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Linköping University
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Abstract—Over the years ROP-chain generators have adopted
several different methods in constructing ROP-chains including
pattern matching, heuristics, and exploratory methods. This
study investigates the current landscape of ROP-chain generators
in terms of correctness and flexibility. Using ROP-benchmark
we tested five publicly available ROP-chain generators includ-
ing: Ropgadget, Ropper, Angrop, Ropium, and SGC. Each tool
was measured ten times with ASLR enabled and disabled on
seventeen representative binaries. Contrary to assumptions our
findings show that next gen generators do not preform as well
as you would suspect. While heurisitics-based generators such
as Ropium, and Angrop successfully created valid chains for
75% and 11% respectively from binaries that contained a syscall
instruction.

Index Terms—Return oriented programming, empirical study,
ROP-Chain generator.

I. INTRODUCTION

Due to the widespread use of system-level languages, such
as C and C++, which lack memory safety, binary exploita-
tion has become a major concern in cybersecurity research.
Since binaries directly interact with the operating system and
system hardware, binary exploits pose a threat to various
systems, including web servers and critical infrastructure.
Binary exploitation techniques allow attackers to manipulate
executing programs by injecting malicious code and altering
their intended behavior. Over several generations of binary
exploits, Return-Oriented Programming (ROP) has emerged
as an effective method to bypass mitigations such as Data
Execution Prevention (DEP). By leveraging existing program
instructions, ROP redirects program execution into a chain
of commands that, at worst, allows an attacker to achieve
Arbitrary Code Execution (ACE).

Since its introduction over a decade ago, ROP exploits have
become increasingly automated through the use of programs
known as ROP-chain generators. These generators employ
various techniques to create and implement ROP-chain attacks,
including pattern matching [1], [2], heuristics [3], [4], Satis-
fiability Modulo Theory (SMT) solvers [5], and partial-order
planning [6]. Due to the diversity of these approaches, multiple
evaluation methods have been explored, including efforts by
Schloegel [7] and Nurmukhametov [8]. While both studies

compare the performance of their ROP-chain generators to
other publicly available tools, neither provides an objective
investigation into the correctness of the available ROP gener-
ators.

The structure of this thesis is as follows: In Section II, the
background is presented, providing a foundation for the work
conducted in this project. Section III discusses related work,
focusing on ROP-chain generation and validation, and outlines
the research questions. Next, the approach for addressing the
research questions is detailed in section IV. Section V presents
the results of our conducted tests, which are then discussed
in Section VI, organized into parts based on the research
questions.

II. BACKGROUND

A. Buffer overflow exploitation

Due to the low level nature of languages such as assembly,
C, and C++, automated memory/garbage collection is not
present such as in high level languages such as C# and Java.
This lack of automation increases performance drastically but,
relies on the author to sanitize inputs and unallocate memory
to maintain program security. An early exploitation example
includes Stack buffer overflows. Where an attacker injects a
string of charters much larger than expected by the program
overwriting the return address, and redirect execution to their
own code, typically injected into the stack or other memory
regions under the attacker’s control [9].

B. Buffer overflow mitigation

To address this memory vulnerability, security measures
such as DEP and W⊕X were implemented [10]. These
techniques safeguard memory by marking regions as either
writable or executable, but not both, preventing attackers from
inserting code into writable areas and executing it. DEP refers
to the mitigation implemented by Windows, while W⊕X is
deployed by OpenBSD, both rely on the same mechanism by
utilizing the NX-bit in the Central Processing Unit (CPU),
which marks pages as non-executable. In systems without NX-
bit support, this behavior can be emulated.



C. Code reuse attacks

However, DEP or W⊕X alone is insufficient to prevent
code-reuse attacks like ROP, as these attacks do not require the
execution of code in pages marked with the NX-bit. Instead,
they involve executing existing instructions from text segments
or libraries such as libc [10]. A common example of such an
attack is the return-to-libc attack, where attackers redirects
execution to a legitimate function that should be inaccessible.
Return-to-lib-c chains together available library instructions
to deviate the intended control flow [11]. Other variations of
these code reuse attacks include Jump oriented Programming
(JOP) chaining together JMP instructions, and Call Orientated
Programming (COP) using the call instructions.

D. Return oriented programming

ROP like other code reuse exploits was developed in
response to various prevention techniques designed to hin-
der attacks that execute malicious code, often referred to
as shellcode, after hijacking a program’s control flow [10].
Instead ROP utilizes code that already exists in the program.
ROP exploits sequences of legitimate instructions, known
as gadgets, within the program’s executable memory. These
gadgets typically end with a ret (return) instruction, allowing
attackers to chain multiple gadgets together to achieve their
objectives. To execute a ROP attack, the attacker first diverts
the program’s control flow, often by overwriting a return ad-
dress with the address of a gadget, rather than with shellcode.
This approach circumvents protections like W⊕X and DEP,
as it uses existing code rather than requiring the execution of
newly inserted code.

E. ROP Mitigations

Control Flow Integrity (CFI) is a mitigation technique that
theoretically prevents ROP attacks by ensuring that the pro-
gram’s control flow follows a predetermined plan or Control
Flow Graph (CFG) [12]. Any deviation from this plan can
be detected and stopped. The downside of this approach is
the significant overhead it introduces, as well as the increase
in binary size. However, ongoing research is exploring ways
to reduce this overhead, making CFI more practical and less
noticeable in terms of performance impact.

Another technique that makes it more difficult to set up a
ROP attack is Address Space Layout Randomization (ASLR),
which is used by the operating system to randomize the
addresses of loaded code segments, such as programs and
libraries [12], [13]. This makes it harder for an attacker to
know where functions and instructions are located. In the case
of a return-to-libc attack, for example, the attacker needs to
know where libc is loaded. However, previous research shows
that attackers can often leak information about the locations of
code segments. For instance, in some cases the base address
of the program image is not randomized, allowing attackers to
leak information about library functions through the Procedure
Linkage Table (PLT) [13].

F. ROP-chain generators

There are various ways to leverage ROP for program
exploitation. While gadgets can be identified and assembled
into chains manually, tools known as ROP-chain generators
have begun automating this process. Q, one of the first ROP-
Chain generators divides this process into three operations;
gadget discovery, gadget arrangement, and gadget assignment
[14]. While each tool accomplishes theses tasks uniquely
the underlying process is similar. Tools begin by identifying
gadgets from the targeted program’s binary. Next, the selected
gadgets are arranged into possible chains. Last, the chains
validity is assessed according to the attackers desired goal.
Common goals of ROP-chains include executing a system call
to spawn a shell on the host system or marking a memory
region as executable, allowing redirection of execution to
shellcode. The techniques used in the synthesis of these chains
vary among tools, and the following sections explore these
different approaches.

G. Pattern matching

The simplest approach to automation of ROP-chains relies
on hard coded regular expressions [7], [15]. Tools that fall into
this category are e.g. Ropper [1] and ROPGadget [2]. ROP-
chain generators in this category works in two stages, first it
searches the target binary for gadgets and secondly attempts
to chain gadgets together in a predefined way [15]. Relying
on hard coded rules and the restriction of gadgets limits the
flexibility of this type of ROP-chain generator, typically only
supporting the most common chain i.e. an execve call to launch
a shell on the target system [7].

H. Heuristics-based

ROP-chain generators that fall into this category tend to
use dependency graphs and different search algorithms to
locate suitable gadgets to form a chain [16]. Compared with
hardcoded-based, heuristics-based can sometimes utilize more
complex gadgets with side-effects e.g. writing to memory but
still discard many gadgets that could be usable [16]. ROP-
chain generators belonging to this category include Angrop
[4] and Ropium [3].

I. Exploratory approach

1) Satisfiability Modulo Theory (SMT) solver: An ex-
ploratory approach that uses an SMT solver discovers ex-
ploitable gadget sequences by constructing the problem as
a set of logical constraints and deciding the satisfiability
of logical formulas. These types of solvers are particularly
effective in symbolic execution, which is often applied to
explore all possible execution paths in a program by treating
inputs as symbolic values rather than concrete ones. This
approach is put to use in the tool SGC [5]. The design
of SGC, as described by Schloegel et al. [7], is based on
establishing preconditions and postconditions that describe
the initial state and the desired state of the CPU during
the exploitation process. These preconditions are set to the
state before the execution of a possible gadget chain which



could include specific register values, memory states or set
flags. The postconditions describe the expected state after the
execution. Using a logical formula, the effect of each gadget
is matched against the constraints required to transition from
the preconditions to the postconditions, effectively generating
a usable ROP-chain.

While SMT solvers are a powerful tool for systematically
exploring potential ROP-chains, they also represent a signifi-
cant performance bottleneck. As highlighted by Schloegel et
al. [7], the solver may require considerable time to identify
valid gadget chains.

2) Partial-order planning: Partial-order planning is an Ar-
tificial Intelligence (AI) technique used in Gadget-Planner [6]
to find a sequence of gadgets that can be used to build a
ROP-chain. Total-order planning works by building a directed
tree graph where each node represents a specific system state
and each edge indicates a specific action used to change
the state of the system from one state to another. Partial-
order plannings key difference is that the order of gadgets
is only partially specified where order is only enforced on
actions that are dependent on each other while non interfering
gadgets position if flexible [15]. Because of that the state space
becomes significantly smaller and faster to search. Parietal-
order planning starts at the goal state and searches backward
for gadgets to fulfill its preconditions.

III. RELATED WORK

A. ROP-chain generation

Several state-of-the-art ROP-chain generation tools have
been developed, employing various techniques for generating
chains from discovered gadgets. Some tools, such as Angrop
[4] and Ropium [3], utilize pattern-based heuristic techniques
to find chains that achieve predefined end goals. In contrast,
exploratory approaches, such as the use of SMT solvers, are
employed by tools like SGC [5], as presented by Schloegel et
al. [7], and TGRop [17], as introduced by Zhong et al. [16].
Furthermore, Zhang et al. [15] demonstrated how ROP-chain
generation can be achieved using an AI approach, employing
partial-order planning in the tool Gadget-Planner [6].

B. ROP-chain validation

There are several options available for ROP-chain veri-
fication. One approach is to generate the ROP-chain on a
binary containing a known vulnerability, as was done by
Schloegel et al. in [7] with a vulnerable version of dnsmasq.
Although verifying binaries through exploitation is as close to
real life as possible, it limits the possible binaries for which
the ROP-chains can be verified. To avoid this limitation, a
programmable debugger such as gdb can be used to insert
the ROP-chain into the memory of the running binary and
redirect execution to the beginning of the chain [7]. Another
approach for verification was created by Nurmukhametov et al.
in [8], called rop-benchmark [18]. rop-benchmark provides a
test suite, with multiple popular ROP-chain generators, which
tests the tools ability to generate a working execve chain to
launch a shell [8]. To facilitate the verification of the chains,

rop-benchmark embeds the target binary in the vulnerable
program such that the chain can be executed [18]. Zhong
et al. [16] further extends rop-benchmark to include SGC
[5] as well. Using the following criteria, we will discuss the
flexibility and correctness of these ROP-chain generators.

• RQ1: What are the procedures to verify a generated ROP-
chain? (correctness)

• RQ2: How does the flexibility of selected ROP-chain
generators vary in constructing different types of ex-
ploits? (flexibility)

• RQ3: How does the false positive rate differ among the
selected ROP-chain generators in constructing functional
exploit chains? (correctness)

• RQ4: How does the exploitation flexibility of the ROP-
Chain generator impact its ability to output a valid ROP-
chain? (flexibility)

IV. APPROACH

A. Selecting ROP-chain generators
The ROP-chain generators were selected to create a diverse

and representative subset of available tools (supporting x86-64
Linux binaries). Diversity of software could be quantified in
a multitude of ways, as such two aspects of the ROP-chain
generators were selected for this purpose: origin and category.
The origin of each ROP-chain generator was determined to
be either academic or non-academic. Non-academic does not
include proprietary ROP-chain generators, since source code
and documentation availability were deemed a necessity for
testing purposes. Github [19] was used to find open-source
candidates. The categorization presented by Zhong et al. in
[16] was used for the categorization in this project, due to
it being quite recent and comprehensive. This categoriza-
tion includes three categories: Pattern matching approaches,
Heuristics-based approaches and exploratory approaches. At
least one ROP-chain generator per category should be selected
to have a diverse enough set.

Furthermore, ROP-chain generators in the exploratory cat-
egory should use different strategies, e.g. two ROP-chain
generators utilizing an SMT-solver would reduce the diversity.
For the selection of ROP-chain generators to be representative,
actively used and maintained projects should be preferred.
By inspecting repository meta-data: Last commit, number
of contributors, stars, forks, watchers and dependents and
documentation quality the level of representativeness could
be used to gauge repository activity. The selected ROP-chain
generators are listed in Table I.

TABLE I
SELECTED ROP-CHAIN GENERATORS

Name Category Academic
Gadget-Planner Exploratory yes

ROPGadget Pattern matching no
Ropper Pattern matching no
Angrop Heuristics no

SGC Exploratory yes
Ropium Heuristics no



B. Selecting binary files

The selection of binary files was based on a combination of
file size, executable content and functionality. The goal was
to select a diverse set of binaries in order to evaluate the
performance of ROP-chain generators across different types of
binaries. A requirement for the selection was that all binaries
had to be compiled for the x86-64 architecture to guarantee
compatibility with the test environment.

The criteria for the binary files were as follows:
• File size variability: Binaries were selected to represent a

wide range of sizes, from small utilities to large libraries
and server software. The goal was to understand how
ROP-chain generators perform when handling binaries
with differing complexity. The range of the size was
determined to be between 20 kilobytes (kB) and 12
megabytes (MB).

• Functional categories: The selection aimed to cover a
variety of functional domains, including networking tools,
cryptographic libraries, file management utilities, process
and memory management and system libraries.

The share of executable code within each binary was consid-
ered important, as this can influence how much of the binary
is involved in ROP-chain generation, potentially affecting the
number of gadgets and chains generated. The size of the
executable code was determined by executing the readelf
-s <binary> command on each binary and summarizing
the sections with executable privileges. Additionally, to ensure
the reproducibility of the study, the version of each binary was
documented. This allowed the same versions to be used across
tests. The selected binaries can be seen in Table II.

C. Test Environment

The test environment was setup to facilitate test execution,
while ensuring reproducibility of the results. Therefore, the test
environment was based on the rop-benchmark [18] tool devel-
oped by Nurmukhametov et al. in [8]. The rop-benchmark tool
was also used by Zhong et al. in [16], which indicates some
level of usefulness and reliability. The repository was forked
to allow customizations to the benchmark tool, available on
Github [20].

The modifications and additions required in the rop-
benchmark tool were essentially to add support for the tools
that were missing from the rop-benchmark and to include our
binary selection. Since the rop-benchmark repository has not
seen any code updates since August 2020, another required
modification was to the Dockerfile such that the latest version
of all ROP-chain generators was installed in the test environ-
ment. While updating all tools in the docker image, all the
tools were installed in their own Python virtual environment
to avoid version mismatch for shared dependencies.

The rop-benchmark tool supported all our selected ROP-
chain generators except the academic ones, i.e. SGC and
Gadget-Planner. Therefore, only modifications related to the
Python virtual environment and ROP-chain generator output
parsing were required for the already supported tools. The

SGC scripts that Zhong et al. added to their copy of the rop-
benchmark [17] tool in [16] were used as a starting point. The
scripts were then adapted to work in our version of the rop-
benchmark. Gadget-Planner was added to the docker image,
and it can be run directly inside the docker container. However,
multiple issues were found that prevented us from creating
runner scripts for it. The lack of documentation, poor code
quality, and long runtime of the tool led to its exclusion from
the tests.

D. ROP-chain verification

All selected ROP-chain generators, listed in Table I, support
the execve ”/bin/sh” ROP-chain. The rop-benchmark tool [18]
has a verification method included for execve ”/bin/sh” ROP-
chains, which we decided to use as well. There are two parts to
the verification procedure: The addition of a stack-based buffer
overflow vulnerability for the target binary and a feedback
mechanism if /bin/sh was launched. To add a vulnerability to
the target binary, there exists a Makefile in rop-benchmark
that will link the target binary to a small program with a
known vulnerability in it. Then after a ROP-chain generator
has produced a ROP-chain for that particular binary, it can be
used as an argument to the vulnerable version of the binary
such that it is written to the stack of the program. In order to
determine whether the ROP-chain managed to launch /bin/sh,
a symlink has been created from /bin/sh pointing to a script
that simply echoes SUCCESS to indicate that the ROP-chain
worked as intended.

E. Benchmark Tests

To evaluate the validity of the chains, all ROP-chain gen-
erators were configured to attempt to find a ROP-chain that
executes execve(”/bin/sh”). Each tool was run 10 times for
each binary to account for variations. The benchmark outputs
were then compiled into presentable results, capturing the valid
chains, invalid chains, failed chain generations, and timeouts.

F. Exploitation flexibility

Based on previous works by Zhong et al. in [16], Nur-
mukhametov et al. in [8], and Schloegel et al. in [7], we
have a fundamental understanding of the limitations of each
selected ROP-chain generator. However, we will analyze the
source code and documentation of each ROP-chain generator
to further understand what exploits it supports. In addition
to understanding which exploits each tool supports, we will
also determine how the different exploits are configured in
each ROP-chain generator. In the code analysis we will only
consider configuration options that are directly related to
different exploitation techniques. For instance, options to filter
out gadgets containing certain bytes will not be evaluated
during this code analysis.

G. Limitations

The benchmark tests were conducted on two available
PCs the first 11th Gen Intel(R) Core(TM) i5-11300H @
3.10GHz, 12GB RAM @26667 MHz , and a second PC with



TABLE II
THE CHOSEN BINARIES WITH SHARES OF HOW MUCH CODE HAS EXECUTABLE PRIVILEGES.

Binary Version Size (kB) Executable
section size (kB)

Share of
executable Category

/usr/bin/gdb Gdb 15.0.50.20240403-0ubuntu1 11744 7045 61.42% Debugger
/usr/Python3.12 Python3 3.12.3-0ubuntu2 8019 2955 37.73% Library

/lib/x86 64-linux-gnu/libc.so.6 Libc6 2.39-0ubuntu8.3 2125 1567 75.49% Library
/usr/bin/bash GNU bash, version 5.2.21(1)-release 1446 953 66.63% Shell utility

/usr/bin/openssl Openssl 3.0.13-0ubuntu3.4 982 464 47.26% Cryptography
/usr/sbin/sshd Openssh-server 1:9.6p1-3ubuntu13.5 917 578 64.48% Server utility
/usr/bin/wget 1.21.4-1ubuntu4.1 470 279 60.72% Network

/bin/tar Tar 1.35+dfsg-3build1 432 293 69.33% File Management
/bin/netstat Net-tools 2.10-0.1ubuntu4 158 77 49.47% Network

/bin/ls Coreutils 9.4-3ubuntu6 142 83 60.01% File listing
/bin/touch Coreutil 9.4-3ubuntu6 96.8 56 59.02% File Management
/bin/ping ping from iputils 20240117 89 43 48.73% Network

/sbin/ifconfig Net-tools 2.10-0.1ubuntu4 79 43 54.62% Network
/bin/sleep Coreutils 9.4-3ubuntu6 35 13 38.42% General utilities
/bin/free procps-ng 4.0.4 27 7 28.57% Memory Management
/bin/kill procps-ng 4.0.4 23 4 17.76% Process Management

/bin/clear 6.4+20240113-1ubuntu2 15 1.4 9.13% Shell utility

12th Gen Intel(R) Core(TM) i5-12400F @2.50GHz, 16GB
RAM @3200MT/s. Because of the implementation of ROP-
benchmark each generator intense is run single threaded. When
comparing runs times between the computers we found no
differences in timeouts. However, Some tools may require
additional memory and computational power to function opti-
mally.

V. RESULTS

In this section, the results from the test runs, as well as
the findings from the qualitative analysis of each ROP-chain
generator’s flexibility, are presented.

A. ROP-chain Generation

The results from rop-benchmark are presented in the format
valid chain/invalid chain/failed/timeout, as shown in Tables III
and IV.

B. ROP-chain generator exploitation flexibility

Here we list the supported exploits of all ROP-chain gen-
erators, as well as how different exploits are configured.

ROPGadget

• execve(”/bin/sh”) - Command line flag –ropchain

Ropper

• execve(cmd) - Command line flag argument –chain
execve. The cmd is the pathname supplied to execve,
for example, –chain ”execve=/bin/ping”. The default
value for cmd is /bin/sh.

• mprotect(address, size) - Command line
flag argument –chain ”mprotect address=0xbfdff000
size=0x21000”. Both address and size are required
arguments. The address must be aligned to a page
boundary1. This sets the permissions to read, write, and
execute.

1See the mprotect manual at https://www.man7.org/linux/man-pages/man2/
mprotect.2.html

Ropium

• ROP-chains are created using Ropium queries (Semantic
queries). These semantic queries support: writing/reading
registers, writing/reading memory, executing function
calls with arguments (if function address is known),
executing syscalls (by name or syscall number).

• Semantic queries are created using the Command Line
Interface of Ropium, or in a Python script using the
Python API.

• syscalls supported by name in Semantic queries are found
in ropium/libropium/compiler/systems.cpp.

Angrop

• ROP-chains are created using the methods, ex-
cept for init in the ChainBuilder class (an-
grop/chain builder/ init .py).

• Provides methods for executing function calls, syscalls,
writing to registers, moving values between registers,
writing to memory, addition to value in memory.

• Provides a convenience method to build an execve ROP-
chain.

SGC - Gadget Synthesis

SGC was the tool requiring the most configuration before it
could run. To execute it, two JSON configuration files needed
to be prepared2:

1) synthesizer_config_default.json
2) config_execve.json

To enable SGC for the benchmark, the implementation was
based on the TGrop [17] integration of SGC. The synthesizer
configuration file was set up with the following parameters
(the most relevant):

• "block_limits": [100,300] Defines the size of
the sampled gadget subset.

2See the https://github.com/RUB-SysSec/gadget synthesis/tree/master/
targets file for more details.

https://www.man7.org/linux/man-pages/man2/mprotect.2.html
https://www.man7.org/linux/man-pages/man2/mprotect.2.html
https://github.com/RUB-SysSec/gadget_synthesis/tree/master/targets
https://github.com/RUB-SysSec/gadget_synthesis/tree/master/targets


TABLE III
COMPARISON OF ROP-CHAIN GENERATORS, TABLE CELL FORMAT: VALID CHAIN / INVALID CHAIN / FAILED / TIMEOUT WITH ASLR ENABLED

Binary ROPGadget Ropper Angrop Ropium SGC
gdb 0 / 10 / 0 / 0 0 / 10 / 0 / 0 0 / 0 / 0 / 10 9 / 1 / 0 / 0 - / - / - / -

Python3.12 0 / 10 / 0 / 0 0 / 10 / 0 / 0 0 / 0 / 0 / 10 10 / 0 / 0 / 0 - / - / - / -
libc.so.6 0 / 10 / 0 / 0 0 /10 / 0 / 0 0 / 0 / 0 / 10 10 / 0 / 0 / 0 - / - / - / -

bash 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 10 / 0 / 0 - / - / - / -
openssl 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 - / - / - / -

sshd 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 9 / 1 10 / 0 / 0 / 0 - / - / - / -
wget 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 10 / 0 / 0 / 0 - / - / - / -
tar 0 / 0 / 10 / 0 0 / 10 / 0 / 0 10 / 0 / 0 / 0 10 / 0 / 0 / 0 - / - / - / -

netstat 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 - / - / - / -
ls 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 - / - / - / -

touch 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 - / - / - / -
ping 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 - / - / - / -

ifconfig 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 - / - / - / -
sleep 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 - / - / - / -
free 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 - / - / - / -
kill 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 - / - / - / -

clear 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 - / - / - / -

TABLE IV
COMPARISON OF ROP-CHAIN GENERATORS, TABLE CELL FORMAT: VALID CHAIN / INVALID CHAIN / FAILED / TIMEOUT WITH ASLR DISABLED

Binary ROPGadget Ropper Angrop Ropium SGC
gdb 0 / 10 / 0 / 0 0 / 10 / 0 / 0 0 / 0 / 0 / 10 10 / 0 / 0 / 0 0 / 0 / 1 / 9

Python3.12 0 / 10 / 0 / 0 0 / 10 / 0 / 0 0 / 0 / 0 / 10 10 / 0 / 0 / 0 0 / 0 / 0 / 10
libc.so.6 0 / 10 / 0 / 0 0 /10 / 0 / 0 0 / 0 / 0 / 10 10 / 0 / 0 / 0 0 / 0 / 0 / 10

bash 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 0 / 10
openssl 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 0 / 8 / 2 / 0

sshd 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 10 / 0 / 0 / 0 0 / 0 / 1 / 9
wget 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 10 / 0 / 0 / 0 0 / 0 / 0 / 10
tar 0 / 0 / 10 / 0 0 / 10 / 0 / 0 10 / 0 / 0 / 0 10 / 0 / 0 / 0 0 / 0 / 0 / 10

netstat 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0
ls 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0

touch 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0
ping 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0

ifconfig 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0
sleep 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0
free 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0
kill 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0

clear 0 / 0 / 10 / 0 0 / 10 / 0 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0 0 / 0 / 10 / 0

• "disassemble_unaligned": false Indicates
that gadgets must be aligned, meaning they must consist
of complete x86-64 instructions.

• "control_flow_types":
["ret","call","jmp"] Specifies the types of
gadgets used in the synthesis, including ROP, COP, and
JOP.

• "selection_strategy": "seed" Determines
how the gadget subset is sampled. In this configuration,
a seeded pseudo-random selection strategy was used.

• "initial_seed": 0 The initial seed value for the
selection strategy.

• "solver_timeout": 3600 Sets the timeout (in sec-
onds) for the SMT solver.

These configuration fields were chosen based on the TGrop
implementation [17] and the example configurations for pre-
configured targets in the SGC repository [5].

The second configuration file, config_execve.json,
had to be adjusted for each binary. This was achieved by using
a pre-configured set of fields that remained static across all

runs. Some fields, however, required specific configuration for
each binary, including the following:

• read_mem_areas A list of ranges representing read-
able memory areas. The addresses of the readable mem-
ory regions were extracted for each binary using gdb in
the runner script for SGC in rop-benchmark.

• write_mem_areas A combination of pre-configured
stack ranges and dynamically added ranges for the .bss
section.

• "postconditions": [["IRDst", "", 64],
...] Specifies the desired address of the next instruction
to be executed at the end of the ROP-chain. This should
be the address of a syscall instruction if used for an
excve exploit.

The values for these fields were determined using a combi-
nation of tools such as GDB, ROPgadget, and objdump. The
full configuration templates used in the testing process are
provided in Appendices A and B.



VI. DISCUSSION

In this section we will attempt to answer each of our posed
research questions based on the acquired results. Furthermore,
we will discuss potential shortcomings of our test setup,
verification method, the ROP-chain generators, as well as our
code analysis. We will also discuss future work.

A. RQ1 - What are the procedures to verify a generated ROP-
chain?

There are basically three steps required to verify a ROP-
chain using the target binary: inserting the ROP-chain into exe-
cutable memory in the binary, redirecting execution to the first
gadget in the ROP-chain, and lastly checking for the symptoms
of execution. As described in Section III-B, inserting the ROP-
chain into executable memory can be accomplished using a
real or synthetic buffer overflow vulnerability in the target
binary. Otherwise a programmable debugger, or some other
tool, that allows for modification of the executable memory
in a binary, can be used to insert the ROP-chain. Redirecting
execution is simply a matter of changing the program counter
register with a programmable debugger, or overwriting the
return address correctly when using buffer overflow vulnera-
bilities for insertion. The two first steps remain constant for all
types of exploits contained within a ROP-chain. However, the
symptoms of exploitation on a system will depend on type of
exploit and it requires a lot more knowledge of the exploitation
to design a simple method of checking that it was successful or
not. The execve(”/bin/sh”) ROP-chain has known symptoms
and is easy to verify, in addition to the general usefulness
of this exploit this might be a reason for its popularity in
other papers evaluating ROP-chain generators [7], [8], [15].
Schloegel et al. [7] validates ROP-chains for a mprotect call
as well, however it is not clear exactly how they conduct the
validation. If the buffer overflow approach is used to insert the
ROP-chain, it can also insert an execve payload as well. Then
as long as the stack does not have executable permissions set
initially, the ROP-chain can be validated using this method by
observing if the exploit produce a segmentation fault or not.
However, that seems quite error prone although realistic and
a better method is probably to check the permissions for the
target memory page in the kernel (i.e., /proc/<PID>/maps).

Since we opted to use rop-benchmark, the insertion and
execution redirection were accomplished through a synthetic
buffer overflow. By running the target binary with the ROP-
chain as an argument, the ROP-chain is supposed to be put
on the stack and the return address of the vulnerable function
replace by the address of the first gadget. Inputing the ROP-
chain in this manner requires it to be a valid string in C,
since that is the language used to write the vulnerable function.
Strings in C are null-terminated i.e. ending with ’\0’. Thus if
the ROP-chain contains such characters, the entire chain will
not be inserted into memory and most likely fail to run the
exploit. This is not a problem when using a programmable
debugger to insert the ROP-chain, since you can just write the
byte sequences as numbers which allows for null-characters.
All of the selected ROP-chain generators for this project

have options to remove particular bytes from the ROP-chain,
essentially limiting their gadget search space. Schloegel et al.
utilized this for their first run experiment in [7]. We did not
consider this when setting up our tests for this project. Since
we did not instruct the tools of the limitations of our validation
procedure, some of the false positives in the result may be
attributed to this decision. However, no null bytes were found
in any of the generated ROP-chains.

B. RQ2 - How does the flexibility of selected ROP-chain
generators vary in constructing different types of exploits?

Based on our evaluation of the flexibility of each ROP-chain
generator in Section V-B we can determine the flexibility of
each tool. SGC, Angrop and Ropium all have similar levels
of flexibility, supporting most if not all possible exploits.
SGC distinguishes itself from the other two, through the
comprehensive configuration that enables the user to set the
desired register and memory contents after ROP-chain exe-
cution. Angrop and Ropium offer similar levels of control to
the user, but through an application programming interface
(API). Both APIs enable the user to read/write to memory and
registers, which in theory offers the same level of exploitation
flexibility. However, depending on the actual implementation
of the respective APIs, Angrop and Ropium might be slightly
less flexible compared to SGC. ROPGadget and Ropper are
both highly inflexible, only providing the user the ability to
use exploits explicitly supported by each tool. ROPGadget
only has support for execve(”/bin/sh”), essentially offering
no exploitation flexibility. Ropper is slightly more flexible,
allowing the user to decide which argument to supply execve
with. In addition to execve, Ropper also supports mprotect
ROP-chains.

C. RQ3 - How does the false positive rate differ among
the selected ROP-chain generators in constructing functional
exploit chains?

From the results in Table IV and III, we can see that there
are only minor differences between the results with ASLR
enabled and disabled. The only differences are in Angrop and
Ropium. A single test run for Angrop resulted in a timeout
instead of a failed chain for the sshd binary with ASLR
enabled. Similarly, there is a single difference in the Ropium
result for gdb in one test run, where the chain was valid
when ASLR was disabled instead of invalid when ASLR was
enabled.

One possible explanation is that Ropium constructs the
gdb ROP-chain with gadgets that contain constant memory
addresses. The valid addresses of different sections in the
binary will be randomized with ASLR enabled, such that
a constant memory address might be valid for one run but
invalid for another. Then by disabling the randomization, the
addresses will either always be valid or invalid depending on
how well the ROP-chain generator used this type of gadget.

Comparing the false positive rates between the tools and the
binaries, there is a pattern of smaller binaries not resulting in
any valid chains. All binaries smaller than the tar binary do



not result in any valid chain. Ropper stands out in this range of
binaries, as it gives 100% false positives, which also applies to
all binaries. The other tools have all failed to generate a chain,
which is reasonable as these binaries lack the syscall, as can
be seen in Table VI. The exception in this range is the ping
binary, which has an unaligned syscall gadget (gadgets with
a partial x86-64 instruction containing 0x0f05) encoded in a
lea x86-64 instruction. Some of the tools have the option of
utilizing unaligned syscall gadgets and some do not. Ropium
and Angrop have this functionality but still fail to make a chain
for ping which has to do with the available gadgets. SGC also
have this option of using unaligned gadgets but the authors
commented that this option is not yet ”fleshed out” [5] and
they recommend to have it disabled. Ropgadget also has the
option of making an offset into gadgets but does this for all
gadgets.

Ropper is incapable of determining whether it has suc-
cessfully constructed a ROP-chain and generates an output
regardless of if it has generated a chain or not. We see a
similar behavior in [8], though with a smaller binary set we
are able to correct the output manually as seen in Table V. All
empty ROP-chains and those only containing a syscall gadget
were considered failed instead of invalid. Ropper test runs with
ASLR enabled and disabled produced empty ROP-chains for
the same binaries, as such ASLR information is omitted from
Table V.

TABLE V
ROPPER OUTPUT FIXED, TABLE CELL FORMAT: VALID CHAIN / INVALID

CHAIN / FAILED / TIMEOUT

Binary Ropper
gdb 0 / 10 / 0 / 0
Python3.12 0 / 10 / 0 / 0
libc.so.6 0 / 10 / 0 / 0
bash 0 / 10 / 0 / 0
openssl 0 / 0 / 10 / 0
sshd 0 / 0 / 10 / 0
wget 0 / 0 / 10 / 0
tar 0 / 10 / 0 / 0
netstat 0 / 0 / 10 / 0
ls 0 / 0 / 10 / 0
touch 0 / 0 / 10 / 0
ping 0 / 0 / 10 / 0
ifconfig 0 / 0 / 10 / 0
sleep 0 / 0 / 10 / 0
free 0 / 0 / 10 / 0
kill 0 / 0 / 10 / 0
clear 0 / 0 / 10 / 0

In the binaries that is larger than netstat there is a available
syscall for the tools. All these binaries have unaligned syscall
gadgets except gdb, Python3.12 and libc.so.6 which have an
explicit syscall instruction.

1) Ropium: Ropium finds valid chains for all of the binaries
with explicit syscall and also finds valid chains for tar, wget
and sshd but fails for openssl and generates a invalid chain
for bash.

2) Angrop: Angrop only builds valid chains for tar with an
unaligned syscall and either fails or timeouts for the remainder
of the binaries. For many of the failed binaries Angrop was

able to locate the unaligned syscall gadget, but was unable
to generate a chain leading to execve. For the three binaries
over 2 MB gdb, Python3.12 and libc.so.6 due to our testing
benchmark and hardware constraints Angrop was unable to
complete the gadget search phase before reaching the timeout
threshold. If time constraints were not imposed Angrop it
created a valid chain for each of the three binaries in a singular
additional run with a timeout of 10000.

3) SGC: SGC is making no valid chains and mostly time-
outs for the binaries with the syscalls. This differs from other
tests conducted in [7], [15], which show that SGC performs
better than ROPGadget, Angrop, and Ropium in finding chains
on different programs, test cases, and benchmarks. However,
tests similar to ours were conducted for the tool TGRop
[16], which also observed that SGC often reach timeout and
generates fewer valid chains compared to tested tools such as
Ropper, Ropium, and Angrop. Notably, ROPGadget was the
only tool that performed worse than SGC in the TGRop study
[16]. We believe that there are several reasons why SGC does
not perform as expected:

1) The time required by the SMT solver.
2) The complicated configuration needed.
3) The non-deterministic gadget selection.
Firstly, SGC often reaches a timeout due to the solver’s time

requirements. Based on the timeouts observed in the tests for
the binaries, we note that binaries with an executable section
larger than 293 kB (e.g., tar) fail to complete most of the
tests. There is one exception: openssl, which consistently
finishes but generates an invalid chain in eight out of ten
test attempts. We can only speculate that this discrepancy
occurs because the solver finds a ”valid” chain early during
the solving process.

Secondly, the many configuration options for SGC make the
configuration process complex. There are two main configu-
ration files: one configures the solver, and the other is used
for configuring the specific binary to be used in the gadget
discovery and chain synthesis. The solver configuration was
set with the default settings from the GitHub repository, along
with some specific options that were considered to be relevant
for the solver performance. These options include the sampled
gadget size, solver timeout, and the selection strategy for the
gadgets (e.g., pseudorandom, deterministic, or pseudorandom
with a seed).

The default sampled gadget size was 100 and 300 gadgets,
which were chosen for testing. In the SGC paper [7], it is
mentioned that due to the time required by the solver, a subset
of gadgets must be selected, which may result in not finding
all possible chains (hence the gadget sample size). In our tests,
we used the same seed for all trials, and there is a possibility
that the gadget sample size is too small to be effective for the
chosen binaries. If we were to increase the sample size, the
solver would take even more time and would not scale well
on our test machines, making larger sample sizes unfeasible
for most test benches under the time constraints.

Furthermore, the configuration file for the binary has ad-
ditional options, which can be difficult to set correctly, espe-



cially if the configuration needs to be automated, as in the
benchmark. The most important configuration fields for our
test setup were the preconditions, postconditions, readable and
writable memory areas. The preconditions were a bit tricky to
set correctly, as they included the RSP register which was
required to be set.

This register was a topic of discussion, as its value changes
depending on the actual payload used. We also observed that
it changes from run to run, making it difficult to determine
its importance. In some pre-testing, we noticed that SGC
could find valid chains in some binaries outside of our binary
selection, even if the RSP did not correlate exactly with
the actual register value at runtime. Due to the complexities
of selecting this register, a static RSP value was set and
used for all binaries and tests. When comparing with the
implementation in the testing for TGRop [17], we found that
they followed the same approach.

The readable and writable memory areas also had to be
set beforehand. These ranges are important because they
determine where the solver can read and write memory in
the ROP-chain. These configuration fields were also difficult
to set correctly. During some pre-testing, we experimented
with setting the writable areas to only allow the stack and
also tested with a combination of the stack and other writable
areas, such as the ‘.bss‘ section. The difference between these
configurations was hard to assess as necessary or not, due to
the non-deterministic nature of chain synthesis.

For the readable areas, we encountered a similar issue as
with the writeable memory area. The configuration for this
field was compared to the implementation in TGRop [17] and
we decided to choose the full readable range of the ‘.text‘
section as the readable areas, which worked in some binaries
outside of our binary selection. Whether the selection of the
readable and writable areas affects the results is difficult to
determine.

It can also be added that SGC itself has a validation
functionality that checks the chains validity through symbolic
execution. When the symbolic execution fails the found chain
will be discarded which results in failed in Table IV. This also
means that the invalid chains produced by SGC indicate that
the SGC validation is either incorrect or does not match the
CPU/memory states.

D. RQ4 - How does the exploitation flexibility of the ROP-
Chain generator impact its ability to output a valid ROP-
chain?

From the results of our tests, in Tables III, IV, and V we
can see that the only tools that found valid ROP-chains were
Angrop and Ropium. The fact that they were the only ROP-
chain generators that found valid chains, is not necessarily
a result of their exploitation flexibility. Since both Angrop
and Ropium offer similar levels of exploitation flexibility
as SGC, while SGC found no valid chains results indicate
that high flexibility does not necessarily improve the tools
ability to find valid ROP-chains. To actually find out if there
is a correlation between exploitation flexibility and finding

TABLE VI
THE SYSCALL AVAILABILITY INCLUDING BOTH ACTUAL SYSCALLS AND
UNALIGNED SYSCALL GADGETS, SUCH AS INSTRUCTIONS CONTAINING

THE 0X0F05 SEQUENCE.

Binary Name Has syscall
gdb.bin yes
python3.12.bin yes
libc.so.6.bin yes
bash.bin yes
openssl.bin yes
sshd.bin yes
wget.bin yes
tar.bin yes
netstat.bin no
ls.bin no
touch.bin no
ping.bin yes
ifconfig.bin no
sleep.bin no
free.bin no
kill.bin no
clear.bin no

valid ROP-chains, more tests targeting other exploits than
execve(”/bin/sh”) would have to be conducted. Since we have
only tested for execve(”/bin/sh”) ROP-chains, the flexibility of
the ROP-chain generators has not been tested. As such, our test
results only support conclusions regarding the relation between
different types of ROP-chain generators (pattern matching,
heuristics-based, exploratory) and their ability to output valid
ROP-chains.

E. Future work

Several modern ROP-chain generators such as Gadget-
Planner, Majorca and TGRop are not publicly available or have
been released in a non-functional state. In future experiments
the addition of these generators would aid in a more holistic
understanding of modern ROP-chain generation, and how
they compare to previous implementations. Another interesting
research avenue is adding support for automated verification
of ROP-chains for other exploits than execve(”/bin/sh”) into
rop-benchmark. All selected ROP-chain generators, with the
exception of ROPGadget, support generating mprotect ROP-
chains. This makes mprotect a prime candidate as the next
exploit to add automated ROP-chain verification for.

VII. CONCLUSION

In the current landscape of ROP-chain generators, heuristic
based ROP generators outperform both pattern matching, and
SMT based implementations in our restricted time frame.
In binaries that contained a syscall instruction, Ropium, and
Angrop successfully created executable chains for 75% and
11% respectively from this binary subset. While competing
tools such as ROPgadget, Ropper, and SGC were unable to
create a successful chain.
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APPENDIX A
SGC - SYNTHESIZER CONFIG DEFAULT.JSON

{
"all_iterations": [4],
"solver": "boolector",
"block_limits": [100,300],
"restrict_mem": true,
"disassemble_unaligned": false,
"selection_strategy": "seed",
"selection_location": "main_exe",
"control_flow_types": ["ret","call","jmp"],
"initial_seed": 0,
"initial_block_offset": 0,
"max_selection_variations": 2,
"all_max_stack_words": [16],
"solver_timeout": 3600,
"disassembly_timeout": 3600

}

APPENDIX B
SGC - CONFIG EXECVE.JSON

{
"executable": "",
"arch": "x86_64",
"load_address" : "0x000000",
"preconditions": [

["IRDst", "0x4013fa", 64],
["RSP", "0x7fffffffd518", 64]

],
"postconditions": [

["IRDst", "", 64],
["RAX", "0x3b", 64],
["RSI", "0x0", 64],
["RDX", "0x0", 64]

],
"ptr_postconditions": [

["RDI", "/bin/fh", 64]
],

"read_mem_areas": [],
"write_mem_areas": [["0x7ffffffde000", "0x7ffffffff000"]]

}
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