Operating Systems Security:
concepts in security controls,
vulnerabilities and attacks

A quantitative approach
2026-02-09

Robert Malmgren
rom@romab.com

mailto:rom@romab.com

| minute presentation

® Consultant in IT, infosec and cybersecurity since 25+ years

® Working alot on with critical infrastrucutre protection, process
control, SCADA security etc, but also in financial sector,
government, etc

® Work covers everything from writing policies, requirement
specs and steering documents to development, penetration
testing, incident handling and forensics

Outline of talk

Intro
Background and basics
Security problems & vulnerabilities

Example of operating systems and security

Some short notes

® The focus is on general operating system used in general computers -
COTS products

® Embedded systems, code for micro controllers, etc often lack most
fundamental security features

® Some experimenal OS’s and domain specific solutions have better-than-
average security concepts and security controls, e.g. military grade usage

Background and basics

Part |: protection, security controls

—

Intro - foundation

e Complex systems Jllibect
® ...have multiple users, Multitasking

® ...run multiple programs at once,

Locally & remote
® ...store huge amounts of data,

® _..is interconnected via networks
Multiple services

and clients

Intro - foundation: Isolation

® Modern software is normally formed into components, parts and layers in systems
® This will create a software stack
® |ayers in the stack provides abstraction
® |ayers in the stack provides supporting frameworks, functionality and support mechanisms

® |ayers in the stack is one form of isolation

Intro - foundation: Isolation

® |ayers and isolation is a way to provide separation, which can be:
® |[ogical/Virtual: A way to make it appear that execution environment have exclusive access
® Physical: Different computers, different CPUs/cores, different disks
® T[ime based: Separation of execution time/Timeshare

® Based on security technologies, i.e. cryptographic algorithms and crypto mechanisms can
also be used to compartmentalise and isolate information.

Intro - foundation: |AM

® This there is to built-in security into the foundation of the systems - the
operating system

® TJo identify and authorize users of the system
® Jo allow for an environment where necessary basic controls are in place

® TJo prevent unauthorised access to OS resources

Capabilities and requirements

Protect a system resource

Prohibit malicious or
unintentional access to
system resources

System tables, direct
access to I/O-units,
memory protection

Authorization checks for
usage of system calls and
system resources

Provide controlled access to system, so that
system mainain system integrity and provide
continuous security to application and
information

reference monitor

Separation of resources

Physical, Logical, temporal or cryptographical
separation

separation in running
time

Kalla http://en.wikipedia.org/wiki/File:Priv_rings.svg

The classical

UNIX

Userland

x86

Ring O

Kernel

Device drivers

Device drivers

Applications

Least
privileges

Highes
privileges

http://en.wikipedia.org/wiki/File:Priv_rings.svg

Interaction between
application and OS

Overview of operating system (1/2)

Applications

Drivers

libraries
subsystems

Servers Tool chain

compilers

Overview of operating system (2/2)

User #1 User #2

Application Application Application Application

System call interface

Operating system kernel
Providing basic services

Hardware interface and hardware abstraction

CPU Memory | Storage @ Network Peripherals

Some important concept

® A concept called Trusted Computing Base, or TCB

® |t contain all things in the trusted part of the OS necessary to enforce the
security policy

® |mportant that TCB is small, clearly written, easy to see that it does not contain
design or logical flaws, and that it is protected against alterations and tampering

[1] Lampson et al: Authentication in Distributed Systems: Theory and Practice

Some important concept

® Refe rence m on ItO I’ Source Request Guard Resource

operation monitor

® A Reference Monitor is an abstract security component that enforces access
control rules. It ensures that every access attempt to system resources
complies with security policies.

® The TCB is the entire collection of system components that enforce and maintain
security, including the Reference Monitor.

[1] Lampson et al: Authentication in Distributed Systems: Theory and Practice

The classical ring model, updated!

User Applications

Device Drivers

Device Drivers

Other rings

Kernel TCB

Hypervisor

SMM

-1 Hypervisor Allow guest OS "ring O”

System Management

Mode (SMM) APM/ACPI/TPM-support

Intel Management Engine /| Special software running in
-3 AMD Platform Security the Platform Controller Hub
Processor (PCH) processor

Kalla: http://en.wikipedia.org/wiki/File:Priv_rings.svg

Kalla: https://medium.com/swih/negative-rings-in-intel-architecture-the-security-threats-youve-probably-never-heard-of-d725a4b6f831

http://en.wikipedia.org/wiki/File:Priv_rings.svg

Problem with these pictures and concepts

® | ayering violation

® some software might skip a layer and call an underlaying layer directly
and hence bypass controls

® |nh some scenarios attackers might come an unexpected way

® Attacking from host operating system against guest operating systems in a
virtual machine environment

Problem with these concepts

You have a “hidden” processor on your computer

Its functionality has never been publicly documented

It appears to have been customized for certain TLA government agencies
It has unlimited access to the main processor

It has unlimited access to all memory

It has unlimited access to all peripherals

It has its own MAC and IP addresses

It runs a web server

It is always running

You can’t turn it off

You can’t disable it

It has had multiple known exploitable vulnerabilities

It is the single most privileged known element of an Intel Architecture processor chipset

Memory handling

® RAM memory is a central resource that in a controlled way must be shared
and handled between operating system, applications and other components

® Modern computer systems have hardware support for memory protection,
e.e. MMU

® OS support is required to use the hardware supported memory
protection

® Modern hardware support can enforce several security features related
to isolation, non-executable memory areas, etc

File system

® A file system is often a central component in a computer system w.r.t. security
and protection

® Besides the actual file content, there is meta data that is of importance

® File owner, dates of creation/change/access, access information, security labels,
etc

® Manipulation of meta data can in some cases be more serious security breach
than the manipulation of the file content itself. Or a combo of both can be
misleading and hide the fact that a file has been altered

Local filsystem

FAT No access control Classic MS-DOS
: : : Advanced possibilities
NTFS Discretional Access Control via ACL |~ = o e
UES Discretional Access Control, writing & program Simple access

execution for owner, group, “others™

controls

Network file systems

Trivial to

NFSv3 Hostbaserad accesskontroll, uid .
circumvent

Require a Kerberos server, KDC

NFSv4 Secure RPC, KRB5a, KRB5p, KRB5i | -ivccaiy = caicutace MAC

p= privacy = encrypt packet

SMB/CIFS KRB5a

Background and basics

Part 2: bugs and vulnerabilities

—

Intro - just the basic facts

® All software
® Some bugs will have an impact that can have security implications
® data leaks,
® destruction of data,
® |ocal privilege escalations (LPE),
® execution of remotely uploaded malicious code (RCE),

® etcC

Intro - just the basic facts

_'..::-'"«‘.Q;"x"..f V7
® Some bugs help to
circumvent security
mechanisms

® Some security designs
are flawed, or build on
flawed assumptions

Operating system security

® Security problems in the operating system can affect the integrity of the
system itself

® Someone else can control the system to their own liking - pwnd!
® Bugs in OS kernel can affect system integrity

® Security problems with the operating system can, as a result, affect the
security in applications and subsystems (databases, middle ware, etc)

http://en.wikipedia.org/wiki/Pwn

http://en.wikipedia.org/wiki/Pwn

General examples of threats and attacks

YN flood
Sensitive plaintext in RAM fork bombs S ©O

Wrong file permissions
malformed network packets

Availability

Confidentiality

Crashdumps with credentials or crypto keys

| unintentional filling of disk space
Bypassed security checks

intentional filling of disk space

Manipulated system configuration

System integrity

Manipulated application Data inteorit
program binaries Manipulated system binaries grity Zapped system logs

Manipulated user files

Manupulated database content

Some concepts and terms

Information
disclosure bugs

Memory Time related bugs

corruption bugs
File inclusion

File/object permissions
Stack smashing Stack overflow Race conditions Directory traversal

Heap overflow Time-of-Check to Time-of-Use
(TOCTTOU)

Some concepts and terms

Vulnerability Exploit
Oday exploit
vulnerability | day exploit/Nda N
unknown to vendor & 7 SXP 4 . | vulnerability |
no patch available Foreverday epr0|t disclosed but not widely
pbatched
unpatchable

Or unsupported
systems

Intro - the basics

® Some bugs are undiscovered for some time, they lay latent

® Once discovered, they can be abused, if it is an security vulnerability, that can be
exploited

® A discovered security bug, is sometime called a Oday, until it is mitigated

Intro - the basics

® Nowdays bugs and vulnerabilities tend to get
names (heartbleed, ghost, shellshock, etc) and
logos

® Used by security companies for marketing
their knowledge and brand

FORESHADOW

Some concepts and principles

® Attack vector - Different paths to reach an vulnerability. One path might be
closed by a vendor patch, but another might still be there, if the root cause
is not identified and fixed.

® Attack surface - exposed parts that an attacker can reach, i.e.all the
different attack vectors

® Reverse engineering (RE) - To re-create the original design by observing the
final result,in computer science - to re-create some source code by
examing a binary.

Example of attacks

Attacks that allow an attacker to_deterministically
alter the execution flow of a program by submitting
crafted input to an application. Executable code is
written outside the boundaries of a memory
buffer originally used for storing data. The
Buffer executable parts is somehow made to execute,

overflow |e.g. by manipulate return adress to be used when
a function call is finished.

Real world examples: OpenBSD |IPv6 mbuf’s*™
remote kernel buffer overflow[1], windows
kernel pool

Synonyms: memory corruption attack, Buffer
overrun, Stack smashing,

Variants: Heap smashing, format string bugs,

[1] http://www.coresecurity.com/content/open-bsd-advisorie * An mbuf is a basic unit of memory management in the kernel IPC subsystem

http://www.coresecurity.com/content/open-bsd-advisorie

Example of attacks

Backward
compability
+
downgrade
Attacks

Attacks that allow an attacker to use
® an older version of a service, or
® an old protocol, or
® an older mode, or
® call legacy code

Sometime triggered by downgrade
attack, a negotiation to use older
variant

Remote Desktop

NTLMvl

XML encryption

SSLv2, SSLv3, incl POODLE, FREAK
Encryption modes

Kerberos v4 in v5

https://www.isg.rhul.ac.uk/~kp/BackwardsCompatibilityAttacks.pdf

Intro - the basics

® Many vulnerabilities also gets “formal name”, i.e. CVE*, and a scoring CVSS**

® ec.g. CVE-2024-21762 (A out-of-bounds write in Fortinet FortiOS) with
CVSS score of 9.8

® A CVE is assigned by a CNA, a CVE numbering authority

® All issued CVE is stored in central database

® Not all vulnerabilities gets an CVE

® Not all issued CVE numbers ends up being used in public vulnerability info

* ?Common Vulnerabilities and Exposures;” https://cve.mitre.org/ ** hitps://www.first.org/cvss/specification-document™*

https://www.first.org/cvss/specification-document**

Vulnerabilities by type & year

50,000

40,000

30,000

20,000

10,000

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

-~ Total

https://www.cvedetails.com/vulnerabilities-by-types.php

Year

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

Total

Overflow

418
1196

1216

Memory
Corruption

1096

1538

2499

2844

Sql Injection
85
S05
503
544
464
740

1761

290 292 350

16653 21082 13657

https://www.cvedetails.com/vulnerabilities-by-types.php

Directory
XSS Traversal
476 90
1500 28
2039 569
2387 485
2199 435
2723 546
3370
o |
782 152
36746 5957

File
Inclusion CSRF
4 85
154 334
111 479
125 559
107 414
89 520
89 /66
108 39¢
243 : 433 :
EEETS
103 135
1799 8066

XXE

39

13

12017

Open Input
SSRF Redirect Validation
15 28 0
57
118 85 m
103 ' I
130
187
230
238 “ 512
86
0
73 24 0
2081 1172 5761

Vulnerabilities by type

Open

SSRF
XXE

CSRF
File inclusion
Directory traversal

https://www.cvedetails.com/vulnerabilities-by-types.php

Input validation
redirect

XSS

Overflow

Memory corruption

SQL injection

-
u&

B Overflow

Memory corruption
I SQL injection
@ xss
B Directory traversal

File inclusion

. Open redirect

8 |nput validation

Vulnerabilities by impact types

Year Code Execution Bypass Privilege Escalation Denial of Service Information Leak
2016 1239 1 149 “ 102
2026 485 101 104 482 ‘ 95

Vulnerabilities that allow attackers to gain

Total 29308 'Mormation publishedin 2024 253 23777 10496

https://www.cvedetails.com/vulnerabilities-by-types.php

Intro - the basics

CVSS Scores Between 2023-01-01 and 2023-12-31

Period 2023-01-01 O 2023-12-31 O Group By Year m

CVSS Score Range Vulnerabilities
0-1 = 210
1-2 1
2-3 64
3-4
4-5
5-6
6-7
7-8
8-9
9+

2-3 34 4-5 5-6 6-7 7-8 8-9 9-10
Weighted Average CVSS Score: 7.7

https://www.cvedetails.com/cvss-score-charts.php?fromform=1&vendor_id=&product_id=&startdate=2023-01-01&enddate=2023-12-31

Intro - the basics

CVSS Scores Between 2024-01-01and 2024-12-31

CVSS score distribution for CVEs published between 2024-01-01 and 2024-12-31

Period 2024-01-01 0O 2024-12-31 0O Group By Year m

CVSS Score Range Vulnerabilities

0-1 1644
1-2 15
2-3
3-4
4-5
o5-6
6-7
/-8
8-9

g+

0-1 12 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
Weighted Average CVSS Score: /.2

https://www.cvedetails.com/cvss-score-charts.php?fromform=1&vendor_id=&product_id=&startdate=2024-01-01&enddate=2024-12-31

Intro - the basics

CVSS Scores Between 2025-01-01and 2025-12-31

CVSS score distribution for CVEs published between 2025-01-01 and 2025-12-31

2025-01-01 O 2025-12-31 O Group By Year m

CVSS Score Range Vulnerabilities

0-1 1281

1-2 38

2-3

3-4

4-5

5-6

G-/

/-8

8-9

9+ O

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
Weighted Average CVSS Score: 7.3

https://www.cvedetails.com/cvss-score-charts.php?fromform=1&vendor_id=&product_id=&startdate=2025-01-01&enddate=2025-12-31

More on vulnerabilities and attacks

Where do attacks occur?

Human security

Network security

Host security

Soc Application
ial Remote ~<v* yser/admin errors

engi exXPIOItS "ol ™y

nee o f

ring dofol Locql
atta _exploits _
Cks -

The classical ring model, updated!

User Applications

Device Drivers

Device Drivers

Kernel

CVE-2022-40261
____ HIBH

Hypervisor

Information CPEs Plugins

SMM

Description Details

An attacker can exploit this vulneratility to elavate orivileges fromring 0 toring -2, execute arbitrary code in Source: Mitre, NVD
System Management Mode - an envircnment more privileged than operating system (0S€)and complately

Isolated from it. Runring arbitrary code in SMM additionally bypasses SMM-based SPI| flash protections

agzinst medifications, which can he p an attacker toinstall 2 firmwzre backdoor/implant into EIOS. Such a CVSS v3

Published: 2022-C9-2

ma icious firmwere code in BIOS could persist across operating system re-installs. Additionally, this

vulnerability potertially could be used by malicious actors to bypass security mechanisms proviced by UEF Base Score: 8.2

firmware (for example, Secure Boot anc same tynes of memory isclaticn for hypervisors). This issue affects:
Vector:

CVSS:3.07AV: L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H

Module namea: OverClockEmillandler SHAZ56:;

a204639576e1a4Bcec15d9d9423380c8€4c197003bafId17e6504f0265:3039¢ Module GUID: 4598C2BD-A903
410E-ADIF-EEEF3A'AEL22 Severity: High

https://www.tenable.com/cve/CVE-2022-40261

Most common attacks?

2021

A01:2021-Broken Access Control

A05:2021-Security Misconfiguration
A06:2021-Vulnerable and Outdated Components

A07:202
A08:202
A09:202
A10:202

1-lIdentification and Authentication Failures
1-Software and Data Integrity Failures
1-Security Logging and Monitoring Failures*

1-Server-Side Request Forgery (SSRF)*

* From the Survey

https://owasp.org/Top10/2025/0x00_2025-Introduction/

2025

A01:2025-Broken Access Control
A02:2025-Security Misconfiguration
A03:2025-Software Supply Chain Failures*
A04:2025-Cryptographic Failures

A05:2025-Injection
A06:2025-Insecure Design

AQ07:2025-Authentication Failures
A08:2025-Software or Data Integrity Failures

A09:2025-Security Logging & A
A10:2025-Mishandling of Exce

* From the Survey

OWASP top-10 2025 list

erting Failures™

ntional Conditions

Most common attacks?

2021
A01:2021-Broken Access Control
—>» A02:2021-Cryptographic Failures
A03:2017-Sensitive Data Exposure A03:2021-Injection

A04:2017-XML External Entities (XXE) A04:2021-Insecure Design
A05:2017-Broken Access Control A05:2021-Security Misconfiguration

A06:2017-Security Misconfiguration A06:2021-Vulnerable and Outdated Components
A07:2017-Cross-Site Scripting (XSS) A07:2021-ldentification and Authentication Failures
A08:2017-Insecure Deserialization A08:2021-Software and Data Integrity Failures
A09:2017-Using Components with Known Vulnerabilities A09:2021-Security Logging and Monitoring Failures*®
A10:2017-Insufficient Logging & Monitoring lew) A10:2021-Server-Side Request Forgery (SSRF)*

* From the Survey

OWAGSP top-10 list

Reconngaissance
10 techniques

RESOUrce peveicopment
/ techniques

Active Scanning ;s Acquire Infrastructure

(6)

Compromise Acenunts -,

Gather Vietim Hast Infarmation 3

Gather Victim Identity Information .,

Wi

Compromise Infrastructure

Gather Victim Network Information e Develop Capabilities -4

Gather Victim Org Information ¢ Establish Accounts (3

Phishing for Infarmation (5 Cbtain Capabilities

Search Closed Sources (-, Stage Capabdilities -,
Search Cpen Technical Databases

Search Cpen Websiles/Domains

Search Victiim-Owned Websnes

https://attack.mitre.org/

initial ACCess
9 techniques

Drive-by Compromise

xplait Public

m

xterna' Remote Services

Harcware Acditicns

Replication Through Removabnle

Medis

n Supply Chain Compramise -

Facing Application

u Scheduled Task/Job

Trusled Relationship

\r ~ . it
valiu AGCUUTNILE

 Software Deployment Tools

cxecuuon Fersisience
12 techniques 19 techniques

uf_?crrrr and and Scrioting Interpreter gy, ‘n Account Manipulation g

Cantainer Administration Cammand BITS Jobs
Deploy Container Bcot or Logon Autostart
Execution 5]
Exploitation for Client Execution - :
, Bect or Logon Initiglization
ulnter~F ocess Communication Scripts (s
Native API Browser Extensions

Compromise Client Software Binary

Shared Madules Create Account ¢,

Creale or Modily Syste

Process

Sysiem Services ¢q

Event Inggered Execution ;15
User Execution

External Remote Services

Windows Management Instrumentation
nk ack Exccution Flow

Implant Internal Image

Modify Authentication Process (4

Cffice Application -3ptllplfnl
FPre-05 Boot 15)

Scheduled Task/Jobh

L3)

Server Scfiware Component

Traffic Signaling (,

Valid Accounts ¢4

o | viiege cscalialion
13 techniques

Abuse Elevation
Mecnanisam ;..

(%)

Control

m

P

Access Token Manipulation

Boot or Logon Autostart

Execution ¢-s

oot or Logon Initialization
pts s

1._1
3

Create or Modify System
Process ;4

Domain Palicy Modification

ape 10 Host

Event Iriggered £xec utlon

(4

oitation for Frivilege Esczlat

lijack Execution Flow (-

Process [njecticn i1

Scheduled Task/Job g,

Valid Accounts)

verense cvasion
4. techriques

Abuse Elevation Cantrol Mechanism

' 4
(<

Access Token Manipulation

1)

Build Image on Hosl

Deobfuscate/Decode Files or Infermation

Deploy Container

eot Volume Acces

Comain Policy Madification ¢,
Execulion Guardrails

Exploitation for Defense Evasion

File and Directory Fermissions
NModification g,

Hide Artifacts (g

Hijack Execution Flow

Impair Defenses

¥

Indicator Removal on Host
Incirect Command Execution

Masquerading ¢

Modify Authentication Process (4

odify Cloud Compute Infrz

V od t

Mocify System Image (o,

structure ¢

Network Boundary Bridging

Obfuseated Files ar Informatian g

Pre-0S Bool is)

Frocess Injection (4

Reflective Cace Loading
Rogue Domain Controller

|:l ”l'i-

Signed Binary Proxy Execulion ¢4,
Signed Script Proxy Execution ¢y
Subvert Trust Contrels ¢,

Template Injection

es Prox Y

Traflic Signaling
Trusted Developer ULiliti
Execution ¢,

Unussd/Unsuppeoerted Cloud Regions

Jse Alternate Authentication Materis

(4)

alid Accounts

- {A-\

Virtualization/Sandbox Evasicl

Weaken Encryplion

Discovery Lateral Movement Collection Command and Control Exfiltration Impact
29 lechmigues 9 lechnmigues 1/ lechnigues 16 lechnigques Y lechniques 73 lechniques

Adve (2 n Account Discovery (4 Exploitation of Remote Services Adversary-in-the-Middle - ‘n!«p’.' cation Layer Protocol ‘u-‘“tc mated Exfiltration (- Account Access Removal
Brute lNorce 14) Application Window Discovery Internal Spearphishing Archive Collected Data (4, ‘ Communication Through Removable Data Transfer Size Limits Data Desztrucior
— — Media

Cradentials from Password Browser Eookmark Discovery Lateral Tool Transfe Audio Caplure Exfiltration Over Alternative Dala Encrypled far Iimpaclt
Stores (s, Data Encoding -5 Protocol ¢4,
Cloud Infrastructure Discovery Remole Service Session Automated Collection Data Manipulation ;3
Exploitatian for Credential Access sijacking o, Data Obfuscation =xfiltration Qver C2 Channe '

Cloud Service Cashkoard irowser Session Hijacking Defacement 5
Forced Authentication Remole Servicas Dynamic Resolution ¢ Exfiltration Over Other Netwaork
Cloud Service Discovery Clipbeard Data Medium 4, Disk Wipe 5
I} Forge Web Credentials (2 Replication Ihrough Remcvadle =zncryptec Channel ¢ -
Cloud Storage Ubject Discovery Media Datz from Cloud Sterage Object bxfiltration Over Physical Endpoint Denial of Service
Il Input Capture Fallback Channels Medium .,

- ; - Very € Deployment locls Data from Configuration Fir
Reposilary Ingress Tool Transfe Exfiltration Over Web Service
Taint Shared Content Inhibit System Recovery
Network Sniffing Data from Infermation Multi-Stage Channels Schedulec Iransfer
n"JfL\'/Ul « Denial of Servic

[l Mcdily Authentication Process g4

File and Direclory Discovery Jse Allernale Authentication Reposiluries 2

[l OS5 Credential Dumping (g Material (4 Nor-Application Layer Protoco Transfer Data to Clecud Account
Group Policy Discovery Dalz frorn Local System Resource Hijacking
Steal Application Access Token Naor-Standard Porl
Network Service Scarning Date frormn Network Snhared Drive
I} Steal or Forge Kerderos lickets Frotocol Tunneling
Network Share Discovery Data from Remavanle Media System Shutdown/Rehoot
Steal Web Session Cookie PTOXY 14
Network Sniffing Data Staged - -
Two-Factor Authentication Remote Aceess Software
nterception Passwcrd Policy Discovery Email Cellection

Traffic Signaling |

[}l Ursecured Credentials - ‘ Peripheral Devic

uPEI'HI?_}?_} on Groups Discovery (4 creen Caplure

Frocess LisCovery Idec Caplure

vweb Service

Query Reqistry

Remote System Discovery

u Scttware Discovery

sSystem Information Discovery

System Location Discovery 4

Syslemn Nelwork Configuration
Discovery (-

System Nelwork Connections Discovery
System Cwner/User Discovery

System Service D

System Time Discovery

n‘/nLu;-. zalion/Sandbox Evasicn

A classic attack

C compiier

® Ken Thompson’s trojanized coonpior | | Lognsouca | | sowescose

Source cede Code

Backdoor

c compiler

® Modify the source code to the compiler
to recognize if it recompile itself or the
login program - insert backdoor in login

® recompile compiler

® remove source code changes and
recompile the compiler

® recompile the login program with the
modified compiler

® No visible signs for humans or tools to see
the backdoor in source code. Calls for
binary inspection or decompilation. ntplcicesc st p eclviewdocldownload!doi= 0,019 7288rep ropl Baype=p

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf

Attacks and counter
measures

® Chaining of attacks - combining a number of exploits to
achieve goal

® finding and abusing a number of different
vulnerabilities might allow an attacker to achieve
goals not possible with just one potent exploit

® (Code execution in gadgets (ROP) + sandbox escape +
elevation of privileges + execution of privileged code

Example of attacks

Remember that there is a number of
ways that all OS security controls can be
bypassed,

especially if the operating system
is not running
- a very good side-channel attack ;-)

How do you create
security in the OS!

How do you create security in the OS?

® Follow well-known design principles

® Use well-known pattern

® Use ordinary developer best-practises

® Decide to use principles, e.g. secure-by-default

® Use programming languages that support secure practices

® Have the design and implementation evaluated and certified

Principles for secure design™

Economy of mechanism

Keep the design as simple and small as possible

Fail-safe defaults

Base access decisions on permission rather than exclusion

Complete mediation

Every access to every object must be checked for authority

Open design

The design should not be secret

Separation of privilege

technique in which a program is divided into parts which are limited to the
specific privileges they require in order to perform a specific task

Least privilege

Every program and every user of the system should operate using
the least set of privileges necessary to complete the job

Least common mechanism

Minimize the amount of mechanism common to more
than one user and depended on by all users

Psychological acceptability

It is essential that the human interface be designed for
ease of use, so that users routinely and automatically
apply the protection mechanisms correctly

JEROME H.SALTZER et al The Protection of Information in Computer Systems http://www.cs.virginia.edu/~evans/cs55 | /saltzer/

http://www.cs.virginia.edu/~evans/cs551/saltzer/

Comparing security in
Operating systems (|/6)

® When in time was the system developed!?

® VWhat was the state-of-the-art at that
time!

® VWhat trends where currently in
fashion?

® What languages was available for
creating the operating system!?

ON! Developed = Released

Unix 1969 1971
Mach Kernel 1985 1986
Windows NT 1088 1993
Linux 1991 1991
MacOS Late 1990’s 2001
i0OS 2005-07 2007
Android 2003 2008

Comparing security in
Operating systems (2/6)

® |n what language is an operating system developed!?

® Unix: assembler (1969), C (1973)

¢ Windows: C/C++, CH&.NET

® Linux: C/C++/asm, Python/bash/perl, Rust (2022-)

¢ MacOS X/iOS: C/C++/Objective-C (1999-2010), Swift (2014-)
Android: C/C++/Java (2008-2016), Kotlin (2014-), Rust (2020-)

Comparing security in
Operating systems (3/6)

“Given enough eyeballs, all

bugs are shallow”
® Development methodologies - Linus’ Law

® Open Source or Closed Source?
® What support do one use to ensure that security is built into the product?

® How does one ensure that implementation is a correct representation of
the design, that is a correct interpretation of the analysis!?

http://en.wikipedia.org/wiki/Software_bug

Comparing security in
Operating systems (4/6)

Source Lines Of Code - SLOC

SLOC *
Year oS . g Year oS SLOC* Year oS SLOC
1993 |Windows NT 3.1 4-5 1991 Linux 0.0. 1 10,239 lines
2000 [Debian 2.2 (Potato) 55-59
1994 [Windows NT 35 7-8 1994 Linux 1.0 176,250 lines
2002 Debian 3.0 (Woody) |04 ,
1996 |Windows NT 4.0 11-12 2003 Linux kernel 2.6.0 5,2
2005 Debian 3.1 (Sarge) 215 2005 Linux kernel 2.6.1 | 6.6
2000 [Windows 2000 more than 29
2007 Debian 4.0 (Etch) 283 2009 Linux I<erne| 2.6.29 | |.O
2001 | Windows XP 40-45 2009 |Linux kernel 2.632 | 12.6
2009 [Debian 5.0 (Lenny)
2003 [Windows Server 2003 50 201 | Linux kernel 3.0 14,6
2007 |Windows visa 0 2013 |Debian 7.0 (Wheezy) 419 2018 |Linux kernel 4.X 25
2023 |Debian |12 (bookworm) 1,341 2020 |Linux kernel 5.12 28.8
2015 |[Windows 10 40-60
2023 Linux kernel 6.5-rc5 ~36
2021 Windows | | 50-100
‘ - >
2005 Mac OS X 10.4 86 2025 Linux kernel 6.14-rcl 40

http://en.wikipedia.org/wiki/Source_lines_of code https://informationisbeautiful.net/visualizations/million-lines-of-code/ https://sources.debian.org/stats/

http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Mac_OS_X

But really, what good is this comparison?

Write more code = get higher salary?
Manage a 200K-SLOC project is cooler than a S5K-SLOC?

More code = more bugs?
Yes, more code is often more bugs

More code = more security checks and advanced concepts like
crypto, resillient failure checking built into everything?

But certainly, complexity is considered bad and evil in the context of security.

There is often a relation between complexity, size of program and bugs

J/en.WwiKipedia.org/wiki/oource lines or code ps://iInformationisobeautitul.nevvisualizations/miliion-lines-or-code ps://sources.deblan.org/stats

http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Mac_OS_X

Bugs per 1,000 SLOC (Defect
Density)

Code Quality Level

Typical commercial software 10 - 50 bugs

Well-tested open-source software 1-5bugs

Mission-critical software (NASA, avionics,

medical, etc.) 0.1-1bugs

High-reliability software (e.qg., space
systems, nuclear control)

< 0.1 bugs

I'here Is often a relation between complexity, size of program and bugs
-’ -

http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Mac_OS_X

Comparing security in
Operating systems (6/6)

® What can one gain by having formal certification of operating systemes,
subsystems or application

® Trusted Computer System Evaluation Criteria (TCSEC), Common
Criteria (CC, ISO/IEC 15408), etc

® More a theoretical excersice than of any real value!

General example of control principles

Protection against

network traffic, file content, disk

file content,

Encryption eavesdropping or partitions, memory pages, swap files/ OpenSSL, IPSec, SSH, OS kernel
unauthorized access page area
Protection against network traffic
Electronic |changes or unauthorized ’

OpenSSL, IPSec, SSH, OS kernel

changes

signatures modifications by , o
third parties, disk partitions
Crvbtosranh Protection against
iczlllby SfmI':g unauthorized changes, Saved passwords, Password file, user database,
] detect errors or
hash values file content, checksums on files

General example of control principles

File names, proccess ID;s
port numbers,
Random Make a resource non- sesssion keys, session id’s, getrandom()
numbers deterministic transaction numbers, /dev/urandom
DNS query ID’s,
execution time & timing

Constant Make a resource non- execution time, Crypto code to prevent
numbers deterministic timing of events side channel attacks

https://www.redhat.com/en/blog/understanding-red-hat-enterprise-linux-random-number-generator-interface ?extldCarryOver=true&sc_cid=701f2000001OH7JAAW

General example of control principles

Compiler
generated

airbag - canary

Make sure buffer overflows dont

get undetected ProPolice,VisualStudio /GS

Android >4.0,
Randomize addresses used by iOS > 4.3,
AS| R applications. Make sure its hard to Windows >Vista,
write code that knows of addresses. OpenBSD/NetNSD,
Where did that lib go? Linux >2.6.12, MacOSX >10.5,
Solaris >1 1.1, etc

Windows Vista, NetBSD,
KASLR Randomize addresses used by kernel Linux >3.14, MacOSX 10.8,
Android | |, etc

General example of control principles

Make sure memory is IE on Windows Vista,

DEP. NX,WAX Android >2.3, FreeBSD > 5.3, OpenBSD, Linux >2.6.8,
not executable MacOSX >10.5, etc
MTE Memory Tagging Extension Using ARM architecture feature to better protect

against memory safety violations

General example of control principles

Make sure that each step of boot is

Make system startup sequence is secure | cryptographically signed to ensure code integrity,
e.g. BIOS vs UEFI

Secure boot chain /
Verified boot

Make sure to connect to peribherals and

Secure pairin .
P & resources in a secure way

Using bluetooth to connect to headset,

General example of control principles

Make sure that old data areas are

Scrubing, zeroing cleaned before usage or returned to memory, file systems,VM system
system
Logs Traces, error messages and Windows Eventlog,
o dumps from systems and Syslog,
audit trails

applications audit, BSM

Attacks and counter
measures

?

O
Hijacking JIT compilers ROP attacks

Address Space Layout No-executable Data Execution
Randomization (ASLR) (NX,WAX) stacks Prevention (DEP)

More advanced buffer
overflows, defeating canary

Stack canaries Note - several of these counter

Buffer overflow/memory measures does not work for
corruption attacks protection within the kernel

Virtualization and isolation

sandboxes, containers, hypervisors, etc

Sandboxing

® Various types of OS supported or application supported sandboxing is good as a
way to get defense-in-depth

® Create temporary execution environments for certain tasks
® test of exe files to lure out malicious code execution
® perform certain tasks that is more prone to attacks
® perform certain tasks that is more sensitive

® Provide isolation, from other parts of system

Pro’s and con’s with virtualization

® Some sandbox and isolation technologies are not complete
virutalization or separation

® E.g.share name space (processes, file system, etc)
® Share operating system kernel

® Share drivers

Isolation, separation and virtualization

chroot Change root for network service |Classic Unix concept. No virtualization, just isolation
. . : Userland. Can run FreeBSD and Linux binaries.
jaI|S FI’GGBSD Jalls Integrated into OS.

user mode linux, uml

Userland. More lightweight and thus faster than virtual
machines

Containers

Docker, podman, k8s

Userland. 3rd party tool on top of OS. Need container engine, not
hypervisor. More lightweight and thus faster than virtual machines

Virtual machines

Xen,VMware vSphere, HyperV,

Type 1 hypervisor based. Stronger isolation than
container

Virtual machines

VMware Workstation, KVM

Type 2 hypervisor based. Stronger isolation than
container

Hardware partitioning

Sun LDOMs, IBM LPAR

Best isolation and separation.
Hardware support gives superior performance and security

Overview of virtualization

Containerized Applications

| |
s1z20:1z¢ -
S R Ed K £

Virtual Machine

App A

N 4

Virtual Machine

App B

\

[

Virtual Machine

App C

\

Pro’s and con’s with
virtualization

® [solation,and to have hardened and dedicated servers running specific services, are
standard ways to minimize attack surface.Virtualization tools can help this

® |ts easy to believe that virtualization will automatically make things secure, and that
there is no way to jump between guest os’, but exploits have shown this not hold

true, e.g. cloudburst

http://www.immunityinc.com/documentation/cloudburst-vista.html

http://www.immunityinc.com/documentation/cloudburst-vista.html

VM’s vs Containers vs YWebAssembly

Feature Virtual Machines Containers WebAssembly (Wasm)
Isolation | .FU__. 05 OS-level isolation Sandboxed execution (virtual CPU)
virtualization, strong
Ferforman - Slower (heavy Near-native Near-native, optimized
ce overhead)
Startup Minutes Seconds Milliseconds
Size GBs (full OS image) MBs (mclude.s 05 KBs to MBs (minimal overhead)
dependencies)
System FUll OS ACCESS Shares OS kernel No direct OS access (sandboxed)
ACCeSS (kernel, drivers)
Security StrOn%S(__S;anaerg)te 05 Moderate (kernel shared)| Strong (sandboxed, minimal attack surface)
Portability Limited (O5- Cross-platform (container Universal (Wasm runtimes)
dependent) runtimes)
Use | Legaoy , C ou.c—rfative —dge computing, serverless, high-security
Cases applications, multi- applications, apPS
OS environments MICroservices

Advanced attacks

Hardware attacks, etc

Attack tools

® Reverse Engineering Frameworks, such as Ghidra
help debugging, disassemble, reverse engineer
binaries

® Give attackers powerful tools to introspect
into firmware, drivers, kernels, applications

Example of attacks

® Attacks by attaching malicious hardware to buses and ports
® Using debug interfaces to snoop & manipulate bus
® JTAG (IEEE standard |149.1-1990)
® SWD (Serial Wire Debug)

® Firewire and other DMA based methods to access memory of a computer (evil
maid attacks, evil devices)

® UEFI attacks via Thunderbolt (thunderstruck attack)

Example of attacks

® Removal of, or direct attachment to, physical memory chips (cold boot attacks)

Example of attacks

® Removal of, or dlrect attachment to, physical memory chips (cold boot attacks)

https://www.youtube.com/watch?v=XfUlRsE3ymQ

Example of attacks: cold boot attacks

Example of attacks: PClLeech

Attacking
UEFI Runtime Services
and Linux

Example of attacks: HW implants

implants a beacon

https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/

Advanced attacks

® Rowhammer*

® flipping bits without accessing them

® Method of reading writing memory cells so that memory cells
in adjacent rows become changed

® Based on an unintended side effect in dynamic random-access
memory (DRAM) that causes memory cells to leak their
charges and interact electrically between themselves, possibly
altering the contents of nearby memory rows that were
not addressed in the original memory access

“Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors”
— Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, Onur Mutlu, at CMU

Advanced attacks

EEEEEEEEEE
. | | | EEEEEEEEEE
® This circumvention of the isolation between DRAM R
EEEEEEEEEE
memory EEEEEEEEEE
EEEEEEEEEE
cells EENEEEEEEE
| |]

® Memory leak == information leak

F

® Have been used to Gain Kernel Privileges, e.g.
DRAMMER attack on Android ol nasinesd Inm cAS

® (Can be used to attack Virtual Machines

* Kim et al ” Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors™ https://users.ece.cmu.edu/~yoonguk/papers/kim-iscal4.pdf

Advanced attacks

® Rowhammer
® Have been implemented in JavaScript and runned in a browser

® Modern variants™ have been used to defeat ECC memory

* "Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against
Rowhammer Attacks” https://cs.vu.nl/~Icr220/ecc/ecc-rh-paper-eccploit-press-
preprint.pdf

Advanced attacks

® Rowhammer*
® |nitial research published 2014, but variants have been developed later
® Rowhammer.js (2015)
® Blacksmith (2022)
e Half-double (2021)
® /Zenhammer (2024,AMD architecture)
® RISC-Hammer (2024, RISC-Y architecture)

® Hardware solutions to protect against it have been circumvented

https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html https://comsec.ethz.ch/wp-content/files/blacksmith_sp22.pdf

ﬂ Advanced attacks @

® Meltdown™ & Spectre™*
® |nitial research published January 2018
® Microarchitectural bugs in CPU

® Meltdown breaks isolation between user land and kernel

® Spectre breaks isolation between applications in user land

https://meltdownattack.com/

* Lipp et al "Meltdown: Reading Kernel Memory from User Space” https://meltdownattack.com/meltdown.pdf

** Kocker et al ”Spectre Attacks: Exploiting Speculative Execution” https://spectreattack.com/spectre.pdf

https://meltdownattack.com/meltdown.pdf

ﬂ Advanced attacks @

® Meltdown & Spectre
® work on personal computers, mobile devices, and in the cloud
® Works on Windows, Linux, Android, etc

® Works on containers: docker, LXC, OpenVZ etc

ﬂ Advanced attacks @

® Meltdown & Spectre
® All modern CPUs are vulnerable (x86,AMD,ARM) in various degrees

c‘*“e’

\
Attack &9

\
m\ bt\\
Method q‘\

Do q c,\\\

in-place ® [52, 50] % ®[62] @[32]
out-of-place * @®[18] @[62,54]0O
in-place ® (52, 18] @[62,54] O
out-of-place % ® [52] @ [54]

in-place ® [52, 50] % ® 6]
out-of-place *

in-place ® (6, 52]

Q
< (\ o &

cv q‘f‘\ & cv

A\
60“”\\ N RS 60 NN 606 S
@@@@@V‘\

same-address-space

ANN

A®
WM

Intel * % W % % % W %
ARM _ w oW W O W %
AMDOOOOO_*'ﬁ?*‘ﬁrfk‘ﬁri?

Symbols indicate whether at least one CPU model 1s vulnerable (filled) vs.

no CPU is known to be vulnerable (empty). Glossary: reproduced (@ vs. O),
first showed in this paper (3 vs. 3%), not applicable (__). All tests performed
without defenses enabled.

cross-address-space

same-address-space

cross-address-space out-of-place %k Ae

in-place @ [52] *
out-of-place %
in-place *
out-of-place %
Symbols indicate whether an attack is possible and known (@), not possi-
ble and known (O), possible and previously unknown or not shown (%), or
tested and did not work and previously unknown or not shown (3%). All tests . | | | |
Canello et al ”A Systematic Evaluation of Transient Execution Attacks and Defenses”

performed with no defenses enabled. https://arxiv.org/pdf/1811.05441 .pdf

same-address-space

cross-address-space

Advanced attacks @

in-place (IP) vs., out-of-place (OP) PHT-CA-IP [S0, 48]

mistraining (\ .
HALHTITES Cross-address-space PHT-CA-OP %
strategy —_——

L N
Same-address-space PHT-SA-IP
Spec[re-PHT \L—LILL/ o

Spectre-BTB PHT-SA-OP %

. BTB-CA-IP [50
Spectre-RSB f Cross-address-space b 150]

—_— \ _/
Spectre-typx BTB-CA-OP [50
(pecreope Spectre-STL [29] Same-address-space 50)

—
", BTB-SA-IP %

prediction Cross-address-space D BTB-SA-OP %

———— S

: . e —
Transient Same-address-space RSB-CA-TP [60, 52]

y | 4
cause? -
- - RSB-CA-OP |52]
fadlt v Meltdown-NM [77] Meltdown-US [56] |
| Ll ype
{ \ \

RSB-SA-IP [60]

microarchiiec-

tural buffer

RSB-SA-OP [60, 52]

Mcltdown—typc\

* Canello et al ”A Systematic Evaluation of Transient Execution Attacks and Defenses” https://arxiv.org/pdf/1811.05441.pdf

ﬂ Advanced attacks @

s

') SOMBIELOAD

—

ATACK

RETVRN OF THE LEAKING DEAD

FORESHADOW

https://en.wikipedia.org/wiki/Transient_execution_CPU_vulnerability

https://en.wikipedia.org/wiki/Transient_execution_CPU_vulnerability

ﬂ Advanced attacks @

® Spectre class vulnerabilities will remain unfixed because
otherwise CPU designers will have to disable speculative
execution which will entail a massive performance loss

Advanced attacks

Microarchitecture Data Sampling attacks
Side channel attacks
Timing side channel attacks

Power Analysis side channel attack

c 27 ieeexplore.ieee.org/stamp/siamp.jspTtp=&arnumber=10123975

Microarchitectural Side-Channel Threats, Weaknesses end Mitigations: A Syste... 1 /32 — 1723% + G ¢

IEEE Access

muRidscplinaty : rapid keview @ Upen ACess Jumezl

Received 18 April 2023, accepted 4 May 2023, date of publication 12 May 2023, date of current version 24 May 2023.

Digital Object identifier 10.1109/ACCESS. 2023.3275757

Wl survEY

Microarchitectural Side-Channel Threats,
Weaknesses and Mitigations: A Systematic
Mapping Study

ARSALAN JAVEED -, CEMAL YILMAZ ', (Member, IEEE), AND ERKAY SAVAS, (Member, IEEE)

Faculty of Engineering and Natura! Sciences, Sabanci University, 34956 Istanbul, Turkey

Corresponding author: Arsalan Javeed (ajaveed @sahanciuniv.edu)

ABSTRACT Owver the course of recent years, microarchitectural side-channel attacks emerged as one of
the most novel and thought-provoking attacks to exfiltrate information from computing hardware. These
attacks leverage the unintended artefacts produced as side-effects to certain architectural design choices and
proved difficult to be effectively mitigated without incurring significant performance penalties. In this work,
we undertake a systematic mapping study of the academic literature related to the aforementioned attacks.
We, in particular, pose four research questions and study 104 primary works to answer those questions.
We inquire about the origins of artefacts leading up to exploitable settings of microarchitectural side-channel
attacks; the effectiveness of the proposed countermeasures; and the lessons to be learned that would help
build secure systems for the future. Furthermore, we propose a classification scheme that would also serve
in the future for systematic mapping efforts in this scope.

INDEX TERMS Cybersecurity, microarchitecture, side-channel, systematic-mapping.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10123915

&\ AMD CPU Micrococe signatt. X 4

2 amd.com/fen/rasources/product-security/bulletin/amec-sb-7033. himl

AMD a Broducts Solutions Resources & Suppart Shop 2 = Q -

ON THIS PAGE Back to Sccurity Bulletins and Briefs ¢!

AMD CPU Microcode Signature
Verification Vulnerability

AMD ID: AMD-SB-7033
Potential Impact: Loss of integrity of x86 instruction execution, loss of confidentiality and

Summary
CVE Details

Artected Products cnd
Mitigation

Acknowledgment _ = _ _
ntegrity of data in 86 CPU privileged caontext and compromise of SMM executian environment

Revisions Severity: Med um

summary

Researchers from Google® have provided AMD with a report titled “AMD Microcode Signature
Ver fication Vulnerability.” This vulnerzbility may allow an attacker with system admin strative
orivilege to load malicious CPU microcode patches. In the report, the researchers describe how
they were able to load patches that were not signed by AMD. The researchers also demonstrate
now they falsified signaturcs for arbitrary microcode patches.

AMD has not received any reports of tnis attack cccurring in any system.
AMD bel eves this issue i5 coused by a weakness n signature verification a gorithm that could

allow an administrator privilegad attacker to load arbitrary microcode patchas. AMD p ans to
ssue mitigat ons to fix this issue. Please see below for acditiona details.

CVE Details

Refer ta Glossary for explanatian of rerms

CVSS Score CVE Description

CVFE-2024-36347 (6.4 (Medium) Imnroper signature verification in AMD
AV:L/ACH/PR:H/JI:N/S:U/C:H/:H/A:H [CPU ROM microcode patch loader may
allow an attacker with local
administrator privilege to load
malicious microcode, potentizlly
resulting in loss of integritv of x86

https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7033.html

£ Intel CPU Microcode Updet: - +

2 phoroniyx.com/news/Intel-CPU-MIcrocode-August-20Z25

Intel CPU Microcode Updates Released For Six High Severity
Vulnerabilities

Written by Michael Larabel in Intel on 12 August 2025 at 01:13 PM EDT. 16 Comments

This Patcnh Tuesday has brought a slaw of Intel CFU microcode updatas for the past few
processor generations to adoress six new nigh severity vulnerabilities.

New CPU microcode was released today for Arrow Lake, Xeon Scalable Gen3 anc
newer through Xeon 6 Sierra Forest / Granite Rapids, Xeon D-17xx / Xeon D-27xx,
Core Ultra 20CV Lunar Lake, and Core Gen 13 Raptor Lake.

There are a number of functional issues resolved in the new CPU micracode plus six new high severity
items made public today for Patch Tuesday:
INTEL-SA-01248 - 2025.2 IPU, Intel® Praocessor Stream Cache Advisary for escalation of

privilege.
INTEL-SA-01308 - Intel Xeon € Scalable Processors Advisory for escalation of privilege.

INTEL-SA-01310 - Intel OOBM Services Madule Advisary for escalation of privilege.
INTEL-SA-01311 - Intel Xeon 6 Processor with Intel TDX Advisory for escalation of

privilege.
INTEL-SA-01313 - 2025.5 IPU, Intel Xeon Processor Firmware Advisory for escalatian of

privilege and denial of service.
INTEL-SA-01367 - Intel Xeon € Processor Firmware Advisory for escalation of privilege.

All rated as "HIGH" severity. Particular on the Inte' Xeon side these CPU micrococe updates are quite

pressing.

PR T T

“l
i

f-';" IJ;{!/.,’;‘:‘

//”/H

. -
s.:

(20 8 LN TN
VRvrrerr
7 aea

1

Ly,
b uveveig :
Ty

™

RUVEVY bue
LY BEBLL LA

ceLuoe
RLULZCLLLLP L LY

]
ViV vy

LEVPE YL
e P PE

22
AL L A

20

vy Py AV

2R REV BLY oL
i

-

Thosc wanting to grab the newest Intel CPU micrococe files for use on Linux can find them via foday's

https://www.phoronix.com/news/Intel-CPU-Microcode-August-2025 L oo
microcode-20250812 release.

Advanced attacks

® Attacks against Intel Management Engine
® Proprietary and non-documented
® Own OS (Minix!)
® Reverse engineered and analysed by attackers

® Found multiple vulnerabilities in Skylake & Kabylake
architecture

Examples of modern security controls

Windows Defender security features in Win 10,Win | |

Windows

® Application Guard, WDAG
0 C

Microsoft Office Microsoft Edge

® App & browser control

® |solation browsing - am am |
- ul 0 .

<

. . ; . ’ ‘ .

Windows platform Windows platform Windows platform Critical system
services services services processes

- : ES 3 *
‘ WDAC (WI ndOWS Defender Ker.nel Kelhnel Kelinel KEI\'HH
Application Control) give application & icroso e icrosft efender N

Application Guard Applicatton Guard System Guard

driver whitelisting 1] |]]

b

e VBS (Virtualization-Based Security) ||

/ y TN
e thoel—

Device hardware

e VWDAC &VBS used to be Windows
Device Guard

https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard

https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://en.wikipedia.org/wiki/Linux_Security_Modules

Windows

® Windows Device Guard,And Applocker, now called Windows
Defender Application Control

® Attributes of the codesigning certificate(s) used to sign an app and
its binaries

® Attributes of the app's binaries that come from the signed

metadata for the files, such as Original Filename and version, or
the hash of the file

® The path from which the app or file is launched

https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard

https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://en.wikipedia.org/wiki/Linux_Security_Modules

Windows

® (ore isolation with Memory integrity, aka Hypervisor-protected Code Integrity (HVCI)

® make it difficult for malicious programs to use low-level drivers to hijack your
computer

https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-8752 1 df09b78

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://en.wikipedia.org/wiki/Linux_Security_Modules

Windows

® Windows Defender Exploit Guard, WDEG

e Attack Surface Reduction (ASR): A set of controls that enterprises can enable to
prevent malware from getting on the machine by blocking Office-, script-, and email-based
threats

¢ Network protection: Protects the endpoint against web-based threats by blocking any
outbound process on the device to untrusted hosts/IP through Windows Defender
SmartScreen

e Controlled folder access: Protects sensitive data from ransomware by blocking untrusted
processes from accessing your protected folders

e EXxploit protection: A set of exploit mitigations (replacing EMET) that can be easily
configured to protect your system and applications

https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-8752 1 df09b78

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://en.wikipedia.org/wiki/Linux_Security_Modules

Windows

High level operating system Virtualization-based security

® \Windows Credential Guard
LSASS LSAlso

® TJo protect Local Security Authority S'”g'e sign-
Server Service (LSASS) by moving it credentils

into LSAlso

® Build on top of

Hypervisor

® Virtualization Based Security (VBS)

® Secure boot

® Trusted Platform Module (TPM)
o UEFI lock

https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-how-it-works https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current

Windows

® VWindows Remote Credential
Guard

Remote Desktop connection to a server without Windows Defender Remote Credential Guard

® To protect against theft of o
Credentials Sent to Server Side - * Credentialsare not protected from attackers on remote host

« Attacker can continue to use credentials after disconnection

x Single-Sign -On

® (thers that have admin gﬁiiﬁj"“
Accessto services from server
access to the Server § E:::::: Ei:‘sc;:i;zzzzalsaﬂerdisconnection ¥ = Crecentials

® [Especially important on jump
hosts

https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-how-it-works https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current

Windows

Windows Defender Remote Credential Guard

o]
| o | * Credentials protected by Windows Defender Remote Credential Guard
| J [:> * Connect to othersystemsusingSS0O
! [* Host must support Windows Defender Remote Credential Guard

« Kerberos oo
X NTLM

o Accesstoservicesfromserver

«’ Prevent Pass-the-Hash
J Prevent use of credentialsafter disconnection

Restricted Admin Mode

Credentials used areremote serverlocal admin credentials
Connect to othersystemsusingthe host’sidentity

o
‘ ﬁﬂ o | Host must support Restricted Adminmode
| ::> | Highest protectionlevel

Requires useraccount administratorrights

o Kerberos oon
& NTLM

Accesstoservicesfrom server

6 = Credential protection

Prevent Pass-the-Hash v = Credentials
W Prevent use of credential s after disconnection

https://docs.microsoft.com/en-us/windows/security/identity-protection/remote-credential-guard

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current

METIONP,S

® Hardware based security e FileVault

® Secure Enclave . .
® Full disk encryption

® Memory lagging & Pointer

L ® GateKeeper
Authentication P

® Hardware-Accelerated Encryption ® Checks code signing

. ® XProtect
® |solation

e App sandbox ® Malware protection

1OS/iPadOS

® Share many security features with MacOS X

® Additional ones include

® BlastDoor. A way to takes a look at all incoming messages and inspects their content
in a secure environment, which prevents any malicious code inside of a message from
interacting with iOS or accessing user data.

® | ockDown mode: add many restrictions to applications, e.g. web browsing,
messaging, FaceTime, photos, etc

Apple iOS device security

Dala Protection
Class

App Sandbox

App Sandbox

User Partition
Software (Encrypted)

OS Partition

File System

Kernel

Secure Enclave | =
- Enclave Element Secu re E I e m e nt

Crypto Engine

Firmware

Crypto Engine

Device Key
Group Key
Apple Root Certificate

device security

NAND flash storage DRAM

Apple

Memory controller

NAND flash controller ———————————p-

Applicaticn Processor t
AES engine

Secure Enclave

Secure Enclave
AES Engine

<4—» Memory Protecticn

Secure Enclave Engine

Processor

Secure Enclave

System on chip

Secure Nonvolatile Storage

Tools mentioned during the class

Ghidra - Reverse Enginering Framework
IDA pro - Disassembler

Hexray - Decompiler

Ollydbg, windbg - Other disassemblers

Bindiff - Advanced tool from zynamics to compare
binaries, with call graphs etc. Not same as built-in
windows tool with same name.

Referenses used during the class

https://www.commoncriteriaportal.org/

https://www.cs.virginia.edu/~avéds/papers/isca202 | a.pdf

https://www.cvedetails.com/top-50-products.php

https://owasp.org/www-project-top-ten/

https://www.commoncriteriaportal.org/
https://www.cs.virginia.edu/~av6ds/papers/isca2021a.pdf
https://www.cvedetails.com/top-50-products.php
https://owasp.org/www-project-top-ten/

Referenses used during the class

http://en.wikipedia.org/wiki/Source_lines_of code

https://sources.debian.org/stats/

https://informationisbeautiful.net/visualizations/million-

lines-of-code/

http://en.wikipedia.org/wiki/Source_lines_of_code
https://sources.debian.org/stats/
https://informationisbeautiful.net/visualizations/million-lines-of-code/
https://informationisbeautiful.net/visualizations/million-lines-of-code/

Referenses used during the class

https://docs.microsoft.com/en-us/windows/security/identity-
protection/credential-guard/credential-guard-how-it-works

https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-
windows-defender-application-guard

https://docs.microsoft.com/en-us/windows/security/threat-protection/
microsoft-defender-application-guard/md-app-guard-overview

https://docs.microsoft.com/en-us/windows/security/identity-
protection/remote-credential-guard

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard
https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview

Referenses used during the class

https://support.microsoft.com/en-us/windows/core-
isolation-e30ed/37-17d8-42{3-a2a9-8/521df09b78

https://en.wikipedia.org/wiki/
Local_Security Authority Subsystem_Service

http://citeseerx.ist.psu.edu/viewdoc/download!?
doi=10.1.1.91.5728&rep=rep | &type=pdf

https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78
https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78
https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service
https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf

Referenses used during the class

https://www.cisa.gov/sites/default/files/2024-04/
CSRB_Review_of the Summer_2023 MEQ_Intrusion_Final 508c.pdf

https://media.ccc.de/v/37¢c3-12142-breaking_drm_in_polish_trains

https://www.ccc.de/en/updates/2024/das-ist-vollig-entgleist

https://attack.mitre.org/

https://www.cs.cmu.edu/~rdriley/487/papers/
Thompson_ 1984 ReflectionsonTrusting Trust.pdf

https://www.cisa.gov/sites/default/files/2024-04/CSRB_Review_of_the_Summer_2023_MEO_Intrusion_Final_508c.pdf
https://www.cisa.gov/sites/default/files/2024-04/CSRB_Review_of_the_Summer_2023_MEO_Intrusion_Final_508c.pdf
https://media.ccc.de/v/37c3-12142-breaking_drm_in_polish_trains
https://www.ccc.de/en/updates/2024/das-ist-vollig-entgleist
https://attack.mitre.org/
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf

Referenses used during the class

® https://umatechnology.org/the-truth-about-the-intels-hidden-minix-os-
and-security-concerns/

® https://www.bleepingcomputer.com/news/hardware/intels-secret-cpu-
on-chip-management-engine-me-runs-on-minix-os/

https://umatechnology.org/the-truth-about-the-intels-hidden-minix-os-and-security-concerns/
https://umatechnology.org/the-truth-about-the-intels-hidden-minix-os-and-security-concerns/
https://www.bleepingcomputer.com/news/hardware/intels-secret-cpu-on-chip-management-engine-me-runs-on-minix-os/
https://www.bleepingcomputer.com/news/hardware/intels-secret-cpu-on-chip-management-engine-me-runs-on-minix-os/

