tests
should have been run on multiple machines. There is also
a need to test networks with an increased amount of nodes
to confirm the hypothesis that the proposed implementation
would be faster.

VI. CONCLUSION

This section will answer each research question and provide
a conclusion to the report.

A. How to implement the Burmester-Desmedt key exchange
protocol into the current Python HIP implementation.

To implement the BD key exchange protocol the topology
was changed. In this paper a hub-spoke topology was chosen,

but other topologies that have two different types of nodes
could work as well.

The BEX itself was also modified to allow for the use of BD
with an elliptic curve. This required modifying the initiation
process to enable the spokes to initiate the BEX. Additionally
support for sending a list of points was added. This meant
changing the structure of the packets them self and adding
manual packet segmentation.

Finally the cryptographic functions had to be rewritten to
account for the switch from DH to BD using elliptic curves.

B. How does the changes to the Python implementation affect
the performance of the Host Identity Protocol.

As can be seen in table III and fig. 6 the proposed imple-
mentation is better for scalability and requires less packets than
the current implementation, which is very relevant when the
amount of nodes increases. It is especially optimized when the
topology contains a lot of spokes, because the spokes are much
more efficient than the routers in the current implementation,
while the Hubs are a slightly less efficient.

There is more overhead compared to the current implemen-
tation, so for a small amount of nodes the BEX is slower. This
can be seen in fig. 10. However, even though the proposed
BEX is slower for a small amount of nodes, it is surprisingly
close to the performance of the current one. The believed rea-
son for the proposed implementations performance, is because
of the pseudo-threading of the packet handling, removing the
wait time that can be seen in the current implementation. With
this change the proposed implementation does not suffer from
outliers or inconsistent timings either.

C. What differences can be identified between the proposed
and current implementation with regards to trust, complexity,
attack surface and IPsec mode?

In regards to trust, this implementation provides trust and
authentication through BD and the IPsec null-encryption
mode. The complexity of the code was increased with the
introduction of elliptic curves and a more complex topology
but the practical complexity is reduced. However, it now only
requires one shared key between all members instead of unique
ones between them. Removing the double encryption by the
IPsec ESP mode also further reduces the complexity of the
system as it can cause confusion in what keys and encryption
is provided where in the network. It is now clearer to the hosts
where and what is provided by network and what they need
to provide themselves.

The attack surface is decreased in a zero trust environment
as the hosts no longer need to trust their spoke/hub with
encrypting its data as it is now encrypted through the entire
transportation. Using separate hubs for starting the exchange
the system is not subject to a single point of failure and can
handle system failures better than the previous implementa-
tion.

ACKNOWLEDGMENT

The group thanks Mohammad Borhani for his help and
supervision during the project.



REFERENCES

[1] Strangebit-IO, “hip-vpls,” https://github.com/strangebit-io/hip-vpls, [On-
line; read 16 oct, 2024].

[2] A. Gurtov, Host Identity Protocol (HIP): Towards the Secure Mobile
Internet. Wiley, 2008.

[3] S. Frankel and S. Krishnan, “IP Security (IPsec) and Internet Key
Exchange (IKE) Document Roadmap,” RFC 6071, Feb. 2011. [Online].
Available: https://www.rfc-editor.org/info/rfc6071

[4] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, “Host
Identity Protocol Version 2 (HIPv2),” RFC 7401, April 2015. [Online].
Available: https://www.rfc-editor.org/rfc/rfc7401.html

[5] NIST, “Zero trust cybersecurity: Never trust, al-
ways verify,” 2020, accessed: 2024-12-04. [On-
line]. Available: https://www.nist.gov/blogs/taking-measure/zero-trust-
cybersecurity-never-trust-always-verify

[6] Y. He, D. Huang, L. Chen, Y. Ni, and X. Ma, “A survey on zero trust
architecture: Challenges and future trends,” Wireless Communications
and Mobile Computing, vol. 2022, p. 1–13, Jun. 2022. [Online].
Available: http://dx.doi.org/10.1155/2022/6476274

[7] K. R. Glenn and S. Kent, “The NULL Encryption Algorithm and
Its Use With IPsec,” RFC 2410, Nov. 1998. [Online]. Available:
https://www.rfc-editor.org/info/rfc2410

[8] N. Li, “Research on diffie-hellman key exchange protocol,” in 2010
2nd International Conference on Computer Engineering and Technology,
vol. 4, 2010, pp. V4–634–V4–637.

[9] M. Burmester and Y. Desmedt, “A secure and efficient conference key
distribution system,” in Advances in Cryptology — EUROCRYPT’94,
A. De Santis, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1995, pp. 275–286.

[10] VMware, Inc. (2024) Elliptic curve cryptography (ecc).
Accessed: November 27, 2024. [Online]. Available:
https://www.vmware.com/topics/elliptic-curve-cryptography

[11] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics
of Computation, vol. 48, no. 177, pp. 203–209,
1987, accessed: November 27, 2024. [Online]. Available:
https://link.springer.com/article/10.1023/A:1008354106356

[12] N. B. Taqi and A. B. Zubair, “Design, implement, and evaluate the
performance of an ipsec- inspired security framework for hip-vpls
environment,” Master’s thesis, Linköping University, 2024.

[13] IBM, “What is network topology?”
https://www.ibm.com/topics/network-topology, [Online; read 26
Nov 2024].

[14] V. S. Solomi, D. Stela, S. D., and Tanu, “Implementation of hub and
spoke topology in vpn using eigrp,” in 2021 Sixth International Confer-
ence on Wireless Communications, Signal Processing and Networking
(WiSPNET), 2021, pp. 135–142.

[15] N. Matsubayashi, M. Umezawa, Y. Masuda, and H. Nishino, “A cost
allocation problem arising in hub–spoke network systems,” European
Journal of Operational Research, vol. 160, no. 3, pp. 821–838,
2005, decision Analysis and Artificial Intelligence. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377221703005083

[16] Python, “Python 3.13.0 documentation,” https://docs.python.org/3/, [On-
line; read 14 oct, 2024].

[17] Mininet, “Mininet overview,” https://mininet.org/overview/, [Online;
read 14 oct, 2024].

[18] Github, “Home,” https://github.com/, [Online; read 14 oct, 2024].
[19] “virtualbox.org,” https://www.virtualbox.org/, [Accessed 12-12-2024].
[20] “mac.getutm.app,” https://mac.getutm.app/, [Accessed 12-12-2024].
[21] “ubuntu.com,” https://ubuntu.com/download/desktop, [Accessed 04-12-

2024].
[22] “osboxes.org,” https://www.osboxes.org/ubuntu/, [Accessed 5-11-2024].
[23] Standards for Efficient Cryptography Group (SECG), “SEC

2: Recommended Elliptic Curve Domain Parameters, Version
2.0,” Standards for Efficient Cryptography Group, Tech. Rep.,
Jun. 2010, accessed: November 27, 2024. [Online]. Available:
https://www.secg.org/sec2-v2.pdf

[24] R. M. Naik, S. Sathyanarayana, and T. Sowmya, “Key management
using elliptic curve diffie hellman curve 25519,” in 2020 Third In-
ternational Conference on Multimedia Processing, Communication &
Information Technology (MPCIT), 2020, pp. 33–39.

[25] Y.-M. Tseng, “A robust multi-party key agreement protocol resistant to
malicious participants,” The Computer Journal, vol. 48, no. 4, pp. 480–
487, 2005.


