
Improving the Air Traffic Attack Simulator
Edvin Dyremark

Linköping University
Department of Computer and Information Science

Linköping, Sweden
edvdy189@student.liu.se

Tobias Elfstrand
Linköping University

Department of Computer and Information Science
Linköping, Sweden

tobel190@student.liu.se

Rasmus Holmgren
Linköping University

Department of Computer and Information Science
Linköping, Sweden

rasho356@student.liu.se

Adrian Rosén
Linköping University

Department of Computer and Information Science
Linköping, Sweden

adrro045@student.liu.se

Wilmer Segerstedt
Linköping University

Department of Computer and Information Science
Linköping, Sweden

wilse150@student.liu.se

Abstract—This report presents enhancements to the Air Traffic
Attack Simulator, originally developed on top of the Open-
Scope Air Traffic Control Simulator. The simulator exposes
air traffic controllers to various cyberattack scenarios, helping
them understand and handle potential threats. The project
aimed to expand the simulator by integrating Swedish airports,
introducing advanced attack scenarios, such as GPS jamming,
and rouge drones, improving data visualization and analytics,
and addressing existing bugs. The new attack scenarios introduce
a new challenge for users, while the new analytics improved the
analysis of the test results. Bug fixes and refactoring of the admin
page improved the quality and maintainability of the simulator’s
code. Additionally, educational content in the form of tutorial
videos for the new attack scenarios was developed. Together, all
these updates are a significant improvement to the Air Traffic
Attack Simulator.

Index Terms—Air Traffic Controller, Cybersecurity, GPS Jam-
ming, Visual Analytics, Drone intrusion, OpenScope, Attack
Simulator

I. INTRODUCTION

This project is based on a previous project where the Air Traf-
fic Attack Simulator was developed on top of the OpenScope
Air Traffic Control Simulator [1]. The aim of the previous
project was to increase the cyber awareness of Air Traffic Con-
trollers by exposing them to different types of cyber attacks.
To increase the potential of the simulator it would be beneficial
to add more environments, richer cyberattack scenarios, and
refined analytics to aid in evaluating the performance of the
users and the simulator. It would also be valuable to reduce
the number of bugs in the simulator and develop educational
content related to the simulator. This report discusses these
improvements and how they were implemented. The simulator
is currently used in an experimental phase on air traffic
controllers in Sweden to improve their capability to handle

cyber attacks. Integrating a Swedish airport would greatly
improve the familiarity the air traffic controllers feel with the
airport. Some cyber attacks are missing from the roster of
attacks that currently exist in the attack simulator, adding these
would ensure the traffic controllers get even more relevant
training. As part of the experimental phase, it is crucial that
statistics are gathered and the administrators of the tests can
visualize the results of the tests enabling better analysis.

A. Research questions

The objectives of the project were formulated into the follow-
ing research questions:

• How can Swedish airports be added to the attack simu-
lator?

• How can new attacks be added to enhance the realism
and educational value of the simulator?

• What sophisticated analytics can allow administrators to
effectively review and analyze user performance?

• How can the simulator be improved by identifying and
rectifying potential flaws and bugs?

• How can cyber awareness be strengthened by developing
educational content?

II. BACKGROUND

This section contains the necessary background information
for successfully answering the research questions.

A. Air Traffic Attack Simulator

The Air Traffic Attack Simulator was developed for the rea-
sons mentioned in Section I. To successfully create cyberattack
scenarios, the OpenScope ATC simulator was determined
as adequate and chosen as the foundation for the Attack



Simulator [1]. The simulator is web-based, mainly written
in JavaScript, and runs in a browser. Air Traffic Controllers
can using the simulator train to handle complex scenarios
for different airports. A score is calculated based on the
controller’s actions. A positive score is acquired for actions
such as successfully landing an airplane, whereas a negative
score may be given for actions such as airspace bust, i.e.,
when an aircraft is not able to land and leaves the airspace.
On top of this simulator, the cyber attack component has been
added, which allows the Air Traffic Controllers to train on
handling different attacks on the communication infrastructure
of aviation. Scores are also given for actions related to
cyber attack scenarios. Positive scores are given for attacked
airplanes successfully identified, and negative scores are given
if the attack goes unnoticed. The extended simulator supports
different preset test scenarios, which inject attacks of various
types with different frequencies. These attacked aircraft can
be visualized with one color for each type of attack, as seen
in Figure 1. However, during a test, the attacked aircraft is
typically not highlighted with colors to force the user to reason
about what type of attack affects the aircraft.

Fig. 1. Image showing the Air Traffic Attack Simulator with attacked aircraft
highlighted with colors.

An admin page has been added to the OpenScope Attack Sim-
ulator. This page helps test leaders evaluate the performance of
the users, as well as the performance of the extended simulator
itself. Currently, the admin page contains a table with an entry
of each conducted test. For each test, there is a sub-page with
additional tables with detailed information for the specific test.

III. RESEARCH METHODOLOGY

A. Integrating Swedish airports

Preliminary research was conducted to determine an airport
of a suitable size to be included in the Air Traffic Attack

Simulator. Smaller airports are easier to implement, but may
not yield substantial benefits for learning and assessment.
However, larger airports provide excellent learning and evalu-
ation opportunities, but their implementation can require more
time and resources than what is available within the project’s
timeline. Initially, a suitable airport is found, and then a
combination of looking at the repository’s README files and
examples of previously defined airports in the repository are
used to figure out the structure. Relevant data for defining the
Swedish airport can be accessed at AROWeb.

B. Implementation of advanced analytics

The admin page has been reworked to provide easy-to-read
analytics for user performance, both overall and on a per-
test-basis. This was done by using visualization tools such
as graphs and pie charts. Furthermore, the admin page was
expanded with additional analytics and information. Another
feature that was added was the ability to select a number of
tests and display information about them simultaneously.

The following is a list of the analytics that have been imple-
mented:

• A bar diagram that compares the scores of different users.
• A pie chart displaying the percentages and frequencies of

different attacks in a test.
• A pie chart displaying the percentages of correctly iden-

tified cyber attacks, together with the correct/incorrect
actions for each attack.

• A bar diagram displaying the score of a user at differ-
ent time intervals. The score will be divided into four
categories, where the score for actions related to air
traffic control and actions related to cyber attacks will
be separated into their respective positive and negative
categories.

• A diagram displaying at what time during the test the
cyber attacks were injected into the environment.

The existing code base is first studied to determine if the
analytics can be implemented right away, or if it requires any
refactoring of the existing code.

The admin pages and sub-pages provide much information
about each test in a table format which is hard to read,
especially when looking for a quick overview. For example,
take a look at the table for event logs in the sub-page for each
test which can be seen in Figure 2.

However, due to the large amount of data contained in these
tables and logs, it can be challenging for a supervisor to
gain an overview of tester performance. To make it easier to
visualize the test outcomes, graphs can be used to represent
various cyber attacks and their frequencies. Additionally, to
better understand the testees’ performance, pie charts can
illustrate the number of correct versus incorrect guesses made
by the user.

The current admin page for the simulator is built in JavaScript.
Chart.js is a widely used open-source library for JavaScript,

2



Fig. 2. Event logs in table format for a selected test

designed to simplify the creation of charts and graphs for
web applications [8]. This project is used to create the charts
explained above. Figures of the actual charts can be found in
Section IV-C.

C. Identifying bugs and refining the simulator

To ensure effective use of the simulator, it was essential that all
team members initially became proficient in its operation. Dur-
ing the use of the simulator, any issues identified by the group
as potential bugs were systematically documented. As develop-
ment progressed, team members selected and addressed these
previously identified bugs, thus improving the overall quality
of the Air Traffic Attack Simulator. Furthermore, any new
features introduced by the group were rigorously tested for
potential bugs to maintain the simulator’s high standard of
quality.

D. Integration of new cyber attacks

Two new cyber attacks were to be implemented, an intruding
rogue drone and GPS jamming.

1) Intruding drone attack: Drones are becoming increas-
ingly more common, leading to a rise in incidents where
they unintentionally or maliciously enter areas with restricted
airspace [2]. The planned scenario simulates a cyber attack
where a rogue drone breaches the airport’s controlled airspace,
creating immediate safety risks, and highlighting the need for
rapid response and countermeasures to maintain safety and
operational integrity. Initial research was carried out to identify
the procedures airports implement to ensure passenger safety
and maintain operational continuity in the event of drone
intrusions. In most cases, the airports choose to ground all
flights in the area but this cyber attack simulation will focus
on the few cases when they only choose to restrict a certain
area around where the drone has been spotted.

To extend the attack simulator with an intruding drone sce-
nario, a distinct drone icon and a red circle to represent the
surrounding restricted airspace will be added. The drone can
follow a predefined path or remain stationary, allowing for
various scenarios.

The point system will impose a penalty for any aircraft that
enters the restricted area. Positive points will only be awarded
for aircraft that were originally scheduled to route through
the restricted area but successfully rerouted around it. This

encourages strategic decision-making in response to the drone
threat.

2) GPS Jamming: In recent years, external interference as
a vulnerability of the Global Positioning System (GPS) and
the Global Navigation Satellite System (GNSS) has gained
significant attention, especially in safety-critical applications
like aviation due to the effects of e.g. ongoing wars. Among
these vulnerabilities are GPS jamming and spoofing. GPS
jamming involves transmitting signals at the same frequency
as GPS signals to prevent accurate positioning, while GPS
spoofing transmits false signals to mislead the receiver into
calculating an incorrect position controlled by the attacker.

As part of this project, we explored various GPS jamming
techniques to understand their impact on an aircraft’s po-
sitioning systems. Specifically, GPS jamming, which blocks
or distorts the GPS signal, was researched as it is more
widespread due to it being trivial to implement. The effects
of GPS jamming on aircraft positioning were informed by
prior research in this field, namely in [3] and [4]. The final
implementation was based on a simplified approach primarily
inspired by [4].

E. Development of educational content

Additional informative educational content was created to
strengthen cyber awareness training. This included several
video tutorials showcasing the additional features that were
added to the simulator. Along with the educational videos, a
document explaining the videos and the functionality of the
attacks was created.

IV. RESULTS & DISCUSSION

The following subsections give an overview of the results.
Each subsection pertains to a specific research question out-
lined in Section I-A.

A. Integrating Swedish airports

Gathering the data for the Swedish airports was mostly through
AROWeb [5]. AROWeb is a system created by the Swedish
Civil Aviation agency, Luftfartsverket. What is needed for
adding a new airport in the simulator is defined in the project
documentation [6]. There are two levels of airports that are
defined in the OpenScope simulator, the “standard” level and
the “premium” level [7]. For it to be a premium airport, the
following criteria have to be met:

• Relevant airways.
• Full documentation on facility’s airspace.
• Airspace and traffic flow diagrams.
• Accurate airspace stratification.
• Exceptionally high realism.

These items will not be taken into consideration when creating
the first Swedish airport, the reasoning for this is to create
a minimal working version as a first step. In the future if
more resources is allocated the standard airport could later be
upgraded into a premium version.

3



Using the guide on how the airports should be formatted and
AROWeb as a basis where most information could be found.
The information that was either missing or not stated clearly
enough for someone without domain-specific knowledge was
the following

1) Standard Instrument Departure Route (sid)
2) airways around the airport
3) The map

The map is specific to the simulator and is usually created
using ARTCC (Air Route Traffic Control Centers) on VATSIM
(Virtual Air Traffic Simulation Network) as the foundation.
Most European airports are not covered within this network
and only the bigger ones such as potentially Arlanda. Since
Arlanda is Sweden’s largest airport integrating Arlanda was
seen as too big of a scope to cover within the limits of this
course. Instead focus was spent on working on the Malmö
airport. Because of the mentioned missing information the
result of this work was that malmö airport could not be added
to the simulator. The openscope slack group was contacted to
try to find some missing gaps in this information, but to no
success.

In an older version of OpenScope, Luleå airport was integrated
and working, everything was refactored 5 years ago meaning
some data is missing or formatted in the wrong way for the
airport to work with the refactored version of OpenScope.
Some effort was directed toward getting this airport working
since that could then be used as a foundation on how to
integrate other Swedish airports later. The result of the work
done on Luleå airport was unfortunately not successful, which
means that the airport did not work on the simulator.

In parallel to this task, a guide on how to add Swedish airport
and how to apply the information found in AROWeb to the
OpenScope format a guide was to be created. Since there was
no success in implementing a Swedish airport this guide will
also be incomplete, this could help some information gathering
in the future and contains some explanations for what different
keywords mean. This is the main result of the sub-task to the
research question.

B. Integration of new cyber attacks

1) Intruding drone attack: A new intruding drone attack was
implemented in the Air Traffic Attack Simulator to simulate
a rouge drone breaching an airport’s controlled airspace. The
attack aims to mimic a real world scenario where a drone,
potentially operated with malicious intent, enters the restricted
area surrounding an airport and thereby forcing air traffic
controllers to react quickly to ensure passenger safety and
operational continuity.

The attack is visualized in the simulator as a distinct drone icon
with a surrounding red circle appearing on the map, as seen in
Figure 3. The circle indicates the area that aircraft must avoid
and stay clear of. As previously specified, points will be de-
ducted for any aircraft that enters the restricted area, and points

Fig. 3. Image displaying an aircraft entering the restricted drone zone in the
attack simulator.

will be awarded for any aircraft that were originally scheduled
to route through the restricted area that are successfully re-
routed by the user. In its current implementation, 50 points are
awarded for successfully re-routing aircraft and -500 are given
as a penalty for aircraft that enter the restricted drone zone.
Unlike previous attacks, this attack does not directly impact
aircraft. Instead, it solely awards or deducts points based on
user action.

Fig. 4. Image displaying moving drone zone spawn point with North-West
heading.

4



Fig. 5. Image displaying aircraft affected by drone attack, colored in aqua
blue.

The drone attack is categorized into two modes: a stationary
drone attack mode, illustrated in Figure 3, and a moving drone
attack mode, as seen in Figure 4. Both attack modes, like
previous attacks, target a single aircraft. However, the effects
of the attack extend to all aircraft. In Figure 5, the aircraft
targeted by the drone attack is highlighted in aqua blue. In its
current implementation, only one intruding drone attack can
occur at a time. This limitation is in place primarily because
managing multiple simultaneous drone attacks has proven to
be challenging.

The stationary attack mode’s spawn location is determined
by analyzing the waypoints in the aircraft’s aircraftModel
to identify a suitable waypoint near the airport center. The
attack controller iterates through the waypoints, evaluating
their positions relative to the airport center, and selects the
closest waypoint that meets the minimum distance requirement
as the target location. This ensures that the stationary drone
spawn location is placed near the airport center and allows
the attack to impact multiple aircraft, as several aircraft often
share the same waypoint routes.

The spawn location of the drone in the moving attack mode is
determined by the drone attack heading setting, accessible in
the drone attack options menu shown in Figure 8. This setting
can be set to one of the four directions, North-West, North-
East, South-West, and South-East or be set to random. If set to
random, one of the four directions is chosen at random. The
drone spawns in the corner opposite the flight heading and
travels in the selected direction, crossing the airport center.
In this mode, no points are awarded for re-routing aircraft,
however, points are deducted for any aircraft entering the
moving drone zone.

Regardless of the attack mode, the drone attack ends once the
targeted aircraft has arrived or left the airspace. The duration

of which the attack remains active after the targeted aircraft
has disappeared can be adjusted in the attack settings.

Fig. 6. Image showing aircraft routes passing through the restricted drone
zone in the attack simulator, with the aircraft waypoint debug function
enabled. Red dots represent waypoints, while blue lines connect the waypoints
to illustrate the flight path.

Significant effort was put into determining which aircraft
would pass through the drone zone. Aircraft in the attack sim-
ulator follow predefined waypoint-based paths when entering
controlled airport airspace. This waypoint data was extracted
and visualized by developing a debugging function that draws
the waypoints on the map, as seen in Figure 6. While not
part of the drone attack, this debugging feature was helpful
in understanding the waypoint structure and ensuring accurate
detection. This was important to make certain that points were
only awarded for aircraft scheduled to route through the drone
zone, avoiding false positives.

In practice, this was implemented in the intruding drone attack
by iterating through the AircraftModels and extracting the
waypoint lists for each simulated aircraft. These lists are
used to draw lines between adjacent waypoints, which are
then checked for intersections with the drone zone circle.
Improving this implementation required considerable effort,
as initial results were imprecise and did not align correctly
with what was actually projected on the map.

The intruding drone attack can be easily activated or deacti-
vated by adjusting its probability in the attack settings menu,
depicted in Figure 7. It is fully integrated into the attack
framework and functions seamlessly, just like any other attack
in the attack simulator.

The attack is user-configurable, with several parameters that
can be adjusted to meet specific requirements. These parame-
ters include the probability of the moving drone attack mode,

5



Fig. 7. Image highlighting the drone attack probability setting in the attack
settings menu.

Fig. 8. Image displaying the drone attack option settings in the attack settings
menu.

the drone attack zone radius, the minimum distance from
airport center, additional de-spawn time, the flight heading of
the moving attack mode, and the speed of the moving drone.
These options, as illustrated in Figure 8, allow users to modify
various aspects of the attack.

The moving drone attack probability setting determines the
likelihood of the drone attack being stationary or moving. If set
to maximum, only moving drone attacks will occur and if set
to minimum, only stationary attacks will take place. The drone
attack zone radius can be adjusted to increase or decrease the
size of the restricted area in the attack. The minimum distance
from the airport center setting specifies how close the drone
attack can spawn to the airport center, which is particularly
useful when adapting the simulation to different airports.

The extra de-spawn time option allows users to extend the
duration of the attack after the targeted aircraft has arrived or
departed the airspace. The flight heading of the moving attack
mode can be customized to one of the following directions,
North-West, North-East, South-West, South-East, or set to
random, where one of the four directions is chosen randomly.
Finally, the moving speed of the drone can be adjusted to
increase or decrease its speed during the moving attack mode.

2) GPS Jamming: Two GPS jamming attacks were imple-
mented in the simulator, namely a high-powered and a low-
powered GPS jamming attack. These attacks can be similar
to the already existing ADS-B false positioning information
and the ADS-B standing still attack. To separate the GPS

jamming attacks, a setting was added to choose whether to
make the jamming zones visible in the map. Specifically, the
low-powered attack is then represented on the map as a yellow
circle, see Figure 9, and the high-powered attack as a red
circle, see Figure 10. The color difference underscores the
difference in intensity and impact of the two attacks.

Fig. 9. Image showing low-powered GPS jamming zone in OpenScope.

Fig. 10. Image showing high-powered GPS jamming zone in OpenScope.

The jamming attacks affect the positioning of the airplane
by using a simplified version of what is described in [4],

6



to simulate realistic failure scenarios. Under the low-powered
attack, the reported GPS-position of the airplane has an error
of a few kilometers, resulting in a deviation from the true
position. In the high-powered attack, the GPS receiver in
the aircraft will not receive a new position during the entire
time that the true position of the aircraft is within the red
circle. Instead, the last updated position of the airplane will
be shown, i.e. where the aircraft entered the jamming zone.
This false position is stationary while the aircraft is within the
jamming zone and is continuously transmitted to the air traffic
controller. Once the aircraft is outside the jamming zone, it
will receive a GPS update with a true position and hence send
the true position again.

Figure 11 further illustrates how the low-powered attack
affects the aircraft’s visible position. In this figure, the small
red circle shows the aircraft’s actual position. The position that
is visible to the user in the simulator, i.e. what the aircraft
thinks is its true position, is indicated by the black circle.
The erroneous position is updated every second to give the
perception of positioning faults in the aircraft due to GPS
jamming.

Fig. 11. Image showing low-powered GPS jamming zone in OpenScope with
the aircraft’s real position as a small red circle.

The user is expected to recognize that a GPS-jamming attack
is taking place by making a guess and receiving points if they
correctly identified the attack as a GPS-jamming attack. If the
user does not guess or guess incorrectly, they will receive a
penalty of −100 points. Further, points are deducted if they fail
to identify the attack as a GPS jamming attack. The two attacks
further complicate the work of the user by not allowing them
to see the aircraft’s true position. This affects multiple aspects
such as routing, landing and making sure the different aircraft
keep a regulated distance between them to avoid collisions.

In addition to the two GPS-jamming attacks, configurable
settings were added in the attack settings menu, see Figure 12.
These settings include the ability to toggle the attacks on
and off. Additionally, a setting for whether the aircraft’s true
position is shown on the map during GPS-jamming was added.
The later setting is useful for showing the different effects the
two attacks have on the aircraft’s positioning. Further, settings
for how many low-powered and high-powered attacks appear
were added, allowing the test leader to tailor the attacks for
different scenarios. The test leader can also change the radius
of the low-powered and high-powered attacks independently
with the settings in the menu. Finally, a setting for whether
the jamming zones are visible in the map for the user was
added. This setting allows the test leader to show the effects
of the different zones and can allow the user to easily dif-
ferentiate between the previously mentioned ADS-B attacks.
When toggling the attacks on or off, the positions of the
jamming zones are randomized and the number of zones and
their extent is taken from the settings menu. However, this
randomization can be improved to take map parameters into
consideration, such as where the landing strips are located,
how large the airspace is, etc. This would make the GPS-
jamming attacks more tailored to the map the user is being
trained on since all incoming traffic might be coming from a
particular place on the map. Then, placing the zones near this
point would give the user more of a challenge then if the zones
were placed far outside of the map. The attacks can also be
improved further by randomizing when they appear, instead
of the test leader having to toggle the attacks on or off. This
approach would enable more realistic scenarios where the user
remains unaware of when GPS-jamming occurs, creating a
need for them to respond in real-time on their own accord. By
removing prior knowledge of when the attacks are active, the
scenario better simulates real-world conditions and enhances
the evaluation of user responses.

Fig. 12. Image showing the settings for GPS jamming attack in the simulator.

C. Implementation of advanced analytics

The admin main page has been expanded with functionality
which allows the user to select a number of tests to compare
against each other. The scores for each user is displayed on
the y-axis, with the user id’s of selected tests on the x-axis,
see Figure 13.

Scores for the selected test will then be shown in a bar graph
which gives a clear overview. See Figure 14 for an example.

7



Fig. 13. Test selection for graph comparison

Fig. 14. Admin page bar-chart

The sub-pages for selected tests have been expanded with two
pie charts. One shows what attacks occurred during the test
and their frequencies, which can be seen in Figure 15. The
other shows user guesses for these attacks in three categories,
Correct, Incorrect or No-Guess, displayed in Figure 16.

Fig. 15. Pie-chart displaying cyber attacks & their frequencies

Fig. 16. User guesses on cyber attacks

The admin sub-pages have also been expanded with graphs to
show what score the user has been awarded at different times
throughout the test, with four categories. Positive/Negative for
air traffic management and Positive/Negative for cyber attacks,
see Figure 17.

Finally, the number of cyber attacks injected into the simulator
at different intervals has also been added to the test sub-page
and can be seen in Figure 18.

Fig. 17. User Score at different time intervals

After some investigation, it was determined that the existing
code for the admin page and test sub-pages would need some
refactoring to allow the addition of the new analytics in a good
way. This refactor resulted in more modular code, to increase
the overall maintainability, with separate files for the HTML
and the JavaScript code. The charts were implemented using
the selected open-source Chart.js library [8].

8



Fig. 18. Number of cyber attacks injected at different intervals

D. Identifying bugs and refining the simulator

When working with the simulator and testing new features,
quite a few bugs have been discovered in the simulator. In
order to create a better user experience and a fully functional
program these bugs have been investigated and largely fixed by
the project group. The group used a two-step plan to organize
this work. When a bug was first observed, it was saved in a
shared document and continuously updated over the course of
the project. These identified bugs were then added to GitLab
as issues with the bug fix label, and assigned to a group
member. With this approach, most bugs were investigated and
eventually fixed.

Some bugs were found to be occurring since the open scope
commit that the attack simulator is forked from is older and the
attack simulator has not been rebased on the newest version.
This meant that some bugs existed in the attack simulator but
not in the OpenScope simulator.

One such bug that existed in the attack simulator but not in the
OpenScope simulator was that the tower-controlled departure
was not working. This was because a working implementation
existed in the OpenScope simulator but the attack simulator’s
implementation did not change behavior based on that setting
at all. This issue was fixed by updating the aircraft controller
to check if this specific option was set. If so, the program
was updated to automatically run all commands required for
takeoff on departing planes upon spawning.

Some reported bugs were determined to be false positives,
specifically those related to attack probabilities. Increasing the
time-warp setting to speed up the simulator, running multiple
test sessions, and using the newly created visual analytics for
the test helped with debugging. It was found that some guessed
bugs were actually not bugs, and the simulator was working
as expected.

One example was two attacks that never occurred in the tests,
namely:

• Sybil
• Airplane Flooding

After thorough testing and investigation, it was found that
the probabilities for these attacks were not configured in the
test settings, which defaulted to 0, preventing the attacks
from happening. Adding probabilities for these attacks in the
test configurations would result in the attacks occurring as
expected, and thus the issue was closed.

Another issue falsely identified as a bug involved an attack
probability setting in the user interface. In a similar manner
to the bug above, this was likely reported as working incor-
rectly when changing the settings in a test scenario. After
some experimentation in the free-play mode, the probabilities
turned out to be working as intended. Additional testing was
performed in the test modes. It was found that starting tests
automatically reset the selected attack probabilities to the
defaults of the selected test. However, increasing the attack
setting probabilities after the test had started seemed to work as
expected. It was also found that some attacks were happening
more often than others even with the same probabilities. This
was due to hard-coded injected attacks at different timestamps
in the test configurations. Eventually, these functionalities were
considered indented behavior, and as such this issue was closed
without further investigation.

One bug that was remedied was error logs that occurred on
the admin page. The error logs were related to the function
allowing filtering of tests but did not affect any functionality
of the admin page.

A bug related to the penalty received for missed guesses
was found and fixed. The user only received a penalty for
missing to guess on an attacked airplane when the airplane
was removed from the simulator, such as when leaving the
airspace. However, it was also expected that the user would
receive a penalty for missing to guess on an attacked airplane
when a test ends and the airplane is still in the airspace. It was
decided to also add a threshold of 8 minutes without a guess
before giving the penalty. This assures that if an airplane leaves
the airspace within 8 minutes after the start of the attack, it
will not result in the user receiving a penalty.

An additional bug related to users guesses on airplanes was
that users could guess on uncontrollable airplanes outside the
airspace. The expected behavior was that users should not be
allowed to guess on these airplanes. The bug was fixed by
additional checks and an error message when a user attempted
to guess on airplanes outside the airspace.

Most other bugs were related to commands being available
or working even in unexpected situations. For example, it
was possible for users to make a guess on aircraft outside
the airspace. This was not the expected behavior and it was
fixed by restricting guesses on aircraft outside the controllable
airspace. Another similar bug was the stoptest command
being accepted even if no test was currently running. This
was fixed with a simple check and an error message being
displayed to the user when attempting the command if no test
had been started.

9



E. Development of educational content

The OpenScope tutorial was extended to include help for con-
figuring GPS-jamming attacks. Further, the attack descriptions
in OpenScope were extended to explain how the GPS-jamming
attacks affect the positioning of aircraft visible to the user.
Additionally, educational videos were produced showcasing
the GPS-jamming attacks and their effects as well as how the
intruding drone behaves. These videos can be used in training
sessions with air traffic controllers to further their knowledge
of modern-day attacks on air traffic. A document explaining
the videos and how the attacks behave was also created. This
document can be used by both the test leader to prepare for
user testing, as well as the user to further their knowledge of
GPS jamming and how aircraft behave when exposed.

V. CONCLUSIONS

The conclusions of each research question are described in the
subsections below.

A. Integrating Swedish airports

Integrating a Swedish airport is possible through the work of
a team with experience in both how json files work but also
experience in the airplane/airport/airsim community.

B. Integration of new cyber attacks

The newly added cyber attacks further improve the simulator’s
ability to train air traffic controllers in their knowledge of cyber
attacks. With intruding drones and GPS-jamming becoming
more prevalent in the world, the knowledge of how to handle
these two attacks are an important tool in the controllers
toolbox.

To further improve these attacks, the GPS-jamming should be
configurable to be enabled randomly instead of a test leader
having to manually enable and disable the attack. Tailoring
the GPS-jamming attacks to the currently used map would
also further improve the educational value of the simulator. If
the attacks were tailored to the maps in the simulator, the air
traffic controller being trained would be subject to a more re-
alistic scenario than randomly appearing GPS-jamming zones.
Another type of GPS-jamming mode can also be added that
combines the two existing methods to try to more accurately
mimic real world scenarios since there exists no real hard
line between low-powered and high-powered attacks. Real
world GPS-jamming attacks can vary largely in their respective
power, creating more complex scenarios where aircraft behave
differently than in the simulator.

Additionally, the intruding drone attack could be enhanced by
allowing users to pre-determine the drone zone location either
by dragging it on the map or by entering coordinates in the
settings menu. This would allow for further customization of
the attack. The moving drone zone could also be improved to
calculate aircraft trajectories and analyze wether they intersect,
enabling the awarding of points for aircraft that re-route during
the moving attack mode. Furthermore, expanding the range of
directions in which the moving drone attack can travel would

enhance the overall customizability of the attack, enabling a
wider variety of attack scenarios.

C. Implementation of advanced analytics

The test analysis was improved with the help of visual
analytics in the form of pie charts and bar charts. As a result
of the implementation process, the overall maintainability of
the admin page was improved.

Future work expanding on these results would be refactoring
of the tutorial, and feedback page to also improve on their
maintainability, similar to what have been done for the admin
page. After evaluation with real air traffic controllers, the
analytics can possibly be extended with additional visuals as
needed.

D. Identifying bugs and refining the simulator

Some bugs were fixed during the course of this project and
they will be summarized in the list below.

• Airplanes not automatically departing with the setting
“automatically controlled takeoff on”.

• Stoptest command can be executed even when no test is
active.

• Attack probability setting not working as intended.
• Some attacks never appear.
• Error logs related to the search of tests on the admin

page.
• A user did not receive a penalty at the end of the test

when missing to guess on an attacked airplane.
• A user could guess on an uncontrollable airplane outside

the airspace.

Recommendation for future work in this area would be to
spend the effort to rebase the attack simulator on the most
recent OpenScope release. This could lead to fewer bugs in
the simulator but it will also be easier in the future when
OpenScope adds new functionality to get that into the attack
simulator.

E. Development of educational content

Instructional videos and a document describing the newly
added attack functionality was created to enhance the cyber
awareness training. Future work in this area may include
additional educational content covering in more detail how
GPS-jamming works on a technical level, and why it affects
the aircraft as shown in the simulator.

ACKNOWLEDGMENT

Special thanks to Gurjot Singh Gaba who helped us immensely
with this project. He helped us pick well-thought-out research
questions and kept us on track toward reaching the goal
during the entirety of the project. We also want to thank
our supervisor Andrei Gurtov who helped us find domain-
specific knowledge about airports and airplanes. Finally, we
want to thank Ulf Kargén, the examiner in this course. For his
guidance, instructions, and timely feedback.

10



REFERENCES

[1] A. Blåberg, G. Lindahl, A. Gurtov and B. Josefsson, “Simulating ADS-
B Attacks in Air Traffic Management”, 2020 AIAA/IEEE 39th Digital
Avionics Systems Conference (DASC), San Antonio, TX, USA, 2020,
pp. 1-10, doi: 10.1109/DASC50938.2020.9256438.

[2] M. Makar, J. Ekman, J. Granlund, A, Johnsson. “Arlanda stängdes
efter drönarlarm: ‘Misstänker medveten handling”’, SVT Nyheter [Inter-
net], (2024-09-16), https://www.svt.se/nyheter/lokalt/stockholm/arlanda-
stangs-flygplan-dirigeras-om-till-skavsta

[3] K. Zhang, “Investigating GPS Vulnerability”, Disserta-
tion, KTH, School of Electrical Engineering, Stockholm,
Sweden, 2013. [Online]. Available: https://www.diva-
portal.org/smash/get/diva2:1537307/FULLTEXT01.pdf

[4] Faria, Lester and Silvestre, Caio and Correia, Marcelino, “GPS-
Dependent Systems: Vulnerabilities to Electromagnetic Attacks” 2016
Journal of Aerospace Technology and Management, pp. 423-430, doi:
10.5028/jatm.v8i4.632.

[5] Luftfartsverket, (25-11-2024), “esms-airport”, https://aro.lfv.se

[6] Openscope, (25-11-2024), “Airport-format.md”, github
https://github.com/openscope/openscope/blob/develop/documentation/airport-
format.md

[7] Openscope, (25-11-2024), “Airport-file-standards.md”, github
https://github.com/openscope/openscope/blob/develop/documentation/airport-
file-standards.md

[8] Chartjs Contributors, (25-11-2024), “Chart.js”, https://www.chartjs.org

11


