
Operating Systems Security:
concepts in security controls,

vulnerabilities and attacks
A quantitative approach

2026-02-09

Robert Malmgren
rom@romab.com

mailto:rom@romab.com

1 minute presentation

• Consultant in IT, infosec and cybersecurity since 25+ years

• Working alot on with critical infrastrucutre protection, process
control, SCADA security etc, but also in financial sector,
government, etc

• Work covers everything from writing policies, requirement
specs and steering documents to development, penetration
testing, incident handling and forensics

Outline of talk

• Intro

• Background and basics

• Security problems & vulnerabilities

• Example of operating systems and security

Some short notes

• The focus is on general operating system used in general computers -
COTS products

• Embedded systems, code for micro controllers, etc often lack most
fundamental security features

• Some experimenal OS’s and domain specific solutions have better-than-
average security concepts and security controls, e.g. military grade usage

Background and basics
Part 1: protection, security controls

Intro - foundation

• Complex systems

• …have multiple users,

• …run multiple programs at once,

• …store huge amounts of data,

• …is interconnected via networks

Multitasking

Multiuser

Locally & remote

Multiple services
and clients

Intro - foundation: Isolation

• Modern software is normally formed into components, parts and layers in systems

• This will create a software stack

• Layers in the stack provides abstraction

• Layers in the stack provides supporting frameworks, functionality and support mechanisms

• Layers in the stack is one form of isolation

Intro - foundation: Isolation

• Layers and isolation is a way to provide separation, which can be:

• Logical/ Virtual: A way to make it appear that execution environment have exclusive access

• Physical: Different computers, different CPUs/cores, different disks

• Time based: Separation of execution time/Timeshare

• Based on security technologies, i.e. cryptographic algorithms and crypto mechanisms can
also be used to compartmentalise and isolate information.

Intro - foundation: IAM

• This there is to built-in security into the foundation of the systems - the
operating system

• To identify and authorize users of the system

• To allow for an environment where necessary basic controls are in place

• To prevent unauthorised access to OS resources

Capabilities and requirements
Need Description Example

Protect a system resource
Prohibit malicious or

unintentional access to
system resources

System tables, direct
access to I/O-units,
 memory protection

Authorization checks for
usage of system calls and

system resources

Provide controlled access to system, so that
system mainain system integrity and provide

continuous security to application and
information

reference monitor

Separation of resources Physical, Logical, temporal or cryptographical
separation

separation in running
time

The classical ring model

Källa http://en.wikipedia.org/wiki/File:Priv_rings.svg

Kernel

Userland

UNIX x86
Least

privileges

Highes
privileges

http://en.wikipedia.org/wiki/File:Priv_rings.svg

Interaction between
application and OS

Exekverande
process

Exekvera
systemanrop

Anrop till
systemanrop

Process i userland

Fortsatt
exekvering

Trap

Kernel

Executing
process

Call
systemcall

Continue
execution

Perform systemcall

Overview of operating system (1/2)

Kernel

Drivers

subsystems
libraries

Applications

Servers
compilers

Tool chain

TCB

Application Application Application Application

System call interface

Operating system kernel
Providing basic services

Hardware interface and hardware abstraction

CPU Memory Network PeripheralsStorage

Overview of operating system (2/2)

User #1 User #2

Some important concept

• A concept called Trusted Computing Base, or TCB

• It contain all things in the trusted part of the OS necessary to enforce the
security policy

• Important that TCB is small, clearly written, easy to see that it does not contain
design or logical flaws, and that it is protected against alterations and tampering

[1] Lampson et al: Authentication in Distributed Systems: Theory and Practice

Some important concept

• Reference monitor

• A Reference Monitor is an abstract security component that enforces access
control rules. It ensures that every access attempt to system resources
complies with security policies.

• The TCB is the entire collection of system components that enforce and maintain
security, including the Reference Monitor.

[1] Lampson et al: Authentication in Distributed Systems: Theory and Practice

Principal
Reference

monitor
Do

operation
Object

Source Request Guard Resource

The classical ring model, updated!

Källa: http://en.wikipedia.org/wiki/File:Priv_rings.svg

Other rings

-1 Hypervisor Allow guest OS ”ring 0”

-2 System Management
Mode (SMM) APM/ACPI/TPM-support

-3
 Intel Management Engine /
 AMD Platform Security

Processor

Special software running in
the Platform Controller Hub

(PCH) processor

Källa: https://medium.com/swlh/negative-rings-in-intel-architecture-the-security-threats-youve-probably-never-heard-of-d725a4b6f831

TCB

http://en.wikipedia.org/wiki/File:Priv_rings.svg

Problem with these pictures and concepts

• Layering violation

• some software might skip a layer and call an underlaying layer directly
and hence bypass controls

• In some scenarios attackers might come an unexpected way

• Attacking from host operating system against guest operating systems in a
virtual machine environment

Problem with these concepts
• You have a “hidden” processor on your computer

• Its functionality has never been publicly documented

• It appears to have been customized for certain TLA government agencies

• It has unlimited access to the main processor

• It has unlimited access to all memory

• It has unlimited access to all peripherals

• It has its own MAC and IP addresses

• It runs a web server

• It is always running

• You can’t turn it off

• You can’t disable it

• It has had multiple known exploitable vulnerabilities

• It is the single most privileged known element of an Intel Architecture processor chipset

Memory handling
• RAM memory is a central resource that in a controlled way must be shared

and handled between operating system, applications and other components

• Modern computer systems have hardware support for memory protection,
e.g. MMU

• OS support is required to use the hardware supported memory
protection

• Modern hardware support can enforce several security features related
to isolation, non-executable memory areas, etc

File system

• A file system is often a central component in a computer system w.r.t. security
and protection

• Besides the actual file content, there is meta data that is of importance

• File owner, dates of creation/change/access, access information, security labels,
etc

• Manipulation of meta data can in some cases be more serious security breach
than the manipulation of the file content itself. Or a combo of both can be
misleading and hide the fact that a file has been altered

Local filsystem

File system Description Comment

FAT No access control Classic MS-DOS

NTFS Discretional Access Control via ACL Advanced possibilities
to make controls

UFS Discretional Access Control, writing & program
execution for owner, group, “others”

Simple access
controls

Network file systems

File system Description Comment

NFSv3 Hostbaserad accesskontroll, uid Trivial to
circumvent

NFSv4 Secure RPC, KRB5a, KRB5p, KRB5i
Require a Kerberos server, KDC

a= authentication
i=integrity = calculate MAC
p= privacy = encrypt packet

SMB/CIFS KRB5a

Background and basics
Part 2: bugs and vulnerabilities

Intro - just the basic facts

• All software is prone to bugs

• Some bugs will have an impact that can have security implications

• data leaks,

• destruction of data,

• local privilege escalations (LPE),

• execution of remotely uploaded malicious code (RCE),

• etc

Intro - just the basic facts

• Some bugs help to
circumvent security
mechanisms

• Some security designs
are flawed, or build on
flawed assumptions

Operating system security

• Security problems in the operating system can affect the integrity of the
system itself

• Someone else can control the system to their own liking - pwnd!

• Bugs in OS kernel can affect system integrity

• Security problems with the operating system can, as a result, affect the
security in applications and subsystems (databases, middle ware, etc)

http://en.wikipedia.org/wiki/Pwn

http://en.wikipedia.org/wiki/Pwn

General examples of threats and attacks

Confidentiality
Availability

System integrity

Data integrity

fork bombs SYN flood
Wrong file permissions

unintentional filling of disk space

Sensitive plaintext in RAM

Bypassed security checks

Manipulated system configuration

Manipulated application
program binaries Zapped system logs

intentional filling of disk space

malformed network packets

Manipulated user files

Crashdumps with credentials or crypto keys

Manupulated database content

Manipulated system binaries

Some concepts and terms

Stack smashing

Heap overflow

Stack overflow

Time-of-Check to Time-of-Use
(TOCTTOU)

Memory
corruption bugs

Information
disclosure bugs

File inclusion

Directory traversal
File/object permissions

Race conditions

Time related bugs

Some concepts and terms

Vulnerability Exploit

Foreverday exploit

0day exploit
1day exploit/Nday

unpatchable
or unsupported

systems

vulnerability
disclosed but not widely

patched

vulnerability
unknown to vendor &

no patch available

Intro - the basics

• Some bugs are undiscovered for some time, they lay latent

• Once discovered, they can be abused, if it is an security vulnerability, that can be
exploited

• A discovered security bug, is sometime called a 0day, until it is mitigated

Intro - the basics

• Nowdays bugs and vulnerabilities tend to get
names (heartbleed, ghost, shellshock, etc) and
logos

• Used by security companies for marketing
their knowledge and brand

Some concepts and principles

• Attack vector - Different paths to reach an vulnerability. One path might be
closed by a vendor patch, but another might still be there, if the root cause
is not identified and fixed.

• Attack surface - exposed parts that an attacker can reach, i.e. all the
different attack vectors

• Reverse engineering (RE) - To re-create the original design by observing the
final result, in computer science - to re-create some source code by
examing a binary.

Example of attacks
Attack
method Description Synonyms and variants

Buffer
overflow

Attacks that allow an attacker to deterministically
alter the execution flow of a program by submitting
crafted input to an application. Executable code is
written outside the boundaries of a memory
buffer originally used for storing data. The
executable parts is somehow made to execute,
e.g. by manipulate return adress to be used when
a function call is finished.

Real world examples: OpenBSD IPv6 mbuf’s*
remote kernel buffer overflow[1], windows
kernel pool

Synonyms: memory corruption attack, Buffer
overrun, Stack smashing,

Variants: Heap smashing, format string bugs,

[1] http://www.coresecurity.com/content/open-bsd-advisorie * An mbuf is a basic unit of memory management in the kernel IPC subsystem

http://www.coresecurity.com/content/open-bsd-advisorie

Example of attacks
Attack
method Description Examples

Backward
compability

+
downgrade

Attacks

Attacks that allow an attacker to use
• an older version of a service, or
• an old protocol, or
• an older mode, or
• call legacy code

Sometime triggered by downgrade
attack, a negotiation to use older
variant

Remote Desktop
NTLMv1
XML encryption
SSLv2, SSLv3, incl POODLE, FREAK
Encryption modes
Kerberos v4 in v5

https://www.isg.rhul.ac.uk/~kp/BackwardsCompatibilityAttacks.pdf

Intro - the basics
• Many vulnerabilities also gets ”formal name”, i.e. CVE*, and a scoring CVSS**

• e.g. CVE-2024-21762 (A out-of-bounds write in Fortinet FortiOS) with
CVSS score of 9.8

• A CVE is assigned by a CNA, a CVE numbering authority

• All issued CVE is stored in central database

• Not all vulnerabilities gets an CVE

• Not all issued CVE numbers ends up being used in public vulnerability info

** https://www.first.org/cvss/specification-document** * ”Common Vulnerabilities and Exposures;” https://cve.mitre.org/

https://www.first.org/cvss/specification-document**

https://www.cvedetails.com/vulnerabilities-by-types.php

https://www.cvedetails.com/vulnerabilities-by-types.php

https://www.cvedetails.com/vulnerabilities-by-types.php

https://www.cvedetails.com/vulnerabilities-by-types.php

Intro - the basics

https://www.cvedetails.com/cvss-score-charts.php?fromform=1&vendor_id=&product_id=&startdate=2023-01-01&enddate=2023-12-31

Intro - the basics

https://www.cvedetails.com/cvss-score-charts.php?fromform=1&vendor_id=&product_id=&startdate=2024-01-01&enddate=2024-12-31

Intro - the basics

https://www.cvedetails.com/cvss-score-charts.php?fromform=1&vendor_id=&product_id=&startdate=2025-01-01&enddate=2025-12-31

More on vulnerabilities and attacks

Host security

Network security

Human security

Kernel
Last line

of
defense

Application
security

Where do attacks occur?

User / admin errorsRemote
exploits

Local
exploits

Soc
ial
engi
nee
ring
atta
cks

The classical ring model, updated!

https://www.tenable.com/cve/CVE-2022-40261

Most common attacks?

OWASP top-10 2025 list
https://owasp.org/Top10/2025/0x00_2025-Introduction/

Most common attacks?

OWASP top-10 list

MITRE ATT&CK framework
https://attack.mitre.org/

MITRE ATT&CK framework

A classic attack

• Ken Thompson’s trojanized
c compiler

• Modify the source code to the compiler
to recognize if it recompile itself or the
login program - insert backdoor in login

• recompile compiler

• remove source code changes and
recompile the compiler

• recompile the login program with the
modified compiler

• No visible signs for humans or tools to see
the backdoor in source code. Calls for
binary inspection or decompilation. Ken Thompson - TURING AWARD LECTURE: Reflections on Trusting Trust.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf

Attacks and counter
measures

• Chaining of attacks - combining a number of exploits to
achieve goal

• finding and abusing a number of different
vulnerabilities might allow an attacker to achieve
goals not possible with just one potent exploit

• Code execution in gadgets (ROP) + sandbox escape +
elevation of privileges + execution of privileged code

Example of attacks

Remember that there is a number of
ways that all OS security controls can be

bypassed,
especially if the operating system

is not running
- a very good side-channel attack ;-)

How do you create
security in the OS?

How do you create security in the OS?

• Follow well-known design principles

• Use well-known pattern

• Use ordinary developer best-practises

• Decide to use principles, e.g. secure-by-default

• Use programming languages that support secure practices

• Have the design and implementation evaluated and certified

Principles for secure design*
Economy of mechanism Keep the design as simple and small as possible

Fail-safe defaults Base access decisions on permission rather than exclusion

Complete mediation Every access to every object must be checked for authority

Open design The design should not be secret

Separation of privilege technique in which a program is divided into parts which are limited to the
specific privileges they require in order to perform a specific task

Least privilege
Every program and every user of the system should operate using
the least set of privileges necessary to complete the job

Least common mechanism
Minimize the amount of mechanism common to more
than one user and depended on by all users

Psychological acceptability
It is essential that the human interface be designed for
ease of use, so that users routinely and automatically
apply the protection mechanisms correctly

JEROME H. SALTZER et al The Protection of Information in Computer Systems http://www.cs.virginia.edu/~evans/cs551/saltzer/

http://www.cs.virginia.edu/~evans/cs551/saltzer/

Comparing security in
Operating systems (1/6)

• When in time was the system developed?

• What was the state-of-the-art at that
time?

• What trends where currently in
fashion?

• What languages was available for
creating the operating system?

OS Developed Released

Unix 1969 1971

Mach Kernel 1985 1986

Windows NT 1988 1993

Linux 1991 1991

MacOS Late 1990’s 2001

iOS 2005-07 2007

Android 2003 2008

Comparing security in
Operating systems (2/6)

• In what language is an operating system developed?

• Unix: assembler (1969), C (1973)

• Windows: C/C++, C#&.NET

• Linux: C/C++/asm, Python/bash/perl, Rust (2022-)

• MacOS X/iOS: C/C++/Objective-C (1999–2010), Swift (2014-)

• Android: C/C++/Java (2008–2016), Kotlin (2014-), Rust (2020-)

Comparing security in
Operating systems (3/6)

• Development methodologies

• Open Source or Closed Source?

• What support do one use to ensure that security is built into the product?

• How does one ensure that implementation is a correct representation of
the design, that is a correct interpretation of the analysis?

”Given enough eyeballs, all
bugs are shallow”

- Linus' Law

http://en.wikipedia.org/wiki/Software_bug

Comparing security in
Operating systems (4/6)

Source Lines Of Code - SLOC

http://en.wikipedia.org/wiki/Source_lines_of_code

Year OS SLOC
in millions

1993 Windows NT 3.1 4-5

1994 Windows NT 3.5 7-8

1996 Windows NT 4.0 11-12

2000 Windows 2000 more than 29

2001 Windows XP 40-45

2003 Windows Server 2003 50

2007 Windows vista 50

2015 Windows 10 40-60

2021 Windows 11 50-100

Year OS SLOC*

2000 Debian 2.2 (Potato) 55-59

2002 Debian 3.0 (Woody) 104

2005 Debian 3.1 (Sarge) 215

2007 Debian 4.0 (Etch) 283

2009 Debian 5.0 (Lenny)

2013 Debian 7.0 (Wheezy) 419

2023 Debian 12 (bookworm) 1,341

https://informationisbeautiful.net/visualizations/million-lines-of-code/ https://sources.debian.org/stats/

Year OS SLOC*

1991 Linux 0.0.1 10,239 lines

1994 Linux 1.0 176,250 lines

2003 Linux kernel 2.6.0 5,2

2005 Linux kernel 2.6.11 6.6

2009 Linux kernel 2.6.29 11.0

2009 Linux kernel 2.6.32 12.6

2011 Linux kernel 3.0 14,6

2018 Linux kernel 4.X 25

2020 Linux kernel 5.12 28.8

2023 Linux kernel 6.5-rc5 ~36

2025 Linux kernel 6.14-rc1 >40
2005 Mac OS X 10.4 86

http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Mac_OS_X

Comparing security in
Operating systems (4/6)

Source Lines Of Code - SLOC

http://en.wikipedia.org/wiki/Source_lines_of_code

Year OS SLOC
in millions

1993 Windows NT 3.1 4-5

1994 Windows NT 3.5 7-8

1996 Windows NT 4.0 11-12

2000 Windows 2000 more than 29

2001 Windows XP 40-45

2003 Windows Server 2003 50

2007 Windows vista 50

2015 Windows 10 40-60

2021 Windows 11 50-100

Year OS SLOC*

2000 Debian 2.2 (Potato) 55-59

2002 Debian 3.0 (Woody) 104

2005 Debian 3.1 (Sarge) 215

2007 Debian 4.0 (Etch) 283

2009 Debian 5.0 (Lenny)

2013 Debian 7.0 (Wheezy) 419

2023 Debian 12 (bookworm) 1,341

https://informationisbeautiful.net/visualizations/million-lines-of-code/ https://sources.debian.org/stats/

Year OS SLOC*

1991 Linux 0.0.1 10,239 lines

1994 Linux 1.0 176,250 lines

2003 Linux kernel 2.6.0 5,2

2005 Linux kernel 2.6.11 6.6

2009 Linux kernel 2.6.29 11.0

2009 Linux kernel 2.6.32 12.6

2011 Linux kernel 3.0 14,6

2018 Linux kernel 4.X 25

2020 Linux kernel 5.12 28.8

2023 Linux kernel 6.5-rc5 ~36

2025 Linux kernel 6.14-rc1 >40
2005 Mac OS X 10.4 86

But really, what good is this comparison?

Write more code = get higher salary?
Manage a 200K-SLOC project is cooler than a 5K-SLOC?

More code = more bugs?

Yes, more code is often more bugs

More code = more security checks and advanced concepts like
crypto, resillient failure checking built into everything?

But certainly, complexity is considered bad and evil in the context of security.

There is often a relation between complexity, size of program and bugs

http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Mac_OS_X

Comparing security in
Operating systems (3/5)

Source Lines Of Code - SLOC

http://en.wikipedia.org/wiki/Source_lines_of_code

Year OS SLOC
in millions

1993 Windows NT 3.1 4-5

1994 Windows NT 3.5 7-8

1996 Windows NT 4.0 11-12

2000 Windows 2000 more than 29

2001 Windows XP 40-45

2003 Windows Server 2003 50

2007 Windows vista 50

2015 Windows 10 40-60

2021 Windows 11 50-100

Year OS SLOC*

2000 Debian 2.2 (Potato) 55-59

2002 Debian 3.0 (Woody) 104

2005 Debian 3.1 (Sarge) 215

2007 Debian 4.0 (Etch) 283

2009 Debian 5.0 (Lenny)

2013 Debian 7.0 (Wheezy) 419

2023 Debian 12 (bookworm) 1,341

https://informationisbeautiful.net/visualizations/million-lines-of-code/ https://sources.debian.org/stats/

Year OS SLOC*

1991 Linux 0.0.1 10,239 lines

1994 Linux 1.0 176,250 lines

2003 Linux kernel 2.6.0 5,2

2005 Linux kernel 2.6.11 6.6

2009 Linux kernel 2.6.29 11.0

2009 Linux kernel 2.6.32 12.6

2011 Linux kernel 3.0 14,6

2018 Linux kernel 4.X 25

2020 Linux kernel 5.12 28.8

2023 Linux kernel 6.5-rc5 ~36

2025 Linux kernel 6.14-rc1 >40
2005 Mac OS X 10.4 86

There is often a relation between complexity, size of program and bugs

Code Quality Level Bugs per 1,000 SLOC (Defect
Density)

Typical commercial software 10 - 50 bugs

Well-tested open-source software 1 - 5 bugs

Mission-critical software (NASA, avionics,
medical, etc.) 0.1 - 1 bugs

High-reliability software (e.g., space
systems, nuclear control) < 0.1 bugs

http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Mac_OS_X

• What can one gain by having formal certification of operating systems,
subsystems or application

• Trusted Computer System Evaluation Criteria (TCSEC), Common
Criteria (CC, ISO/IEC 15408), etc

• More a theoretical excersice than of any real value?

Comparing security in
Operating systems (6/6)

https://www.commoncriteriaportal.org/

General example of control principles
Security
controls Description Example Where?

Encryption
Protection against
eavesdropping or

unauthorized access

network traffic, file content, disk
partitions, memory pages, swap files/

page area
OpenSSL, IPSec, SSH, OS kernel

Electronic
signatures

Protection against
changes or unauthorized

modifications by
third parties,

network traffic,
file content,

disk partitions
OpenSSL, IPSec, SSH, OS kernel

Cryptograph
-ically strong
hash values

Protection against
unauthorized changes,

detect errors or
changes

Saved passwords,
file content,

Password file, user database,
checksums on files

Security
controls Description Example Where?

Random
numbers

Make a resource non-
deterministic

File names, proccess ID,’s
port numbers,

sesssion keys, session id’s,
 transaction numbers,

DNS query ID’s,
execution time & timing

getrandom()
 /dev/urandom

Constant
numbers

Make a resource non-
deterministic

execution time,
timing of events

Crypto code to prevent
side channel attacks

General example of control principles

https://www.redhat.com/en/blog/understanding-red-hat-enterprise-linux-random-number-generator-interface?extIdCarryOver=true&sc_cid=701f2000001OH7JAAW

Security
controls Description Example

Compiler
generated

airbag - canary

Make sure buffer overflows dont
get undetected

ProPolice, VisualStudio /GS

ASLR

Randomize addresses used by
applications. Make sure its hard to
write code that knows of addresses.

Where did that lib go?

Android >4.0,
iOS > 4.3,

Windows >Vista,
OpenBSD/NetNSD,

Linux >2.6.12, MacOSX >10.5,
Solaris >11.1, etc

KASLR Randomize addresses used by kernel
Windows Vista, NetBSD,

Linux >3.14, MacOSX 10.8,
 Android 11, etc

General example of control principles

Security
controls Description Example

DEP, NX, W^X
Make sure memory is

not executable

IE on Windows Vista,
Android >2.3, FreeBSD > 5.3, OpenBSD, Linux >2.6.8,

MacOSX >10.5, etc

MTE Memory Tagging Extension Using ARM architecture feature to better protect
against memory safety violations

General example of control principles

Security
controls Description Example

Secure boot chain /
Verified boot

Make system startup sequence is secure
Make sure that each step of boot is

cryptographically signed to ensure code integrity,
e.g. BIOS vs UEFI

Secure pairing Make sure to connect to peripherals and
resources in a secure way

Using bluetooth to connect to headset,

General example of control principles

General example of control principles

Security
controls Description Example

Scrubing, zeroing
Make sure that old data areas are
cleaned before usage or returned to

system
memory, file systems, VM system

Logs,
audit trails

Traces, error messages and
dumps from systems and

applications

Windows Eventlog,
Syslog,

audit, BSM

Attacks and counter
measures

Buffer overflow/memory
corruption attacks

Stack canaries

More advanced buffer
overflows, defeating canary

Address Space Layout
Randomization (ASLR)

Note - several of these counter
measures does not work for

protection within the kernel

No-executable
(NX, W^X) stacks

Hijacking JIT compilers ROP attacks

Data Execution
Prevention (DEP)

?

Virtualization and isolation
sandboxes, containers, hypervisors, etc

Sandboxing

• Various types of OS supported or application supported sandboxing is good as a
way to get defense-in-depth

• Create temporary execution environments for certain tasks

• test of exe files to lure out malicious code execution

• perform certain tasks that is more prone to attacks

• perform certain tasks that is more sensitive

• Provide isolation, from other parts of system

Pro’s and con’s with virtualization

• Some sandbox and isolation technologies are not complete
virutalization or separation

• E.g. share name space (processes, file system, etc)

• Share operating system kernel

• Share drivers

Isolation, separation and virtualization
Type Example Description

chroot Change root for network service Classic Unix concept. No virtualization, just isolation

jails FreeBSD Jails Userland. Can run FreeBSD and Linux binaries.
Integrated into OS.

user mode linux, uml Userland. More lightweight and thus faster than virtual
machines

Containers Docker, podman, k8s Userland. 3rd party tool on top of OS. Need container engine, not
hypervisor. More lightweight and thus faster than virtual machines

Virtual machines Xen, VMware vSphere, HyperV, Type 1 hypervisor based. Stronger isolation than
container

Virtual machines VMware Workstation, KVM Type 2 hypervisor based. Stronger isolation than
container

Hardware partitioning Sun LDOMs, IBM LPAR Best isolation and separation.
Hardware support gives superior performance and security

Overview of virtualization

Pro’s and con’s with
virtualization

• Isolation, and to have hardened and dedicated servers running specific services, are
standard ways to minimize attack surface. Virtualization tools can help this

• Its easy to believe that virtualization will automatically make things secure, and that
there is no way to jump between guest os’, but exploits have shown this not hold
true, e.g. cloudburst

http://www.immunityinc.com/documentation/cloudburst-vista.html

http://www.immunityinc.com/documentation/cloudburst-vista.html

VM’s vs Containers vs WebAssembly
Feature Virtual Machines Containers WebAssembly (Wasm)
Isolation Full OS

virtualization, strong
isolation

OS-level isolation Sandboxed execution (virtual CPU)

Performan
ce

Slower (heavy
overhead) Near-native Near-native, optimized

Startup
Time

Minutes Seconds Milliseconds

Size GBs (full OS image) MBs (includes OS
dependencies) KBs to MBs (minimal overhead)

System
Access

Full OS access
(kernel, drivers) Shares OS kernel No direct OS access (sandboxed)

Security Strong (separate OS
instances) Moderate (kernel shared) Strong (sandboxed, minimal attack surface)

Portability Limited (OS-
dependent)

Cross-platform (container
runtimes) Universal (Wasm runtimes)

Use
Cases

Legacy
applications, multi-
OS environments

Cloud-native
applications,
microservices

Edge computing, serverless, high-security
apps

Advanced attacks
Hardware attacks, etc

Attack tools

• Reverse Engineering Frameworks, such as Ghidra
help debugging, disassemble, reverse engineer
binaries

• Give attackers powerful tools to introspect
into firmware, drivers, kernels, applications

Example of attacks

• Attacks by attaching malicious hardware to buses and ports

• Using debug interfaces to snoop & manipulate bus

• JTAG (IEEE standard 1149.1-1990)

• SWD (Serial Wire Debug)

• Firewire and other DMA based methods to access memory of a computer (evil
maid attacks, evil devices)

• UEFI attacks via Thunderbolt (thunderstruck attack)

https://payatu.com/blog/hardware-attack-surface-jtag-swd/

Example of attacks
• Removal of, or direct attachment to, physical memory chips (cold boot attacks)

Example of attacks
• Removal of, or direct attachment to, physical memory chips (cold boot attacks)

https://www.youtube.com/watch?v=XfUlRsE3ymQ

Example of attacks: cold boot attacks

F-secure ”The Chilling Reality of Cold Boot Attacks” https://www.youtube.com/watch?v=E6gzVVjW4yY

Example of attacks: PCILeech

Ulf Frisk - ”Attacking UEFI Runtime Services and Linux” https://www.youtube.com/watch?v=PiUVRHYTDUg

Example of attacks: HW implants

https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/

Advanced attacks
• Rowhammer*

• Flipping bits without accessing them

• Method of reading writing memory cells so that memory cells
in adjacent rows become changed

• Based on an unintended side effect in dynamic random-access
memory (DRAM) that causes memory cells to leak their
charges and interact electrically between themselves, possibly
altering the contents of nearby memory rows that were
not addressed in the original memory access

“Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors”
— Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, Onur Mutlu, at CMU

Advanced attacks
• Rowhammer*

• This circumvention of the isolation between DRAM
memory
cells

• Memory leak == information leak

• Have been used to Gain Kernel Privileges, e.g.
DRAMMER attack on Android

• Can be used to attack Virtual Machines

* Kim et al ” Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors” https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

Advanced attacks

• Rowhammer

• Have been implemented in JavaScript and runned in a browser

• Modern variants* have been used to defeat ECC memory

* ”Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against
Rowhammer Attacks” https://cs.vu.nl/~lcr220/ecc/ecc-rh-paper-eccploit-press-
preprint.pdf

Advanced attacks
• Rowhammer*

• Initial research published 2014, but variants have been developed later

• Rowhammer.js (2015)

• Blacksmith (2022)

• Half-double (2021)

• Zenhammer (2024, AMD architecture)

• RISC-Hammer (2024, RISC-Y architecture)

• Hardware solutions to protect against it have been circumvented

https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html

https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html https://comsec.ethz.ch/wp-content/files/blacksmith_sp22.pdf

Advanced attacks

• Meltdown* & Spectre**

• Initial research published January 2018

• Microarchitectural bugs in CPU

• Meltdown breaks isolation between user land and kernel

• Spectre breaks isolation between applications in user land

https://meltdownattack.com/

* Lipp et al ”Meltdown: Reading Kernel Memory from User Space” https://meltdownattack.com/meltdown.pdf

** Kocker et al ”Spectre Attacks: Exploiting Speculative Execution” https://spectreattack.com/spectre.pdf

https://meltdownattack.com/meltdown.pdf

Advanced attacks

• Meltdown & Spectre

• work on personal computers, mobile devices, and in the cloud

• Works on Windows, Linux, Android, etc

• Works on containers: docker, LXC, OpenVZ etc

Advanced attacks

• Meltdown & Spectre

• All modern CPUs are vulnerable (x86, AMD, ARM) in various degrees

* Canello et al ”A Systematic Evaluation of Transient Execution Attacks and Defenses” 
 https://arxiv.org/pdf/1811.05441.pdf

Advanced attacks

* Canello et al ”A Systematic Evaluation of Transient Execution Attacks and Defenses” https://arxiv.org/pdf/1811.05441.pdf

Advanced attacks

https://en.wikipedia.org/wiki/Transient_execution_CPU_vulnerability

https://en.wikipedia.org/wiki/Transient_execution_CPU_vulnerability

Advanced attacks

• Spectre class vulnerabilities will remain unfixed because
otherwise CPU designers will have to disable speculative
execution which will entail a massive performance loss

Advanced attacks

• Microarchitecture Data Sampling attacks

• Side channel attacks

• Timing side channel attacks

• Power Analysis side channel attack

Advanced attacks

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10123915

Advanced attacks

https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7033.html

https://www.phoronix.com/news/Intel-CPU-Microcode-August-2025

Advanced attacks

• Attacks against Intel Management Engine

• Proprietary and non-documented

• Own OS (Minix!)

• Reverse engineered and analysed by attackers

• Found multiple vulnerabilities in Skylake & Kabylake
architecture

Examples of modern security controls

Windows Defender security features in Win 10, Win 11

Windows
• Application Guard, WDAG

• App & browser control

• Isolation browsing

• WDAC (Windows Defender
Application Control) give application &
driver whitelisting

• VBS (Virtualization-Based Security)

• WDAC & VBS used to be Windows
Device Guard

https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard

https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://en.wikipedia.org/wiki/Linux_Security_Modules

Windows

• Windows Device Guard, And Applocker, now called Windows
Defender Application Control

• Attributes of the codesigning certificate(s) used to sign an app and
its binaries

• Attributes of the app's binaries that come from the signed
metadata for the files, such as Original Filename and version, or
the hash of the file

• The path from which the app or file is launched

https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard

https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://en.wikipedia.org/wiki/Linux_Security_Modules

Windows

• Core isolation with Memory integrity, aka Hypervisor-protected Code Integrity (HVCI)

• make it difficult for malicious programs to use low-level drivers to hijack your
computer

https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://en.wikipedia.org/wiki/Linux_Security_Modules

Windows
• Windows Defender Exploit Guard, WDEG

• Attack Surface Reduction (ASR): A set of controls that enterprises can enable to
prevent malware from getting on the machine by blocking Office-, script-, and email-based
threats

• Network protection: Protects the endpoint against web-based threats by blocking any
outbound process on the device to untrusted hosts/IP through Windows Defender
SmartScreen

• Controlled folder access: Protects sensitive data from ransomware by blocking untrusted
processes from accessing your protected folders

• Exploit protection: A set of exploit mitigations (replacing EMET) that can be easily
configured to protect your system and applications

https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://en.wikipedia.org/wiki/Linux_Security_Modules

Windows
• Windows Credential Guard

• To protect Local Security Authority
Server Service (LSASS) by moving it
into LSAIso

• Build on top of

• Virtualization Based Security (VBS)

• Secure boot

• Trusted Platform Module (TPM)

• UEFI lock
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-how-it-works https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current

Windows

• Windows Remote Credential
Guard

• To protect against theft of
credentials sent to server side

• Others that have admin
access to the server

• Especially important on jump
hosts

https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-how-it-works https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current

Windows

https://docs.microsoft.com/en-us/windows/security/identity-protection/remote-credential-guard

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current

MacOS X

• FileVault

• Full disk encryption

• GateKeeper

• Checks code signing

• XProtect

• Malware protection

• Hardware based security

• Secure Enclave

• Memory Tagging & Pointer
Authentication

• Hardware-Accelerated Encryption

• Isolation

• App sandbox

iOS/iPadOS

• Share many security features with MacOS X

• Additional ones include

• BlastDoor. A way to takes a look at all incoming messages and inspects their content
in a secure environment, which prevents any malicious code inside of a message from
interacting with iOS or accessing user data.

• LockDown mode: add many restrictions to applications, e.g. web browsing,
messaging, FaceTime, photos, etc

Apple iOS device security

App Sandbox

Secure Enclave
Secure Element
Crypto Engine

Apple device security

Secure Enclave

Tools mentioned during the class

• Ghidra - Reverse Enginering Framework

• IDA pro - Disassembler

• Hexray - Decompiler

• Ollydbg, windbg - Other disassemblers

• Bindiff - Advanced tool from zynamics to compare
binaries, with call graphs etc. Not same as built-in
windows tool with same name.

Referenses used during the class

• https://www.commoncriteriaportal.org/

• https://www.cs.virginia.edu/~av6ds/papers/isca2021a.pdf

• https://www.cvedetails.com/top-50-products.php

• https://owasp.org/www-project-top-ten/

https://www.commoncriteriaportal.org/
https://www.cs.virginia.edu/~av6ds/papers/isca2021a.pdf
https://www.cvedetails.com/top-50-products.php
https://owasp.org/www-project-top-ten/

Referenses used during the class

• http://en.wikipedia.org/wiki/Source_lines_of_code

• https://sources.debian.org/stats/

• https://informationisbeautiful.net/visualizations/million-
lines-of-code/

•

http://en.wikipedia.org/wiki/Source_lines_of_code
https://sources.debian.org/stats/
https://informationisbeautiful.net/visualizations/million-lines-of-code/
https://informationisbeautiful.net/visualizations/million-lines-of-code/

Referenses used during the class

• https://docs.microsoft.com/en-us/windows/security/identity-
protection/credential-guard/credential-guard-how-it-works

• https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-
windows-defender-application-guard

• https://docs.microsoft.com/en-us/windows/security/threat-protection/
microsoft-defender-application-guard/md-app-guard-overview

• https://docs.microsoft.com/en-us/windows/security/identity-
protection/remote-credential-guard

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard
https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview

Referenses used during the class

• https://support.microsoft.com/en-us/windows/core-
isolation-e30ed737-17d8-42f3-a2a9-87521df09b78

• https://en.wikipedia.org/wiki/
Local_Security_Authority_Subsystem_Service

• http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.91.5728&rep=rep1&type=pdf

•

https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78
https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78
https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service
https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf

Referenses used during the class

• https://www.cisa.gov/sites/default/files/2024-04/
CSRB_Review_of_the_Summer_2023_MEO_Intrusion_Final_508c.pdf

• https://media.ccc.de/v/37c3-12142-breaking_drm_in_polish_trains

• https://www.ccc.de/en/updates/2024/das-ist-vollig-entgleist

• https://attack.mitre.org/

• https://www.cs.cmu.edu/~rdriley/487/papers/
Thompson_1984_ReflectionsonTrustingTrust.pdf

•

https://www.cisa.gov/sites/default/files/2024-04/CSRB_Review_of_the_Summer_2023_MEO_Intrusion_Final_508c.pdf
https://www.cisa.gov/sites/default/files/2024-04/CSRB_Review_of_the_Summer_2023_MEO_Intrusion_Final_508c.pdf
https://media.ccc.de/v/37c3-12142-breaking_drm_in_polish_trains
https://www.ccc.de/en/updates/2024/das-ist-vollig-entgleist
https://attack.mitre.org/
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf

Referenses used during the class

• https://umatechnology.org/the-truth-about-the-intels-hidden-minix-os-
and-security-concerns/

• https://www.bleepingcomputer.com/news/hardware/intels-secret-cpu-
on-chip-management-engine-me-runs-on-minix-os/

•

https://umatechnology.org/the-truth-about-the-intels-hidden-minix-os-and-security-concerns/
https://umatechnology.org/the-truth-about-the-intels-hidden-minix-os-and-security-concerns/
https://www.bleepingcomputer.com/news/hardware/intels-secret-cpu-on-chip-management-engine-me-runs-on-minix-os/
https://www.bleepingcomputer.com/news/hardware/intels-secret-cpu-on-chip-management-engine-me-runs-on-minix-os/

