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Abstract—The rapid expansion of Internet of Things devices and
the adoption of cloud-edge computing architectures have revo-
lutionized data processing and security management. However,
these advancements have also exposed systems to new security
threats, requiring solutions for monitoring, detecting threats and
alarm generation. This paper presents a literary analysis of these
approaches, including Intrusion Detection Systems and multi-
layer security in a cloud-edge environment. This was done by
categorizing the techniques used, their methodologies and the
strengths and weaknesses. A comprehensive summary is also
presented using the metrics of impact, robustness and complexity.

Index Terms—Monitoring, Alarm generation, Privacy, Machine
learning, IoT Security, Cloud Security, Cloud-Edge, Multi-Layer
Security

I. INTRODUCTION

IN today’s digital landscape, the rapid proliferation of
Internet of Things (IoT) devices and cloud-edge has rev-

olutionized the way organizations manage and secure their
data. As industries increasingly rely on these technologies to
enhance operational efficiency, scalability and time sensitive
data, the vulnerabilities associated with interconnected systems
have also risen dramatically. Cyber threats are becoming
more sophisticated requiring advanced strategies for automatic
monitoring, threat detection and alarm generation.

Automatic monitoring is crucial for identifying anomalies
and potential security breaches in real time enabling orga-
nizations to respond swiftly to emerging threats. Traditional
methods of intrusion detection often fall short due to their
reliance on predefined signatures and static rules making
them inadequate against new and unknown attacks. There is
a pressing need for intelligent systems capable of adaptive
learning and proactive threat identification.

This paper explores the integration of automatic monitoring,
threat detection and alarm generation within cloud edge envi-
ronments. We examine the roles of Intrusion Detection Sys-
tems (IDS), Cyber Threat Intelligence (CTI) and collaborative
approaches to enhance security measures. By investigating the
current landscape and addressing the challenges in effective
alarm generation and false positive reduction this study aims
to provide valuable insights into improving the resilience of
cloud-edge networks against evolving cyber threats.

In this report we categorize the different technologies and
discuss their respective architecture and methods. We take a
deeper look on cloud edge systems and IoT role in a cloud
edge system. We also classify the different security mech-
anisms at the different layers, how edge device monitoring
works with different IDS to generate alarms in order to detect

threats. We will analyze how to mitigate vulnerabilities across
the protocol layers in regards to multi-layers security.

A. Background

The rise of IoT and cloud-edge computing has transformed
industries that depend on large-scale data processing and real-
time operation. IoT are interconnected devices that collect,
send and process data. These devices are designed to be
energy-efficient and optimizing performance while minimizing
power consumption. Cloud-edge computing extends the com-
putational capabilities of the cloud closer to the edge network,
reducing latency and improving overall efficiency. This enables
more efficient data processing and load sharing, but it also
introduces new layers of complexity, particularly in terms of
managing distributed resources and securing data transmission
across diverse environments and networks. An edge device in
IoT offer a small amount of processing power and memory
in-order to be more memory efficient. Another aspect is multi-
layer security where you divide a system into their respective
protocol layers, i.e the physical layer, data link layer, network
layer, transport layer and application layer. Classifying both
attacks and defenses into which layer or layers they operate
on can be beneficial in assessing what parts of a system they
target.

II. IOT

IoT devices face multiple challenges during development of
the devices, since they have various architectures regarding
what protocol stack and data format the system uses. IoT
devices range from simple sensors to complex systems. De-
pending on the use case, IoT devices can be positioned at the
edge of the network or within it [1]. Some of the transport
messaging protocols in use are Message Queue Telemetry
Transport (MQTT), which uses publishers whose task is to
produce data like a sensor. It then sends it to the MQTT broker
who collects the messages and analyze who it is from and the
data contents as seen in Fig. 1 [2]. Wireless Sensor Networks
(WSNs) are one system that efficiently utilizes MQTT, and
they are a large network of low energy sensors. They utilizes
the MQTT broker as a data storing point and to processes the
real-time data in-order to perform scanning of an environment
[3].

There are several network protocols developed for IoT devices,
one such network protocol is Long Range Wide Area Network
(LoRaWAN), which connects IoT devices that are off the grid
using sub-gigahertz radio band and are regionally regulated.
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Fig. 1. MQTT data visualization.

Due to this, regulation available channels can be mixed,
therefore the throughput ranges from 250bps to 22kbps [4].
Another widely adopted network protocol in use is Zigbee,
it supports short range, low power communication often in
used in IoT home devices. Zigbee uses coordinators similar
to MQTT where the data is relayed through the network from
router nodes to a root node and the root node handles the data
from the edge device where the network can have the form of
either a star, tree or mesh [5].

III. CLOUD-EDGE SYSTEM

There are many of different kinds of implementations of cloud-
edge systems depending on their use case. It is a system
that bridges the gap between the cloud and edge systems,
this makes it so when edge devices require more processing
power, they can offload tasks to the cloud, which offers vast
resources that can be dynamically allocated based on the
specific needs of the system [6]. The system can be individual
devices connected to the cloud or a network connected to an
edge node and then connected to the cloud like the system in
Fig. 2.

A. Edge systems

An edge system is a system that connects multiple sources and
are close to the data source. It is used to ease with computing,
storage and networking to smaller devices that are made to be
energy efficient and memory effective. Edge devices can for
example, precompute requests from a device in the network
and also save important information in order to, save on time
and data transmission [7]. There are multiple technologies that
use an edge system, for example 6G, to reduce response time,
increase data throughput on the network, and the ability to
add AI to the technology [8]. Edge systems are also utilized
in 5G networks through Multi-access Edge Computing (MEC),
which reduces latency and traffic congestion and enabling
cloud-offloading in the network [9].

B. Data security at the edge

There are multiple approaches to secure data generated at edge
networks. Since there are multiple types of networks, there are

Fig. 2. High level design of a cloud-edge system.

various different aspects to control in order to ensure security
at the edge. One critical aspect to monitor and ensure security
is data integrity, as data packets are sent through intermediate
devices that can be altered, for example, via a Man in the
Middle attack.

Zigbee addresses this issue by using a cryptographic Mes-
sage Integrity Code (MIC) to provide data integrity and
authenticity for the MAC header [10]. Similarly, LoRaWAN
uses a Cipher based Message Authentication Code (CMAC)
to ensure data integrety and authenticity [11]. The primary
difference between MIC and CMAC implementations is that
MIC employs hash based functions whereas CMAC uses block
cipher and is generally more energy efficient making it suitable
for off-grid devices [12].

Both protocols utilize the AES stream cipher to encrypt
the data payload in order to ensure data confidentiality. While
Zigbee does permit the reuse of the same encryption keys in
order to simplify the encryption, this creates an encryption
vulnerability. However, with the current known techniques
and computational power today, breaking the encryption is
impractical.

The main difference between LoRaWan and Zigbee is their
range: LoRaWan is long range while Zigbee is short range
and therefore they have different security aspects to examine.
LoRaWan need to be more tolerant against sniffing attacks
because of the longer range. In contrast, sniffing a ZigBee
connection requires a close proximity to the devices.

Moreover there are not only external threats against the
network but also internal threats that needs to be addressed.
Devices within a network are often given higher trust due
to authentication and inclusion, which poses a security risk
[13]. Addressing this trust issue in the network is not yet
standardized, but there has been some research to build and
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optimize the trust in a zero trust network model [14]. The
authors use a trust value in order to use a path that has the
highest trust in a WSN network, this makes that the device
has to build up trust in order to be included and trusted within
a network. If a device has a low score it could be flagged for
further analysis.

C. Monitoring

Monitoring a system can be a rather complex task, especially
when the system is large and distributed. The main purpose
of monitoring is to record events in the environment. These
records can later be used to debug issues and find the root
cause of a problem. In the security domain, logs are useful
when attempting to generate alarms of ongoing cyberattacks
and when one wants to determine what damages an attack was
able to inflict on a system.

There are a multitude of possible combinations of which
information can be logged. The NIST standard SP 800-92 [15]
contains information that can aid a security expert in selecting
what types of data are relevant, see the following list for a
summary.

• System Events
• Audit Records
• Client requests and server responses
• Account information
• Usage information
• Significant operational actions.

The same standard also defines a way to guarantee the
integrity of the logs. A message digest have to be calculated for
each log file to ensure that it has not been altered after creation.
When ingesting the file to a storage facility the digest should
be recomputed, if they to not match the log has been altered
and cannot be trusted. A message digest is a digital signature
most commonly implemented through a hashing algorithm
such as MD5 or SHA.

Furthermore, the value of the collected data can drastically
vary depending on where a system is monitored. A cloud
system is thought to have 7 layers; facility, network, hardware,
operation system, middle-ware, application and user. In order
to not fail to collect vital information about an attack, all of
these layers should be monitored [16].

Traditionally, one was inclined to place e.g. an IDS on the
main link that intersects the gateway router. When attempting
to monitor devices on the cloud-edge, this is rather unfeasible
due to the sheer amount of data that are normally flowing
through such a link and the fact that isolated IDS’s have
weaknesses. There is a rather large probability that such a
naive approach would cause more harm than gain in the form
of network congestion and unidentified cyberattacks.

Fung et. al build on the issues with isolated IDS’s [17],
arguing that they are ineffective in detecting unknown threats.
They thus propose an Intrusion Detection Network (IDN) as
a possible solution, similar to Fig. 3. Simply put, this is
a network of collaborating IDS’s that share detections and
knowledge between each other using a peer-to-peer protocol.
More specifically they investigate consultation-based IDN’s,
meaning that an IDS in the network can consult and receive

feedback from other IDS’s in the network when it is unsure
of whether an activity is malicious or not. The proposed IDN
uses a fully distributed Bayesian trust model that yields a high
degree of robustness and scalability. Furthermore the solution
aggregates and uses feedback from previous consultations
when making a decision on wether to raise and alarm or not.
This decreases the rate of false positives and false negatives.
The IDS’s in the network uses an incentive when allocating
resources to a neighboring IDS. This incentive is based on
trustworthiness and how much resources other IDS’s are
allocating to the specific IDS. Combined with an algorithm
that is able to pair collaborators given any arbitrary context a
high efficiency can be obtained at a low cost.

Fig. 3. High level design of a Collaborative IDN.

Even though the use of an IDN seems to be more effective
than isolated IDS’s when it comes to detection of potential
threats, one prominent question remains. How should the
probes, or in this case the IDS’s that constitute the IDN be
deployed? Tundo et al. presents an array of probe deployment
patterns [18] that could provide guidance. The authors define
a probe holder as an object that hosts one or many executable
probes. If an adversary could obtain control of a holder, all
of its probes would be compromised. A reserved pattern uses
a reserved holder for each user in the system, see Fig. 4. It
contains the damage if an adversary were to obtain access to
a holder. This would naturally increase failure containment
and mitigate security risks, since there are no interference
between users. It does however come with some drawbacks.
The number of holders and probes grow proportional to the
number of users, and a higher economic cost will be incurred
to utilize the resources effectively.

In the industry monitoring could be implemented using
Filebeat, Fleet, Logstash and Elasticsearch [19],[20]. Fleet is
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Fig. 4. One way to implement a reversed pattern.

a command and control server that manages Elastic Agents
deployed on nodes in the network. The main purpose of
these agents is to collect data and create logs. Filebeat then
locates all of the logs created by the agents and assigns a
harvester to each one. A harvester reads a log and sends the
events to Libbeat. There, the events are centralized in order to
be deduplicated and aggregated. Next, the processed events
are sent to Logstash where they are filtered, enriched and
transformed into structured JSON objects. Finally, the objects
are ingested into Elasticsearch where they are indexed and
stored. An overview of the process is visualized in Fig. 5.

D. Intrusion detection system

IDS has been an essential tool for cybersecurity due to the
rapidly growing complexity and sophistication of cyberattacks.
IDS plays a pivotal role in protecting critical data and systems.
As the digital landscape expands including multiple environ-
ments such as IoT devices, cloud environments and broad
corporate networks.

IDS are essential as cybersecurity tools designed to monitor,
detect and respond to unauthorized or malicious activities
within a network [21]. Traditional IDS are designed to identify
and respond to unauthorized or malicious activities within a
network or host environment as can seen in Fig. 6 [22]. These
systems use two main detection methods, signature based
detection and anomaly based detection [21]. Both methods
require computational capabilities and workflows to ensure
robust monitoring and alerting mechanisms.

Signature based IDS operates by matching analyzed data
against a database of predefined attack patterns or signatures
[21]. Sensors such as network sniffer capture real-time net-
work packets and host activity logs and then analyze the data

Fig. 5. Collection and processing of logs for monitoring.

to extract the important components, such as packet headers,
payloads or system logs [22]. The identified components are
then compared with stored signatures using algorithms like
Boyer-Moore or Knuth Morris Pratt for string matching and
more complex patterns are identified using regular expressions
[21]. When a signature has matched, the system generates
an alert and logs the event at the same time it notifies the
administrator of the incident [22]. Tools like Snort are example
of the implementation of signature based IDS by offering
a large signature database for network packet analysis [17].
This approach is efficient for known threats due to the use of
optimized structures like hash tables for faster lookups [22].
But at the same time it is limited to only detect known threats,
and for that reason in order to remain effective, the IDS has
to be regularly updated.

An anomaly based IDS identifies deviations in behavior
compared to an established baseline of normal behavior [21].
The baseline of normal behavior is based on the patterns of
the data that is used to train the system [21]. The patterns can
be such as network traffic, system usage, login frequencies
and bandwidth consumption. When the training phase is over,
the IDS uses real-time data to continuously compare it with
the learned baseline and any significant deviations will be
flagged as anomalies [21]. Detection relies on statistical thresh-
olds or clustering algorithms such as K-Means or DBSCAN
(Density Based Spatial Clusting of Applications with Noise)
to identify and categorize anomalies. K-Means is a well-
known clustering method used in data mining and machine
learning to group data points into clusters [23]. The second
algorithm, DBSCAN, is a popular clustering algorithm that
is used to identify clusters in data by grouping points that
are closely packed together and marking points in low-density
regions as noise [24]. Anomaly based IDS can be efficient
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in identifying unknown threats and zero-day attacks, but it
often struggle with high false-positive rates, especially in more
dynamic environments with shifting behaviors. At the same
time, the computational demands require significant power due
to the need for ongoing model updates and complex real-time
processing [21].

Traditional IDS faces several challenges as the amount of
data increases. As network traffic volumes grow, maintaining
real-time analysis becomes difficult without distributed pro-
cessing and multi-threaded architectures [22]. More advanced
attacks use techniques like packet fragmentation or encrypted
payloads to evade detection requiring more complex tools to
detect, such as Deep Packet Inspection (DPI) [25]. When it
comes to anomaly based systems, they are efficient for a
certain amount of attacks, but in a more dynamic environment
the baseline can lead to frequent false positives reducing
the level of trust in the system [21]. Despite the challenges
traditional IDS systems face, it remains fundamental in cy-
berscurity. In order to detect and mitigate threats, the IDS
leverages sophisticated data collection, statistical analysis and
machine learning [22]. The evolution and development of IDS
continues to play a vital role in securing systems against an
ever-expanding threat landscape [17].

The growing complexity of network attacks, especially in
IoT environments where limited computational resources and
specialized protocols, make traditional IDS approaches less
effective [26]. Instead of relying on inspecting packet pay-
loads, which is challenging in encrypted or complex networks,
an anomaly based IDS analyzes the behavioral patterns in
network traffic to identify malicious activity [26]. Generative
Adversarial Networks (GAN) are a concept in machine learn-
ing, especially in the field of deep learning [27]. GAN consists
of two neural networks, a generator and a discriminator that
works in opposition to each other in a process known as
adversarial training. The framework allows GAN perform
different things such as learn the underlying distributions of
data, generate realistic data, and improve the robustness of
machine learning models [27]. The generator in the network is
responsible for creating synthetic data that mimic the real data
it learns during training. For example, in image processing,
the generator creates images that appear as if they are part
of the original dataset, even though they are entirely synthetic
[27]. In applications like intrusion detection it works similarly,
the generator produces traffic patterns that mimic malicious
or adversarial perturbations in order to simulate real world
scenarios [28]. On the other hand, the discriminator acts as
a classifier that has the task to distinguish between the real
data and the synthetic data created by the generator. The
discriminator learns to evaluate and improve its accuracy
over time, improving its accuracy in identifying patterns and
detecting anomalies in the data. This allows the model to
generate synthetic examples that help the IDS to recognize
and neutralize perturbations effectively, de-noising the data.
The improved IDS can then classify threats more reliably even
under more complex and sophisticated attack conditions.

Client Internet Firewall IDS

Company’s Lan

Fig. 6. Simplified example of where IDS are placed in the system network.

E. Cyber threat intelligence

The authors of [29] explain that CTI is necessary for organi-
zations because it provides a comprehensive understanding of
potential and active threats. The CTI is important for proactive
threat hunting and mitigation because it does not only involve
responding to detected threats, but anticipating and preventing
attacks before they occur. By adopting a proactive strategy,
the security teams will be able to detect early Indicators Of
Compromise (IOC) and respond quickly to reduce potential
damage. CTI can be enhanced by integrating open-source
intelligence (OSINT) by expanding the range of data and
automating its processing.

The paper [29] presents a system called ThreatRaptor, de-
signed to enhance cyber threat hunting by utilizing OSINT.
The ThreatRaptor improves the efficiency of detecting so-
phisticated cyber threats by leveraging OSINT through dif-
ferent types of mechanisms. The system uses an unsupervised
Natural Language Processing (NLP) pipline to indentify and
extract IOCs and their relationship to each other from OSCTI
texts. The external repositories can help to find IOC (such as
IP address, files hashes, domains and URL) which is pieces
of evidence that can indicate a system breach or malicious
activity. This is achieved by using an algorithm that breaks
down the text into blocks to process sentence by sentence and
identify dependencies between words.The Threatraptor uses
the identified words and their relationship to each other to
construct a structured threat behaviour graph of it consisting of
nodes that represents each IOC and edges denoted the relation-
ships. The graph can be used to provide a visual representation
of the identified IOCs and how they are connected to each
other such as communication or data transfer actions.
The ThreatRaptor uses the data from the created graph together
with Threat Behavior Query Language (TBQL) to automati-
cally synthesize queries to find matching system audit records
in the monitored log data, as seen in Fig. 7. This synthesis
allows translation of the graph into actionable search queries
that scan system logs for potential threats without manual quert
crafting [29].
The traditional method for cyber-threat hunting requires secu-
rity analysts to manually construct queries based on log data
or observed suspicious behavior to identify potential threats.
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This process can be time-consuming and labor-intensive when
dealing with large datasets or complex attacks. By using
ThreatRapotor it simplifies the process by leveraging OSCTI to
automatically generate queries for detecting potential threats.
When ThreatRaptor ingests external threat intelligence, it uses
this intelligence to automatically create queries that align with
the data. These queries are designed to search for specific signs
of compromise or malicious activity in system logs or network
traffic.
The ThreatRaptor is considered a light-weight system that
operates effectively without requiring continuous human over-
sight or intricate configuration. Those properties of a system
enhance its scalability, making it suitable for deployment in
environments that involve large datasets or complex infras-
tructures. The nature of the systems ensures efficient resource
usage providing comprehensive threat hunting capabilities and
monitoring with minimal manual intervention.

Fig. 7. An example data leakage attack case demonstrating the whole
processing pipeline of THREATRAPTOR.

F. Alarm generating systems

Creating alarm generating systems using monitoring data is not
a trivial task and can be prone to errors. In order to combat this
issue Albuquerque et al. proposes two patterns, Development
Tracking and Exception Tracking [30] that intend to limit the
number of errors and anomalies in addition to making them
more visible to the engineering team. The authors classifies
Deployment Tracking as a practice intended to correlate sys-
tem anomalies with recent deployments of software or new
hardware. The practice aims to give developers a clear answer
to whether an anomaly in the system is caused by a recent
deployment or not. In the context of generating alarms, this
is vital since they generally have a maximum response time
associated with them. If a developer does not notice that a
recent deployment introduced an anomaly in the system, it
could render the service useless. In order to prevent this, every
change and deployment to production should be tracked in
a way that clearly highlight system anomalies in relation to

deployment times. It is not an uncommon practice to store
exceptions in a local log file. In some scenarios, this might be
sufficient, but when we are talking about cloud systems, this
approach poses some real issues. The most prominent issue in
this context is how a developer is supposed to figure out if a
deployment is causing an anomaly if the logs are distributed.
In order to prevent this scenario the Exception Tracking pattern
can be used. Instead of storing exceptions that might have been
caused by an unknown anomaly in a local log file, it would
be beneficial to send the exceptions to a centralized tracking
service. By doing this, the service can perform de-duplication
and aggregate exceptions. By extension, this enables more
efficient tracking of issues and their resolutions, resulting in
alarms with higher trustworthiness.
Now consider a system architecture where logs from multiple
edge devices are sent to a centralized tracking service. These
logs might contain anomalies or exceptions that should trigger
an alarm, or they could be clean, only containing normal
behavior. As previously mentioned the accuracy and recall of
an alarm generating system need to be very high if it are to
provide any real value. Thus, we need a way to distinguish
between benign and malicious activity within the collected
logs.
One way to do this is by using a Convolutional Neural
Network (CNN). Abdelsalam et. al [31] tried this approach
by evaluating to what degree both a 2D and 3D CNN are
able to correctly label malicious samples. Deep learning (DL)
does however come with the same drawbacks as the rest of
the Machine Learning (ML) spectrum. The model needs to
be trained, and parameters need to be tuned. Even if this
computational overhead is disregarded, the F1 score usually
asymptotically approaches a value less than 1, regardless
of additional training and optimization. Their CNN’s were
comprised of two convolution layers followed by a fully
connected one before a prediction was made. The F1 scores
were somewhat promising, reaching approximately 0.79 and
0.90 for the 2D and 3D versions, respectively.
Although the F1 scores for the 3D CNN look promising, a
ML model can leak sensitive information. Differential Privacy
(DP) could mitigate this leakage with an impact cost. Ababi et.
al [32] implemented differentially private stochastic gradient
descent (SGD) algorithms in TensorFlow, a framework that
enables a programmer to distribute the training of a ML model
over multiple nodes. Their results showed that an accuracy of
around 70% could be achieved with this approach. The epsilon
parameter was set to a value between 2 and 8 and their tests
were performed using different noise levels on the CIFAR-10
dataset.
Distributed ML is not perfect though and comes with its own
issues. Verbraeken et al. [33] found that the number of nodes
could have to be quadrupled to increase training speedup by
a factor of 1. They also concluded that distributed ML lacks
in the privacy department. If the aforementioned leakage of
sensitive information is excluded, it struggles with keeping
training data separated across nodes, and statistical noise can
limit the usefulness of the model.
One way to combat data leakage from ML models is to employ
Federated Learning (FL) that improves data locality. Strong
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data locality does however not guarantee privacy by itself, a
system needs to prevent message inference during both the
training portion and in the final model. Truex et al. [34]
proposed an FL approach that utilizes both DP and Secure
Multiparty Computation (SMC) to mitigate inference while
achieving an acceptable accuracy. They found that their model
can be used to train an arbitrary ML model with a high degree
of scalability while being robust and having an F1 score in the
upper 15th percentile range.
Since a system that generates alarms from logs processes a
massive quantity of data, the field of Big Data research is
also applicable. Distributed systems such as Apache Hadoop
and Spark could thus be used. Huang et al. [35] were able
to show that an implementation in Hadoop Distributed File
System (HDFS) could detect the deletion of files, but it is
unclear what challenges it faces.
Continuing on the example of how monitoring could be imple-
mented in the industry, we can extend it to also include alarm
generation, as seen in Fig. 8. Kibana provides a graphical
interface to the JSON data stored in Elasticsearch [36]. It also
allows a user to write rules that scan the data for patterns using
the Event Query Languange (EQL) [37]. Thus, a user can write
rules aimed to detect specific malicious sequences, interest-
ing anomalies, and correlations. If these rules are triggered,
an alarm can be generated and viewed in Kibanas security
dashboard. As a side note, Kibana also offers integrated ML
solutions that can perform root cause analysis, unsupervised
anomaly detection, supervised classification regression and
much more.

Fig. 8. Generation of alarms based on log data.

IV. ATTACK DETECTION IN MULTI-LAYER SECURITY

When examining security in a system, you can choose to
divide it into their respective protocol layers to see which

aspect of the system an attack or defense targets [38]. The
layered structure of a WSN network includes the following.

1) Physical layer: The first layer represents the flow of
actual binary data through some medium.

2) Data link layer: The second handles the transport of data
between nodes in the network.

3) Network layer: The third layer provides transport of
information with routing and forwarding.

4) Transport layer: The fourth layer breaks up data into
packets and handles sending of data with protocols.

5) Application layer: The fifth and final layer is responsible
for handling data to and from an end user or end system.

Breaking up security of a system into their respective layers
of the protocol stack enables a more focused assessment of
vulnerabilites. This helps in classification and to pinpoint
its operational impact on the system, which is beneficial in
accelerating vulnerability discovery and mitigation.
Different kinds of systems will have varying levels of activity
across the protocol layers, so classifying a threat according to
where in the system it is prevalent can help in more effectively
identifying and terminating it at a quicker pace.
To effectively implement multi-layer security in scenarios
involving cloud and edge networks, data aggregation can
aid in reducing computational overhead [39]. By utilizing
selective data transmissions, a more optimized workload could
be enforced at central systems, reducing the risk for data
floods.
To fuse data between protocol layers can be an additional
measure in strengthening defenses. By leveraging information
gathered through a cross-layered method, weaknesses in tradi-
tional NIDS systems can be mitigated, such as reducing false
positives and false negatives [40].

A. Physical Layer

In the physical layer, there are mainly attacks of certain
characteristics which can occur [38]. An eavesdropping attack
is when you passively intercept traffic and monitor it. It is
an essential prerequisite for many other attacks and are often
deterred through encryption and effective protocol standards.
Another type of attack is a jamming attack, where the attacker
interrupts the communication of a node entirely. This can
be achieved either through electromagnetic interference or to
otherwise make disruptions to being able to transmit data.
An Advanced Continuous-Time Convolution (ACTC) tech-
nique to detect jamming and replay attacks in LoRaWAN
based WSN was proposed [41]. The model proposed showed
an attack detection rate of 100% in the range of 100KHz to
250KHz, and for 500KHz the jamming attacks had a detection
rate of 93.33% and replay attacks 95%. For the two former
bandwidths, the false positive rate (FPR) was zero, but was
0.55 for 500KHz, indicating that the model becomes less
effective for higher bandwidths.
A compromised node attack is another attack which is when a
node has been compromised in a way that it is controlled by
an adversary, which means it can manage and manipulate the
functionalities and resources that the node has access to. A
node like this is usually a point from where other attacks can
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be launched from and is often a prerequisite for more complex
attacks.
A more energy efficient method for detecting compromised
untrusted nodes in a WSN is proposed [42]. A compromised
node is often a point from where other attacks can be launched,
so having mechanisms in place like Node Compromise De-
tection (NCD) to deter this type of attack is important. Other
detection schemes for NCDs have either been behavior based
or attestation based and has had their limitations. Behavior
based schemes detect compromised nodes but they do not
revoke them, while attestation based can be very resource
intensive. In the paper they instead propose their own hybrid
solution which does both attestation and revocation while
keeping computational overhead low resulting in a more
energy efficient detection scheme. Their simulations showed
results for a reduction in false positives for compromised nodes
while also reducing the computational overhead compared to
other previous schemes such as ZoneTrust.
A replication attack is when a legitimate node is cloned by
an adversary. Since identifying attributes like keys and id are
also duplicated to the clone, it may seem legitimate and can
therefore be harder to detect. If this clone is reprogrammed to
act in a way that an adversary desires, then malicious activity
can then be carried out through a node like this.
Strategies for detecting and mitigating node replication attacks
in mobile wireless sensor networks (MWSN) have been pro-
posed [43]. It proposes a framework using a decentralized
method of nonce-based authentication. If a node fails to
authenticate itself by providing an incorrect nonce, it is flagged
as an impostor. It is subsequently put into quarantine by being
added to a quarantine list, prohibiting further communication.
Two schemes are presented, a centralized scheme where a
base station collect claims, and a distributed scheme where
each node independently detect and quarantine impostors. It
also evaluates adaptive mechanisms for detection of replication
attacks, focusing on estimating the number of impostors and
adjusting its threshold dynamically. The threshold here is the
number of claims against a specific node needed to flag it as
an impostor. Two schemes are proposed for this. The doubling
scheme which increase this threshold exponentially, but may
add a delay in detection time. The other is an incremental
scheme, where the threshold is increased gradually based on
a constant value. Experiments on this show that a higher node
density increased detection time, and that a distributed scheme
offers superior resiliency than a centralized approach. It also
shows that an incremental scheme offers better efficiency and
lower false positives compared to doubling.

B. Data Link Layer

The main characteristic attacks when examining the data
link layer are collision attacks, denial of sleep attacks and
intelligent jamming attacks [38]. A collision attack is when
an adversary manages to modify a packet so that upon packet
checksum inspection, a mismatch will occur, triggering a
packet drop. A denial of sleep attack is when the adversary
targets the energy consumption of nodes in the WSN network
by hindering them to go into sleep mode to save energy,

which is a critical aspect to preserve in a sensor network.
An intelligent jamming attack is an attack targeting the rules
of communication protocols with the aim to disrupt commu-
nication and consume energy.
A scheme against denial of sleep attacks was proposed [44].
To conserve the critical aspect of energy in a sensor, a node
will go into an idle state after a period of being inactive. In
a denial of sleep attack, a so called anti node can repeatedly
send transmissions to a node to keep it in an active state, ef-
fectively making it continuously consume power and overtime,
decrease its overall lifetime. What the paper introduces is a
secure scheme to authenticate nodes through the use of hash
chains for authentication and symmetric encryption. The paper
however does not provide any experimental results, so there
is no definitive proof for the effectiveness for this proposed
scheme.

C. Network Layer
The network layer in a WSN network is susceptible to a
number of different kinds of attacks [38]. Common ones
include, Sybil, black hole, gray hole, wormhole, sinkhole and
hello flooding attack.
A black hole attack is an attack where a compromised node
is used to redirect traffic to that specific malicious node [45].
The node broadcasts a message of high energy availability,
making more neighboring nodes direct their messages to it.
The malicious node then does not forward any messages.
In a paper from Vishalo et. al, black hole attacks and their
impact according to metrics in WSN networks for the LEACH
protocol and detection of it using an algorithm are examined.
They identify valuable metrics for evaluating the impacts of a
black hole attack and subsequently measured their impact on
performance and service degradation.
A gray hole attack utilizes selective forwarding and is a
partial black hole attack as drops all packets except a selective
few. It could for example be packets which contain certain
information, or that packets are continuously dropped after a
certain period of time.
A new detection method for selective forwarding attacks in
WSN have been proposed by introducing three new layers
[46]. MAC pool IDs layer, rule-based processing layer and
an anomaly detection layer. Simulation of battlefield network
shows improvement in detection performance and took mea-
sures in improving Quality of Service.
The importance of multi-layer monitoring and cross-layer
data analysis has been highlighted [47]. What was explored
was various network-layer attacks in WSN, with a focus
on detection and consequences for attacks such as selective
forwarding, black hole and sink hole. These attacks were
implemented using Weighted Shortest Path (WSP) and then, an
analysis was made on both victim and sink nodes in different
network topologies. It concludes that threshold based IDS
may be insufficient and proposes the development of more
lightweight anomaly based IDSs.

D. Transport Layer
The main attacks used in the transport layer are flooding
attacks and de-syncronization attacks [38]. Flooding attacks
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are a kind of Denial of Service (DoS) attack, where normal
communication is disrupted by transmission of a large amount
of unnecessary traffic and occupying network resources, ef-
fectively inhibiting regular communication. For the transport
layer, the TCP and UDP protocol are commonly used, which
contain a number of security vulnerabilities, such as the pre-
viously mentioned flooding attack, and TCP prediction attack
[48]. A new multi-layered focus IDS has been introduced with
a focus on DoS attacks [49]. It uses anomaly based techniques
to alert for excessive traffic for identifying malicious nodes.
The proposed framework shows effectiveness in identifying
different DoS attacks, and also other attacks in different layers.

E. Application Layer

The application layer is where services are provided and data
interpretation is made and supplied to a user. Threats at this
layer can can disrupt these services, expose and compromise
sensitive data, and and render networks to be ineffective.
Common attacks include data aggregation, replay attacks, DoS
attacks and cross-layer attacks. An IDS for WSN was proposed
for Wi-Fi based environments with a machine-learning based
approach [50]. The threats that the IDS focuses on are flooding
attacks, injection attacks and impersonation attacks. It employs
a number of techniques for adressing the threats. These
include using CNNs, Deep Neural Networks (DNNs) and
Recurrent Neural Networks with Long Short-Term Memory
(RNN-LSTM). Additionally, they used Aegan Wi-Fi Intrusion
Dataset (AWID) which is a publically available dataset, labeled
with normal and malicious real-world traffic. This dataset
was reduced and refined from 154 original features, down to
13 features. With this, the CNN model was able to achieve
an accuracy of 97% while maintaining low false positive
rates, demonstrating improvements in detection capabilities.
A machine-learning based attack detection method in WSN in
microgrids, with focus on data integrity in smart meter data has
been presented [51]. An anomaly based detection framework is
used with Prediction Intervals (PIs) constructed through Lower
Upper Bound Estimation (LUBE) with further enhancements
through neural networks. A modified Symbiotic Organisms
Search (MSOS) is then used to optimize the parameters for
the neural network to address the complex non-linear data for
the microgrids. Simulations based on microgrid datasets, show
effectiveness in attack detection on varying levels of severity
based on performance metrics. These metrics are measures
through detection rates and confusion matrices. For high
severity levels (above 60% data injection severity), detection
rates reach 98%, proving its effectiveness.

F. Network security

As the number of edge devices in a cloud grows, it becomes
more and more important to perform the majority of the
computing close to the edge devices in order to avoid con-
gestion at the network core, where resources are limited. One
architecture that is able to achieve this is MEC [52]. Since
the architecture includes devices and systems that are layered
and interconnected it does however highlight some of the
security implications associated with networking. The first step

to combat these security implications could be to divide the
network into different segments, so that any potential damage
is contained. A networks main purpose is however to relay
some type of information from one node to another. In its
purest form this is just raw data that for example could be
encoded in bits, radio waves or light. It thus follows that the
overall network security heavily depends on how secure the
information transfer is.
One way to establish a secure and private transfer of infor-
mation is end-to-end communication as defined in the X.805
architecture [53]. The most important component of the archi-
tecture is the eight security dimensions that should permeate
the implementation. These are access control, authentication,
non-repudiation, data confidentiality, communication security,
data integrity, availability and privacy.
A common acronym when talking about security is the Con-
fidentiality, Integrity and Availability (CIA) triad. Encrypted
end-to-end communication aims to achieve confidentiality and
integrity, but one could argue that availability is the most im-
portant part of a network. One of the most common availability
attacks is DoS and its distributed version, DDoS. These attacks
aim to overwhelm a system, forcing it to drop connections
due to insufficient processing power. There exist multiple
methods to mitigate this, i.e. load frequency balancing, Markov
processes and event-triggered transmissions [54] to mention
a few. The defense strategies come with different perks and
drawbacks that might depend on the system model.
The aforementioned defenses are however based on traditional
tools and procedures. This results in an attacker having an
asymmetric advantage, partly due to the static nature of a
network. Moving Target Defense (MTD) [55] could neutralize
this by altering the underlying system configurations in real-
time, lowering the success rate of attacks.

V. HARDWARE SECURITY

Even though the security of hardware is outside the scope of
this survey its importance should still be mentioned briefly. If
the hardware that is used to i.e. collect logs are compromised
an adversary could hide within a system indefinitely. It is
essentially the equivalent of having a rootkit installed on a
workstation, which is very hard to both find and remediate.
However, in most scenarios the hardware itself can actually be
monitored. By recording the power consumption of devices in
regular intervals one is able to define a normal consumption
pattern. This information can, for example, be used to detect
if a device has been infected by a Trojan or if it is the victim
of a DOS attack [56]. The reason for this is that these types
of malware are design to make use of the targets CPU, thus
requiring a higher power consumption. A Trojan usually starts
background processes that collect and exfiltrate data, and the
objective of a DOS attack is to exhaust the victims resources.
One of the most important indicators of wether a program is
malicious or benign is what system calls it uses. A program
is usually comprised of a large amount of these calls and they
generate a large amount of data. It is thus hard to analyze
them using conventional methods. Hardware, or more specif-
ically, Field-Programmable Gate Array (FPGA) can ease this
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problem since they are able to perform orders of magnitude
more operation each second than a general purpose CPU
[57]. GuardOL is a tool based on this concept. By encoding
a machine learning model using multilayer perception in a
FPGA a classifier can be trained on the features of system
calls. The classifier is the able to classify unknown program
samples as malicious or benign early in their execution with
high accuracy.

VI. DISCUSSION

During this chapter we will discuss some of the challenges the
systems faces. We will discuss what techniques can be used,
in addition to their perks and drawbacks. What ethical and
privacy related concerns need to be taken into consideration.
Finally we will shed some light on future trends in threat
detection.

1. Main current Challenges
The challenges these type of systems faces are mostly
pertained to cost and scalability, it is also the main reason
why this topic is hard develop. In order to scale up a
system there is a complexity concern that will increase
development and upkeep costs. The scaling issues IoT has
results in a concern regaining how well the edge nodes
are able to handle, process and offload the large amount
of data generated to the cloud.
Since monitoring is highly dependent on specific archi-
tectures there seems to be somewhat of a gap in the
research pertaining to this area. This might be the result
of researchers being unwilling to invest in real hardware
or creating simulated environments. On the other hand is
might be that monitoring is a too generalized term that
has multiple definitions depending on specific scenarios.
By integrating IDS’s to the network environment we also
introduce new challenges to the system. Because differ-
ent types of IDS’s have unique weakness and strengths
depending on which environment they are placed in.
The compatibility issues of the IDS’s in the environ-
ment introduces an increased level of false positive and
false negatives which undermine trust in the system and
overwhelm security teams with unnecessary alerts. This
type of challenges presents the need of more sophis-
ticated algorithms and adaptive learning systems that
can dynamically refine detection thresholds based on
evolving network behaviors. Another important aspect
that is importance of sufficient resources at the edge
devices in IoT environment. IoT devices usually lack
computational power and memory in order to perform
advanced IDS functionality. For that reason lightweight
anomaly detections use of federated learning models
could be a solution for those problems. But at the same
time that type of solutions have its own trade-offs, such
as increased deployment complexity and potential pri-
vacy concerns due to distributed data processing. On the
other hand deploying IDS’s in cloud-edge environment
raises multiple questions regarding the latency and real-
time processing. The huge amount of data generated by
interconnected devices can overwhelm traditional systems

making the real-time analysis task difficult to achieve.
Furthermore alarm generation seems to mostly be based
on ML models that comes with privacy issues that are
not negligible. If these are to be prevented the F1 score
rapidly decreases, similar to the IDS case.

2. Trade-offs for deploying an ecosystem that can monitor-
ing automatically, detect threats and generate alarms
Since the cloud and IoT is constantly evolving there is no
clear method for designing and implementing an ecosys-
tem that can detect threats through monitoring and alarm
generation. Edge-computing is still a relatively recent
architecture intended to move both data and processing
power closer to the end user. Thus a few techniques are
still actively competing against each other for the title of
being the default in their specific areas. In light of this
we have listed the most promising techniques in Table I
along with their impact, robustness and complexity.

3. Outlook on privacy and ethical concerns
More and more edge users are becoming concerned with
keeping their actions, location and identity confidential.
By continuously monitoring the edge devices special care
has to be taken in order to not accidentally expose the
users private information [58]. A study from 2018 [59]
highlighted that almost 90% of IoT devices gathered per-
sonal information about user in one way or another. The
same paper also concluded that there are issues with the
integrity of the devices and their software, furthermore
the communication protocols are not perfect either. Some
network protocols do however protect against information
leakage, but if a device is accepted in the network then a
privacy concern is raised [10]. Additionally a network can
make use of trust variables, forcing less trusted devices
to not be used [14].
The main issue still remains though, an edge user loses
all control of its data the moment it is outsourced to an
edge node or a cloud server for data storage and analysis.
Thus we would like to make sure that sensitive data is
sufficiently obscured. The issue is that this is not always
feasible. As an example Homomorphic encryption [60]
could be used in theory, but it increases the processing
requirement remarkably.
Given the preceding reasoning it is questionable wether
it is ethically sound to collect and process user data if
there are no guarantees that the data will remain private
and outside of an adversaries reach. We thus leave the
reader to infer the answer to this question themselves.

4. Future trends
As the IoT and cloud continues to grow we believe that
one of the more promising technologies are Semantic
Aware Security. If a system was able to incorporate
an understanding of the context, and by extension the
meaning, of collected log data and user behavior it
would become significantly better at detecting malicious
actions against itself. It might even be able to success-
fully defend against Advanced Persistent Threats (APTs)
that influential organizations spend enormous amounts
of money to develop. In the subsequent list are a few
selected techniques that leverages semantics to improve
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the security of a system.

– Using Specific Semantic Search [61] the detection of
and localization precision of attacks can be enhanced
by correlating the output of i.e. collected logs with
the execution of simulated attack scenarios .

– Variations of a Graph Neural Network (GNN) [62]
can be used to learn the semantics of vulnerable
code by capturing structured information about the
context across multiple logged statements. A GNN
can also be used to secure Industrial Control Systems
that are targeted by attacks relying on sophisticated
inherent contextual semantics [63], for example data
associativity.

– A framework that includes a semantic analysis [64]
could be used to extract mutual information from IoT
devices in a smart home to eliminate noise interfer-
ence. Furthermore a tool, IoTSeeker [65], has been
developed that takes advantage of semantics in order
to identify cross-platform IoT binary vulnerabilities.



L
IN

K
Ö

PIN
G

U
N

IV
E

R
SIT

Y
|D

E
PA

R
T

M
E

N
T

O
F

C
O

M
PU

T
E

R
SC

IE
N

C
E

12

TABLE I
COMPARISON OF SECURITY TECHNIQUES BY AREA
Note: Our own thought are denoted by an asterisk (*)

Area Technique Impact Robustness Complexity
Alarm Generation Deployment and Exception Tracking Moderate; Reduces false positives by cor-

relating anomalies with recent deployments
in addition to centralizing exceptions [30]

High; There are no guarantees that a de-
ployment caused an anomaly*

Low; There are minimal overhead associ-
ated with storing the deployment history
and an exception log [30]

Alarm Generation CNN, DP, Distributed ML & FL High; Significantly improves detection of
malicious behavior, DP and FL can also
preserve a users privacy [31],[32],[33],[34]

Moderate; The models could leak sensi-
tive data and generate misleading alarms
[31],[32],[33],[34]

High; A lot of data has to be pro-
cessed in order to train a sound model
[31],[32],[33],[34]

Application Layer ML IDS with CNN, DNN, RNN-LSTM,
Anomaly detection with PIs enhanced and
neural networks optimized by MSOS for
microgrid data

High CNN detection rate (up to 98%) [50],
Improved detection and reduced false pos-
itives

Effective for maintaining data integrity [51] Simplifies dataset used for models from 154
to 13 features [50]

Cloud-Edge Systems Dynamic offloading to the cloud and locally High; improves latency and processing ef-
ficiency, scales effectively [6]

High; robust encryption and trust [9] High; advanced infrastructure and mainte-
nance but cost effective [6],[9]

Intrusion Detection Anomaly-based IDS Effective for detecting unknown and zero-
day threats*

High [28] High [26],[22],[28]

Intrusion Detection Collaborative IDS (IDN) Improves detection through distributed and
peer-to-peer consultations*

Moderate* High; Generate large communication over-
head [17]

Intrusion Detection Signature-based IDS Reliable for detecting known threats* Low; Depends on when last updated [22] Low/Predictable [21]

IoT Security Zigbee and LoRaWAN protocols Zigbee: Good for short-range applications.
LoRaWAN: Effective for long-range, off-
grid devices. [5],[4]

moderate; trust issues in the network and
encryption improvements [11],[10]

Low; lightweight protocol in implementa-
tion and operational cost[11],[10]

Link Layer Hash chain-based authentication, Symmet-
ric encryption against denial of sleep at-
tacks

Preserve energy by preventing node being
in active state unnecessarily [44]

Low*; Uses deprecated encryption stan-
dards [44]

Low; Uses lightweight cryptography [44]

Multi-layer Security Cross-layer data fusion , Data aggregation
and selective data transmission

Enhances anomaly detection by correlating
data from different protocol layers [40],
Optimize data workload to reduce data
flood risks [39]

High; Depends on enough training data, but
is adaptable with minimal FP [39]

Moderate; Reduce local demand but intro-
duce added architectural complexity [39]

Network Layer Algorithm for black hole detection in
LEACH, Rule-based processing and
anomaly-based detection, Multi-layer
monitoring and cross-layer analysis

Evaluation of metrics and impact on per-
formance [45], Improves detection per-
formance and QoS, Highlights need for
lightweight anomaly-based IDS’s

Propose development of anomaly-based
IDS’s [45], Distributed schemes offer better
resiliency over centralized schemes [46]

Additional layers may add complexity [47]

Network Security MEC Moderate; Reduces latency and traffic con-
gestion in addition to enabling cloud-
offloading [9], [52]

Not addressed in current literature Moderate; It relies on diverse and possible
vulnerable nodes with different configura-
tions*

Network Security MTD Moderate; Alters the underlying system
configurations in real-time to prevent at-
tacks [55]

Moderate to High; MTDs rely on metrics
like CVSS, which can lead to sub-optimal
performance against zero-day attacks [55]

High; The attack representations require a
lot of processing power, some are NP-Hard
[55]

Physical Layer ACTC (jamming and replay attacks), Hy-
brid NCD schemes, Decentralized nonce-
based authentication (replication attacks)

High detection rates (up to 100% for certain
bandwidths), Reduces false positives and
overhead [41]

Higher effectiveness for lower bandwidths
(100-250KHz) and less effective for higher
(500KHz) [41], Distributed schemes have
higher resiliency and lower false positives
[42]

More energy efficient with less overhead
[41] , Threshold schemes for detection
(doubling and incremental) [43]

Transport Layer Anomaly-based IDS with focus on DoS
attacks

Effective in multi-layer DoS attack detec-
tion [49]

Effective for different types of DoS attacks
[49]

Adaptable to different DoS attacks [49]

Trust Models Dynamic scoring systems High; Enhances reliability by reducing trust
in potentially compromised devices [14]

Low to Moderate; a lot of workarounds [14] Low; simple setup [14]
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