

Operating Systems Security: concepts in security controls, vulnerabilities and attacks

A quantitative approach
2026-02-09

Robert Malmgren
rom@romab.com

1 minute presentation

- Consultant in IT, infosec and cybersecurity since 25+ years
- Working a lot on with critical infrastructure protection, process control, SCADA security etc, but also in financial sector, government, etc
- Work covers everything from writing policies, requirement specs and steering documents to development, penetration testing, incident handling and forensics

Outline of talk

- Intro
- Background and basics
- Security problems & vulnerabilities
- Example of operating systems and security

Some short notes

- The focus is on general operating system used in general computers - COTS products
- *Embedded systems, code for micro controllers, etc* often lack most fundamental security features
- Some experimental OS's and domain specific solutions have better-than-average security concepts and security controls, e.g. military grade usage

Background and basics

Part I: protection, security controls

Intro - foundation

- Complex systems
 - ...have multiple users,
 - ...run multiple programs at once,
 - ...store huge amounts of data,
 - ...is interconnected via networks

Multiuser

Multitasking

Locally & remote

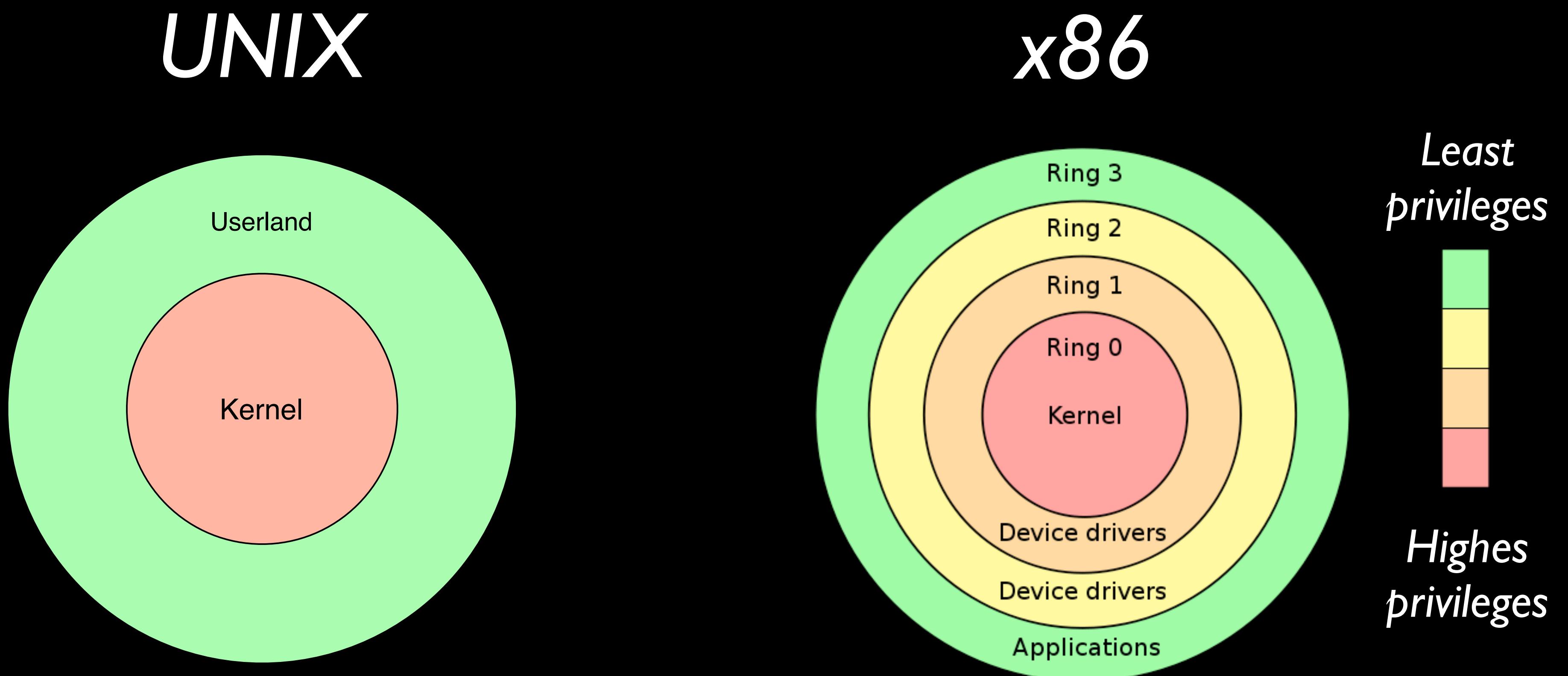
Multiple services
and clients

Intro - foundation: *Isolation*

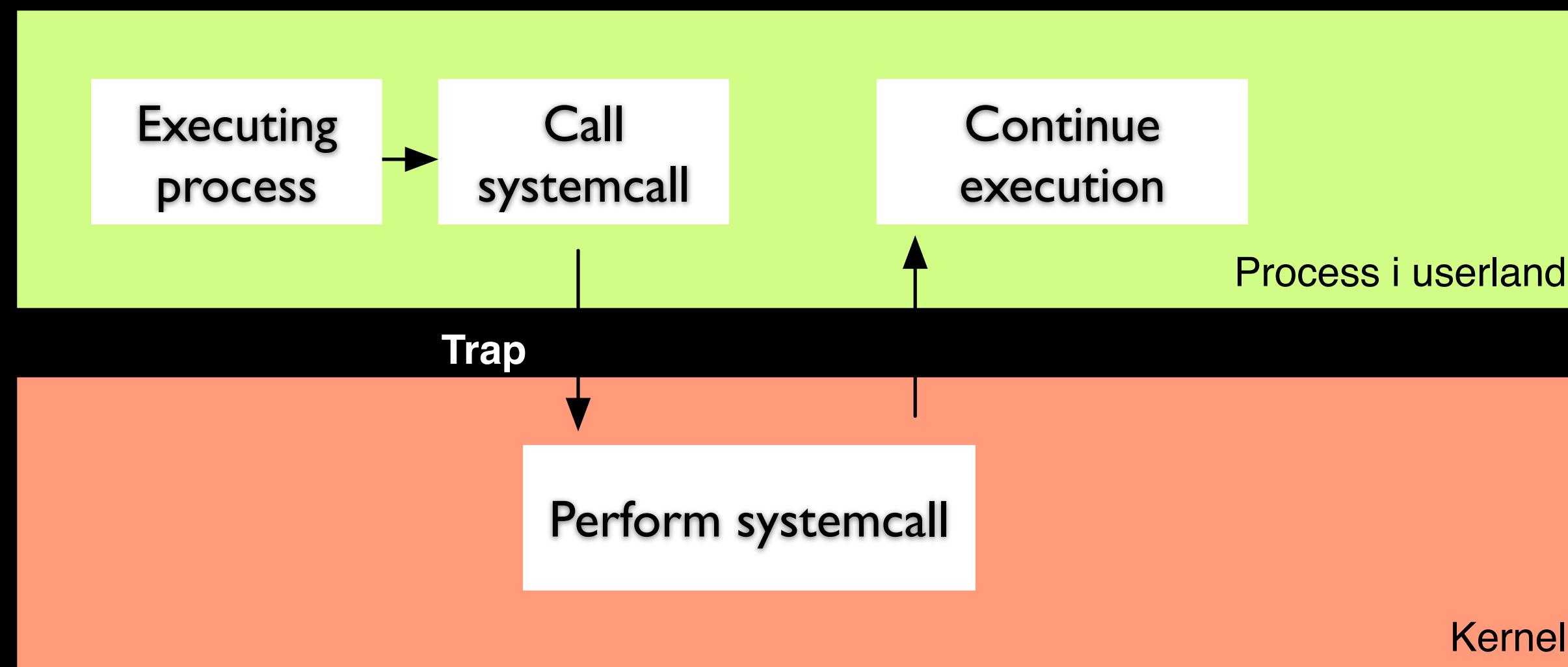
- Modern software is normally formed into **components, parts and layers in systems**
- This will create a software stack
 - Layers in the stack provides abstraction
 - Layers in the stack provides supporting frameworks, functionality and support mechanisms
 - Layers in the stack is one form of **isolation**

Intro - foundation: *Isolation*

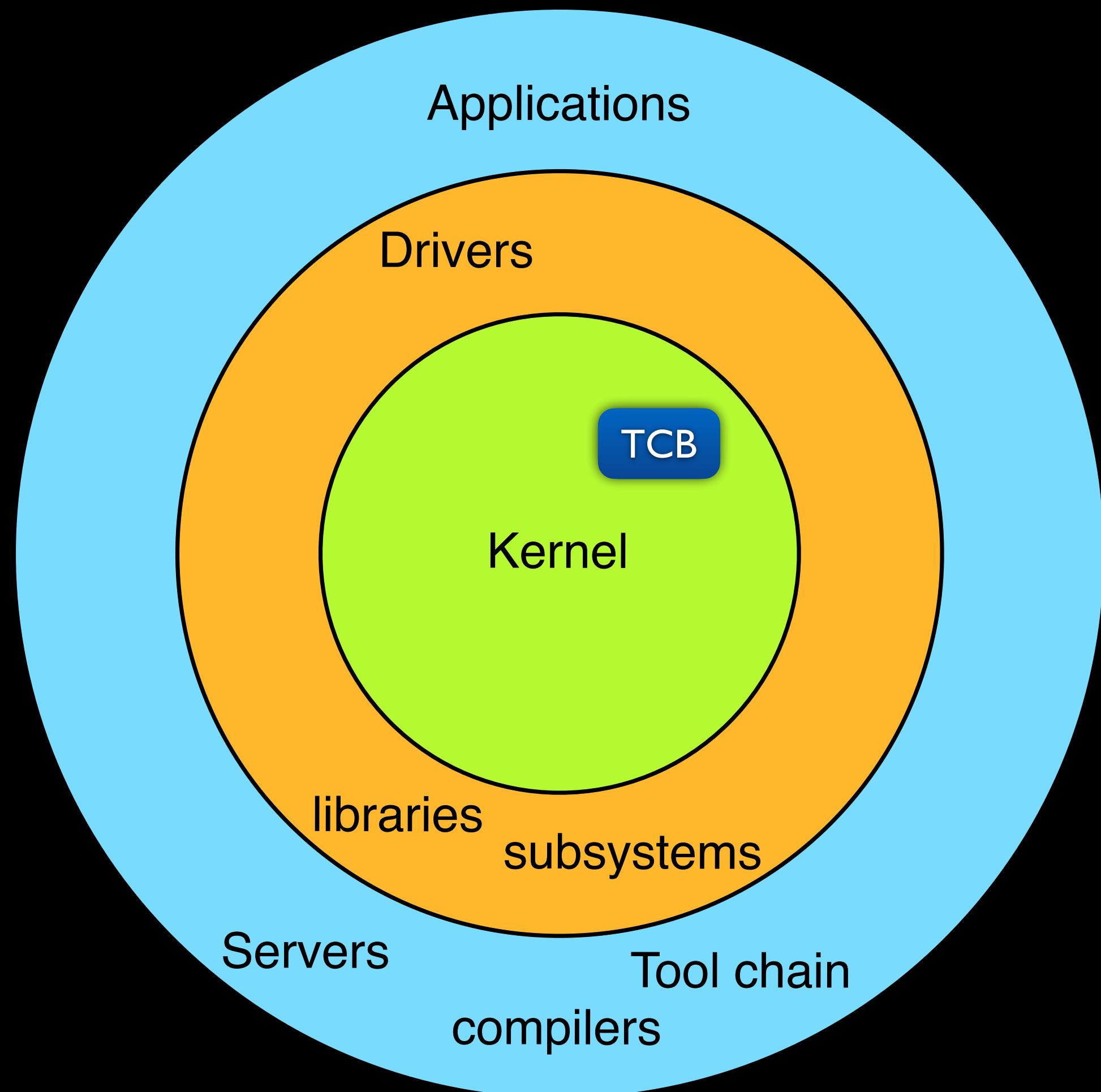
- Layers and **isolation** is a way to provide **separation**, which can be:
 - **Logical/Virtual**: A way to make it appear that execution environment have exclusive access
 - **Physical**: Different computers, different CPUs/cores, different disks
 - **Time based**: Separation of execution time/Timeshare
 - Based on security technologies, i.e. cryptographic algorithms and crypto mechanisms can also be used to compartmentalise and isolate information.

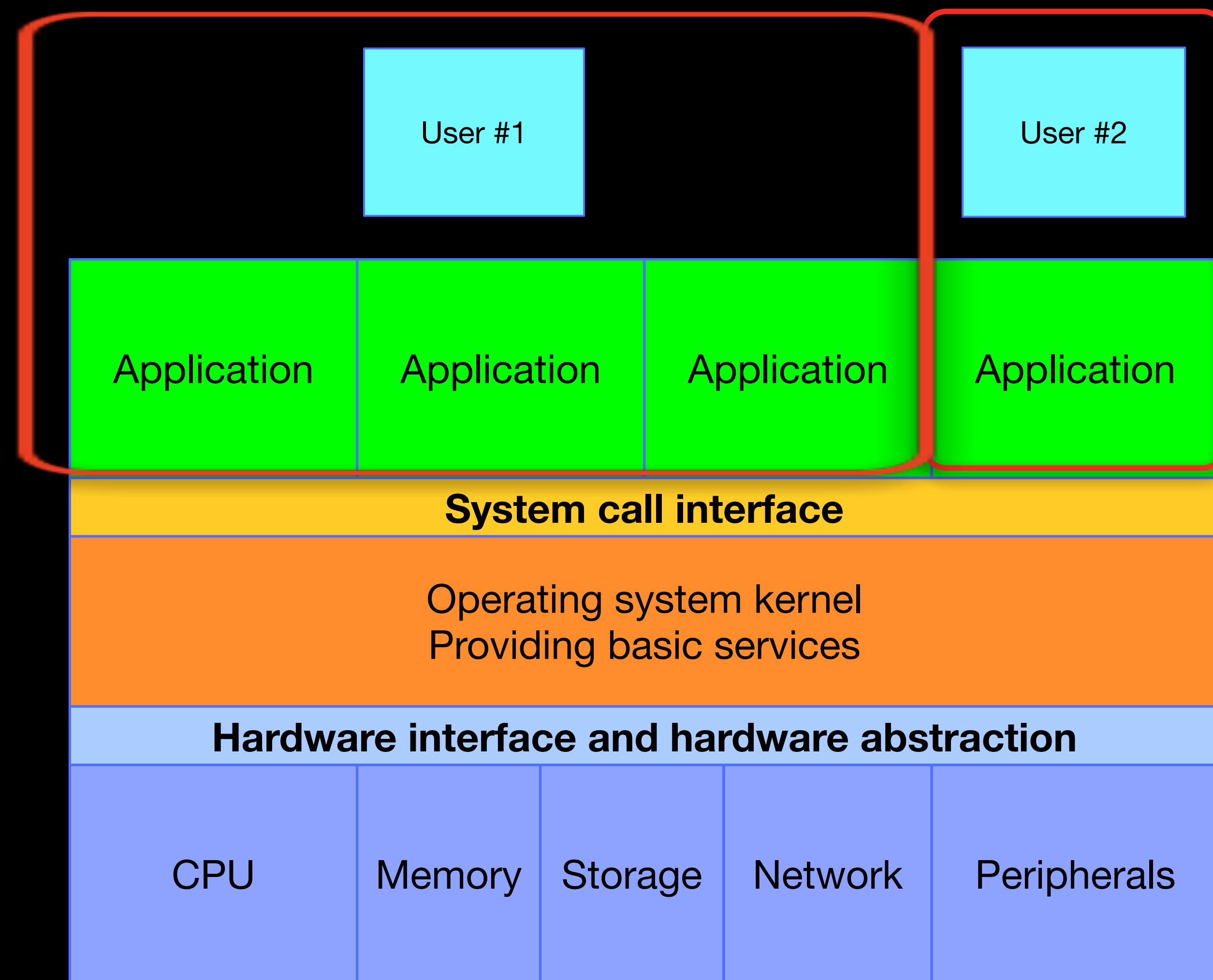

Intro - foundation: IAM

- This is to built-in security into the foundation of the systems - the operating system
 - To **identify** and **authorize** users of the system
 - To allow for an environment where necessary basic controls are in place
 - To prevent unauthorised access to OS resources


Capabilities and requirements

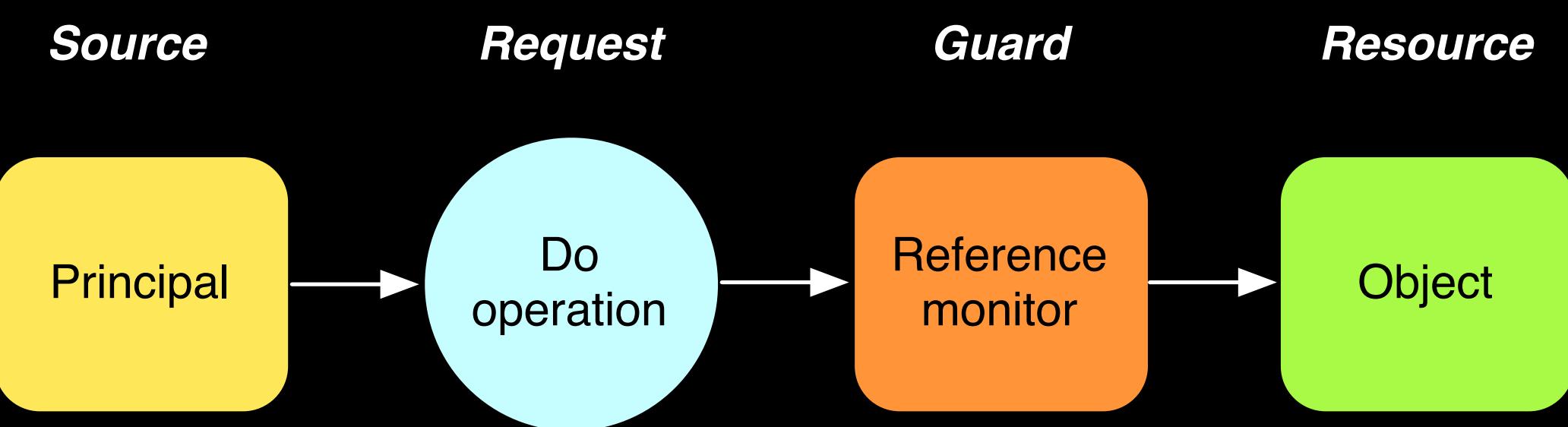
Need	Description	Example
Protect a system resource	<i>Prohibit malicious or unintentional access to system resources</i>	System tables, direct access to I/O-units, memory protection
Authorization checks for usage of system calls and system resources	<i>Provide controlled access to system, so that system maintain system integrity and provide continuous security to application and information</i>	reference monitor
Separation of resources	<i>Physical, Logical, temporal or cryptographical separation</i>	separation in running time


The classical *ring model*


Interaction between application and OS

Overview of operating system (I/2)

Overview of operating system (2/2)

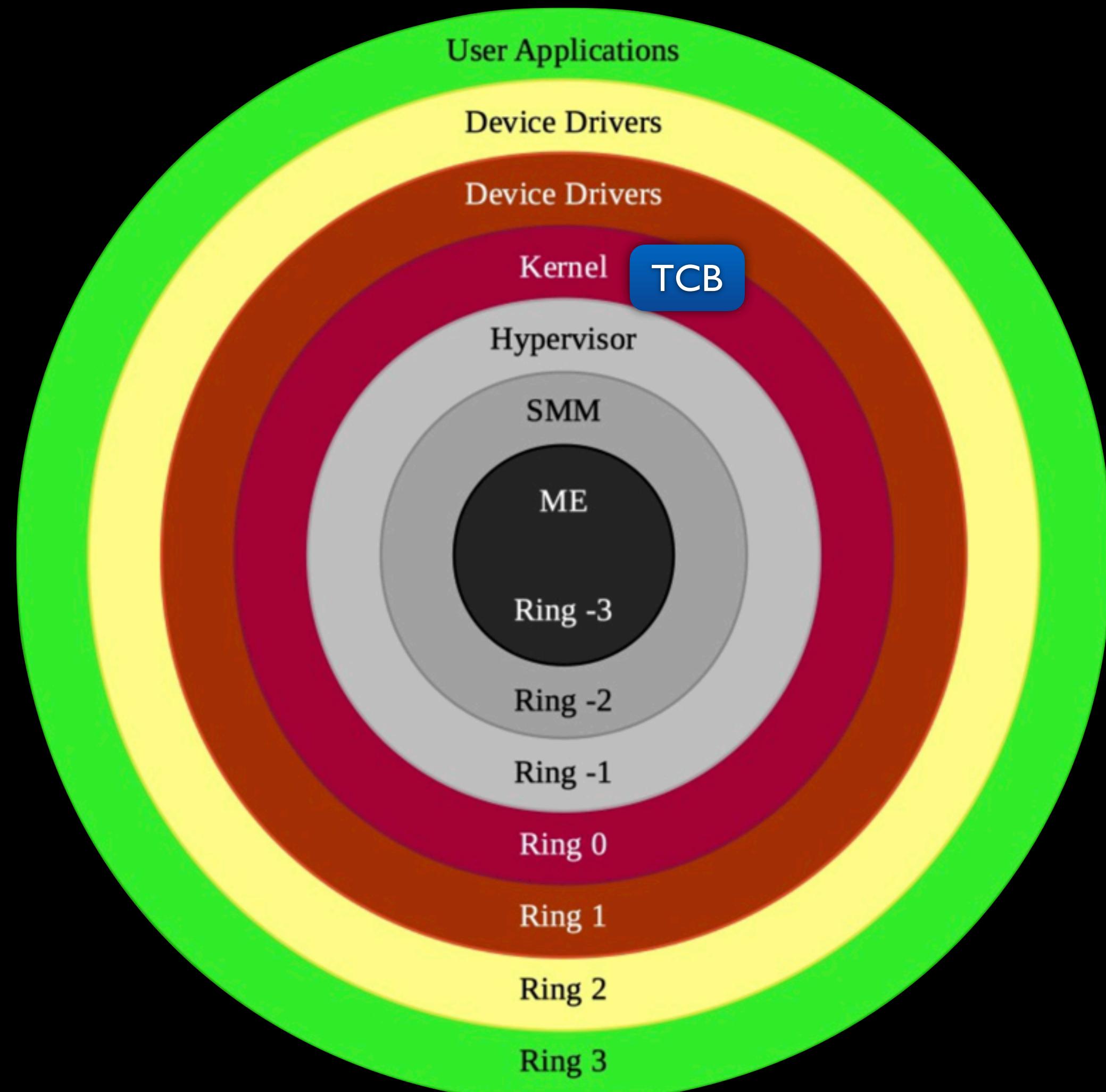


Some important concept

- A concept called *Trusted Computing Base*, or TCB
- It contain *all things in the trusted part* of the OS necessary to enforce the security policy
- Important that TCB is *small, clearly written, easy to see that it does not contain design or logical flaws, and that it is protected against alterations and tampering*

Some important concept

- Reference monitor



- A Reference Monitor is an **abstract security component** that enforces access control rules. It ensures that every access attempt to system resources complies with security policies.
- The TCB is the *entire collection of system components that enforce and maintain security, including the Reference Monitor*.

The classical *ring model*, updated!

Other rings

-1	Hypervisor	Allow guest OS "ring 0"
-2	System Management Mode (SMM)	APM/ACPI/TPM-support
-3	<i>Intel Management Engine / AMD Platform Security Processor</i>	Special software running in the Platform Controller Hub (PCH) processor

Problem with these pictures and concepts

- **Layering violation**
 - some software might skip a layer and call an underlaying layer directly and hence bypass controls
- In some scenarios attackers might *come an unexpected way*
 - Attacking from host operating system against guest operating systems in a virtual machine environment

Problem with these concepts

- You have a “hidden” processor on your computer
- Its functionality has never been publicly documented
- It appears to have been customized for certain TLA government agencies
- It has unlimited access to the main processor
- It has unlimited access to all memory
- It has unlimited access to all peripherals
- It has its own MAC and IP addresses
- It runs a web server
- It is always running
- You can’t turn it off
- You can’t disable it
- It has had multiple known exploitable vulnerabilities
- It is the single most privileged known element of an Intel Architecture processor chipset

Memory handling

- RAM memory is a central resource that in a controlled way must be shared and handled *between operating system, applications and other components*
- Modern computer systems have hardware support for memory protection, e.g. **MMU**
- OS support is required to use the hardware supported memory protection
- Modern hardware support can enforce several security features related to isolation, non-executable memory areas, etc

File system

- A file system is often a central component in a computer system w.r.t. security and protection
- Besides the actual *file content*, there is *meta data* that is of importance
 - File owner, dates of creation/change/access, access information, security labels, etc
- Manipulation of meta data can in some cases be more serious security breach than the manipulation of the file content itself. Or a combo of both can be misleading and hide the fact that a file has been altered

Local filesystem

File system	Description	Comment
FAT	<i>No access control</i>	Classic MS-DOS
NTFS	<i>Discretionary Access Control via ACL</i>	Advanced possibilities to make controls
UFS	<i>Discretionary Access Control, writing & program execution for owner, group, “others”</i>	Simple access controls

Network file systems

File system	Description	Comment
NFSv3	<i>Hostbaserad accesskontroll, uid</i>	Trivial to circumvent
NFSv4	<i>Secure RPC, KRB5a, KRB5p, KRB5i</i>	Require a Kerberos server, KDC a= authentication i=integrity = calculate MAC p= privacy = encrypt packet
SMB/CIFS	<i>KRB5a</i>	

Background and basics

Part 2: bugs and vulnerabilities

Intro - just the basic facts

- All software *is prone to bugs*
- Some bugs will have an impact that can have **security implications**
 - data leaks,
 - destruction of data,
 - local privilege escalations (**LPE**),
 - execution of remotely uploaded malicious code (**RCE**),
 - etc

Intro - just the basic facts

- Some bugs help to circumvent security mechanisms
- Some ***security designs*** are flawed, or build on *flawed assumptions*

Operating system security

- Security problems in the operating system can affect the integrity of the system itself
 - Someone else can control the system to their own liking - **pwnd!**
 - Bugs in OS kernel can affect system integrity
- Security problems with the operating system can, as a result, affect the security in *applications* and *subsystems* (databases, middle ware, etc)

General examples of threats and attacks

Wrong file permissions

Confidentiality

Crashdumps with credentials or crypto keys

Bypassed security checks

Manipulated system configuration

System integrity

Manipulated application
program binaries

Manipulated system binaries

Sensitive plaintext in RAM

fork bombs

SYN flood

malformed network packets

Availability

unintentional filling of disk space

intentional filling of disk space

Manipulated user files

Data integrity

Zapped system logs

Manipulated database content

Some concepts and terms

Memory
corruption bugs

Stack smashing

Stack overflow

Heap overflow

Time related bugs

Race conditions

*Time-of-Check to Time-of-Use
(TOCTTOU)*

File inclusion

File/object permissions

Directory traversal

Information
disclosure bugs

Some concepts and terms

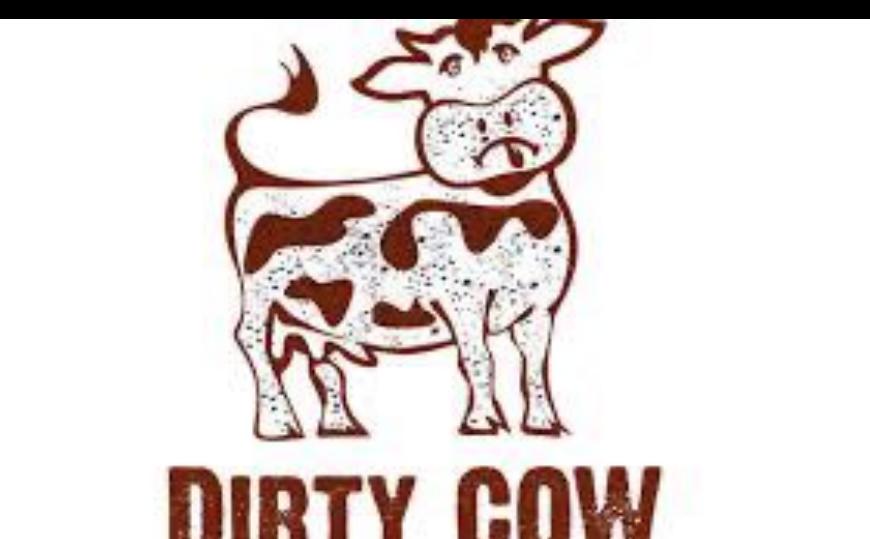
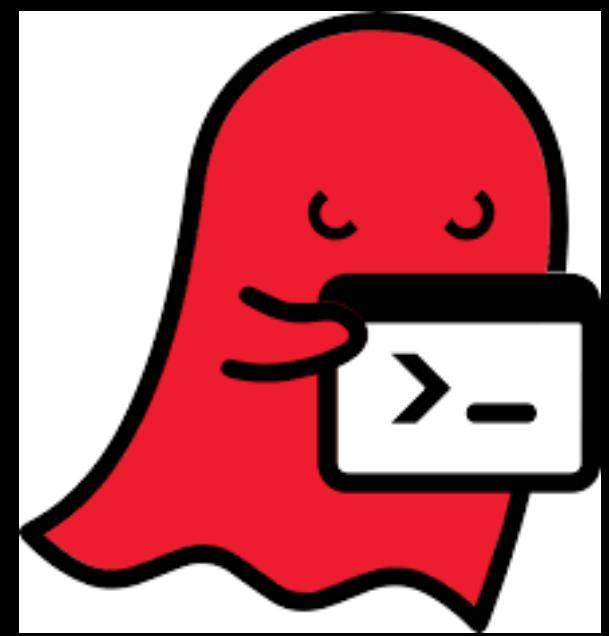
Vulnerability

vulnerability
*unknown to vendor &
no patch available*

Exploit

0day exploit
1day exploit/Nday
Foreverday exploit

vulnerability
*disclosed but not widely
patched*



*unpatchable
or unsupported
systems*

Intro - *the basics*

- Some bugs are undiscovered for some time, they lay latent
- Once discovered, they can be abused, if it is an **security vulnerability**, that can be **exploited**
- A discovered security bug, is sometime called a **0day**, until it is mitigated

Intro - the basics

- Nowdays bugs and vulnerabilities tend to get **names** (*heartbleed*, *ghost*, *shellshock*, etc) and **logos**
- Used by security companies for marketing their knowledge and brand

Some concepts and principles

- **Attack vector** - Different paths to reach an vulnerability. One path might be closed by a vendor patch, but another might still be there, if the root cause is not identified and fixed.
- **Attack surface** - exposed parts that an attacker can reach, i.e. all the different attack vectors
- **Reverse engineering (RE)** - To re-create the original design by observing the final result, in computer science - to re-create some source code by examining a binary.

Example of attacks

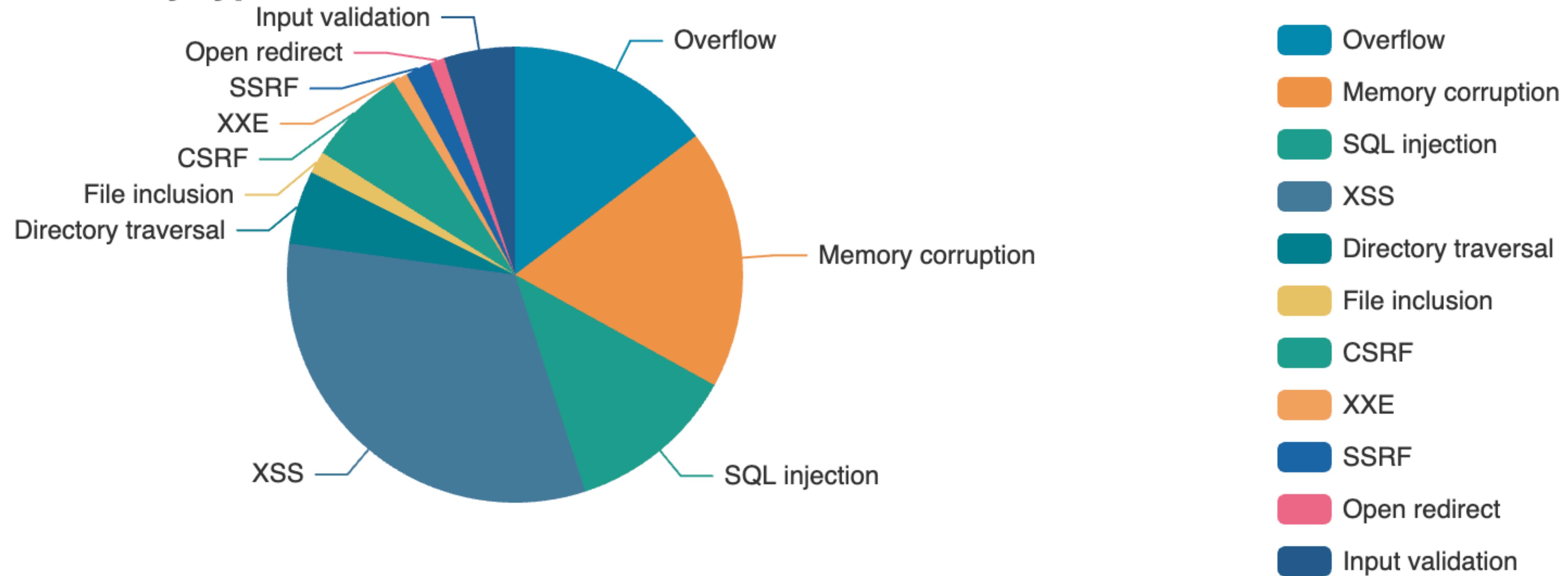
Attack method	Description	Synonyms and variants
Buffer overflow	<p>Attacks that allow an attacker to <u>deterministically alter the execution flow of a program by submitting crafted input to an application</u>. Executable code is written outside the boundaries of a memory buffer originally used for storing data. The executable parts is somehow made to execute, e.g. by manipulate return address to be used when a function call is finished.</p> <p>Real world examples: OpenBSD IPv6 mbuf's* remote kernel buffer overflow[1], windows kernel pool</p>	<p>Synonyms: memory corruption attack, Buffer overrun, Stack smashing,</p> <p>Variants: Heap smashing, format string bugs,</p>

Example of attacks

Attack method	Description	Examples
Backward compatibility + downgrade Attacks	<p>Attacks that allow an attacker to use</p> <ul style="list-style-type: none">• <i>an older version of a service, or</i>• <i>an old protocol, or</i>• <i>an older mode, or</i>• <i>call legacy code</i> <p>Sometime triggered by downgrade attack, a negotiation to use older variant</p>	Remote Desktop NTLMv1 XML encryption SSLv2, SSLv3, incl POODLE, FREAK Encryption modes Kerberos v4 in v5

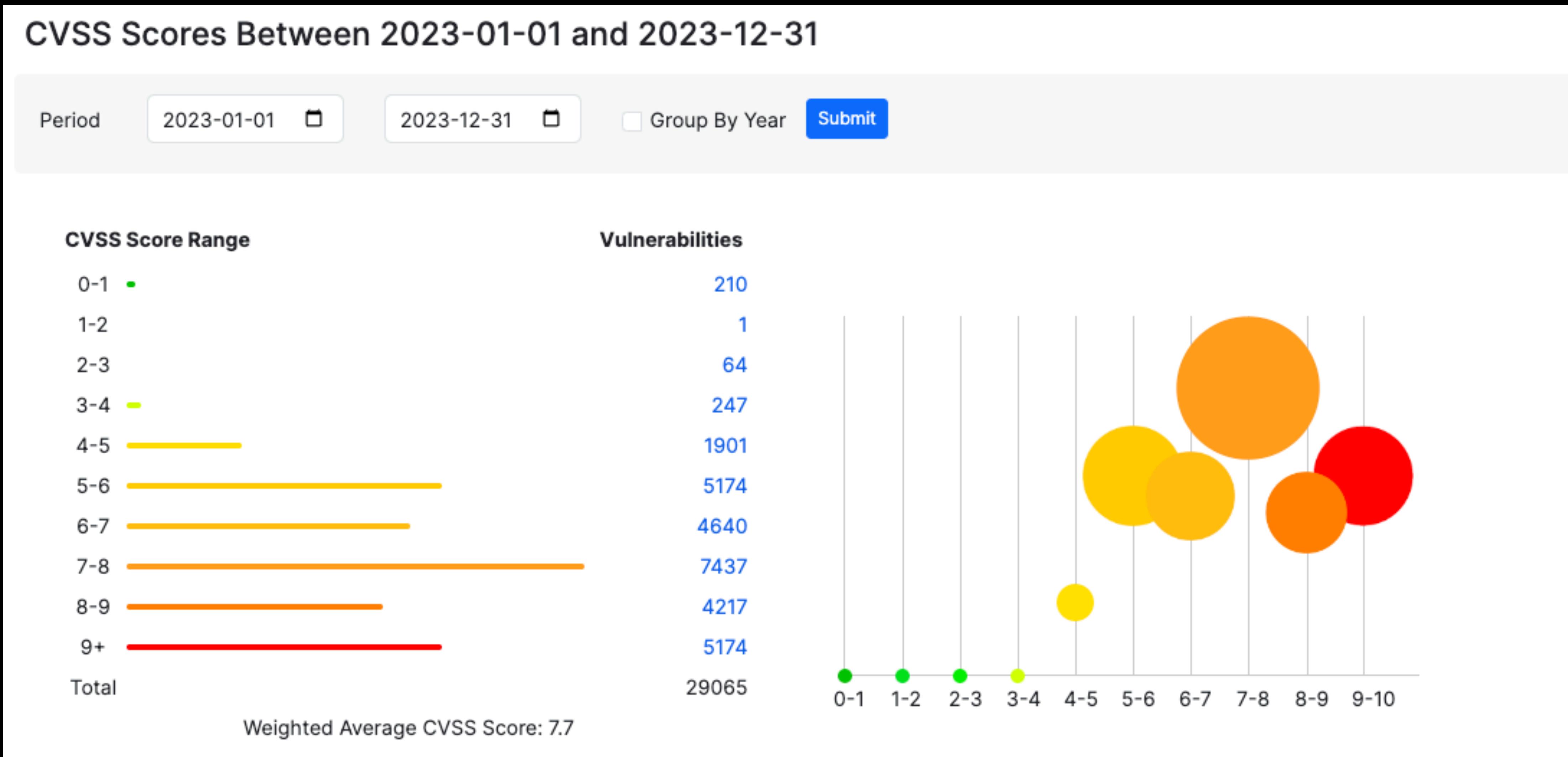
Intro - the basics

- Many vulnerabilities also gets "formal name", i.e. **CVE***, and a scoring **CVSS****
- e.g. CVE-2024-21762 (A out-of-bounds write in Fortinet **FortiOS**) with **CVSS score of 9.8**
- A CVE is assigned by a CNA, a *CVE numbering authority*
- All issued CVE is stored in central database
- Not all vulnerabilities gets an CVE
- Not all issued CVE numbers ends up being used in public vulnerability info

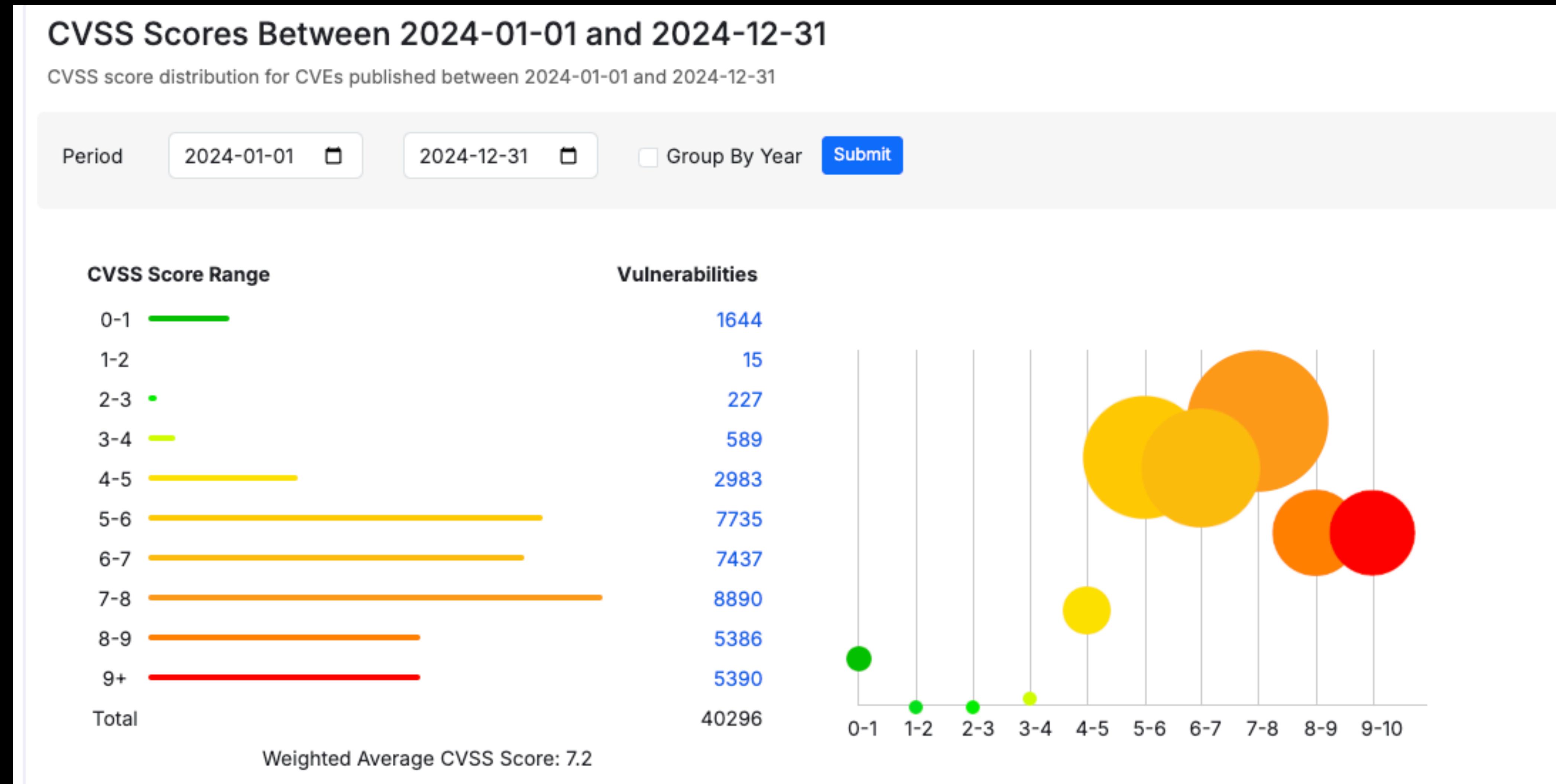

Vulnerabilities by type & year

Year	Overflow	Memory Corruption	Sql Injection	XSS	Directory Traversal	File Inclusion	CSRF	XXE	SSRF	Open Redirect	Input Validation
2016	418	1096	85	476	90	4	85	39	15	28	0
2017	2469	1539	505	1500	281	154	334	109	57	97	929
2018	2056	1722	503	2039	569	111	479	187	118	85	1208
2019	1196	2003	544	2387	485	125	559	136	103	121	893
2020	1216	1846	464	2199	435	107	414	119	130	100	806
2021	1655	2499	740	2723	546	89	520	126	187	133	666
2022	1781	2844	1761	3370	686	85	766	123	230	137	661
2023	1594	1992	2115	5100	742	108	1392	124	238	168	512
2024	1723	2355	2646	7434	919	243	1433	110	372	113	86
2025	2250	2894	3944	8736	1052	670	1949	115	558	166	0
2026	295	292	350	782	152	103	135	13	73	24	0
Total	16653	21082	13657	36746	5957	1799	8066	1201	2081	1172	5761

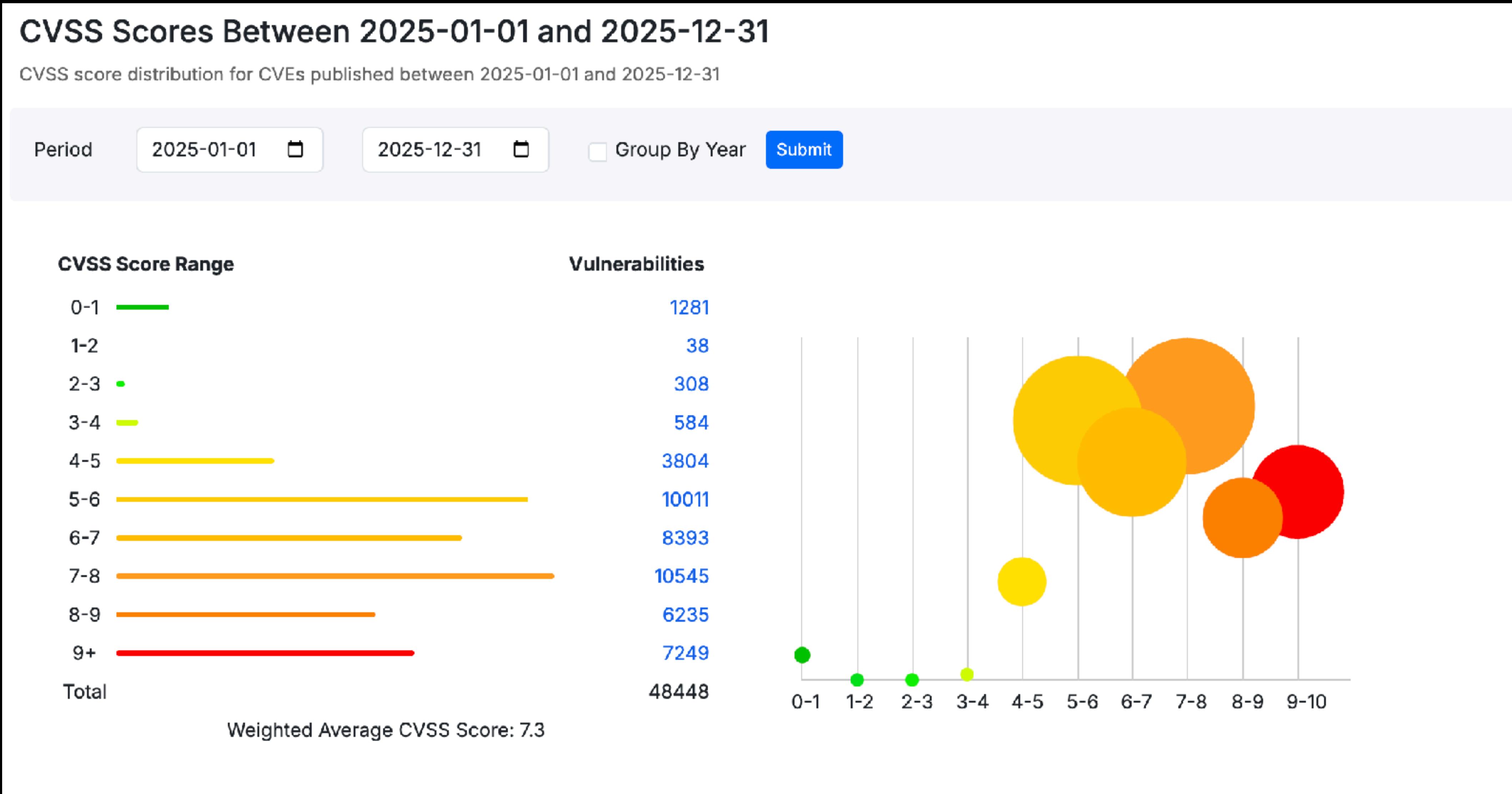
Vulnerabilities by type



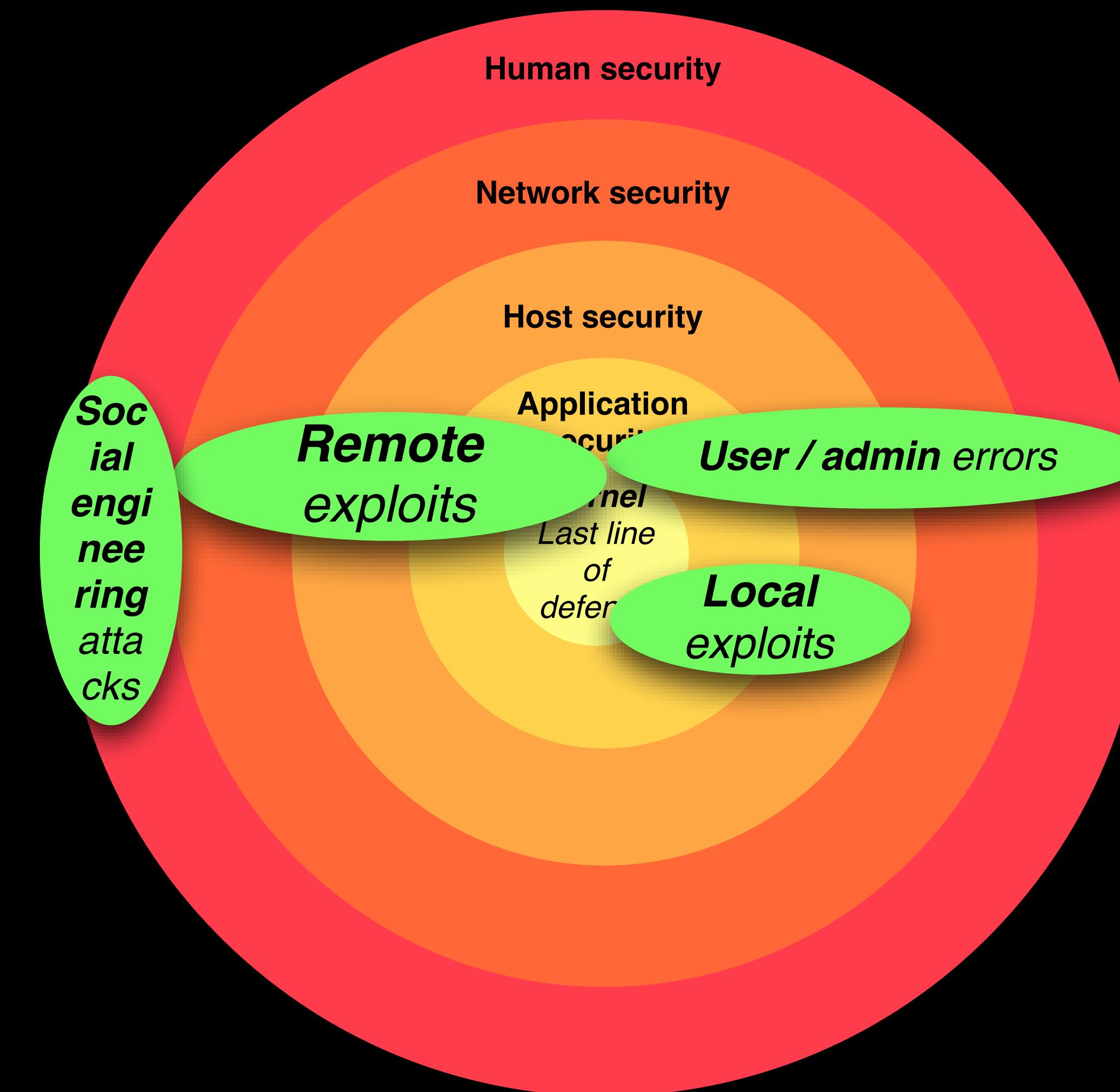
Vulnerabilities by impact types


Year	Code Execution	Bypass	Privilege Escalation	Denial of Service	Information Leak
2016	1239	1	149	2050	102
2017	1870	842	1011	3372	1378
2018	1728	643	827	2207	1395
2019	1556	655	899	1697	1313
2020	1691	795	1366	1677	1089
2021	2087	774	1087	2297	911
2022	2067	820	1404	2437	1112
2023	2580	859	1324	2560	1428
2024	3966	633	1063	2470	932
2025	3039	635	1019	2528	741
2026	485	101	104	482	95
Total	22308	5755	10253	23777	10496

Vulnerabilities that allow attackers to gain
information published in 2024


Intro - the basics

Intro - the basics



Intro - the basics

More on vulnerabilities and attacks

Where do attacks occur?

The classical *ring model*, updated!

CVE-2022-40261

HIGH

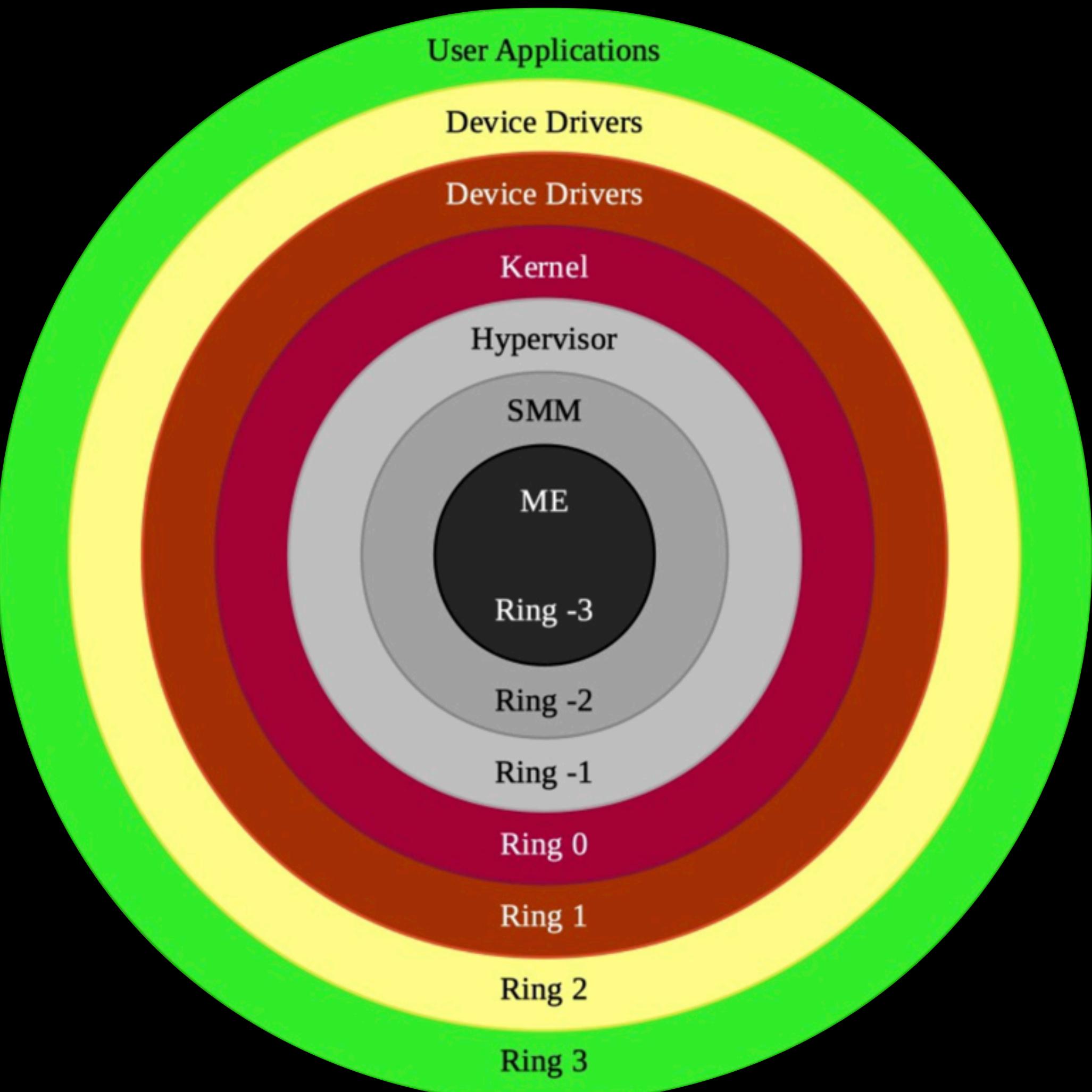
Information CPEs Plugins

Description

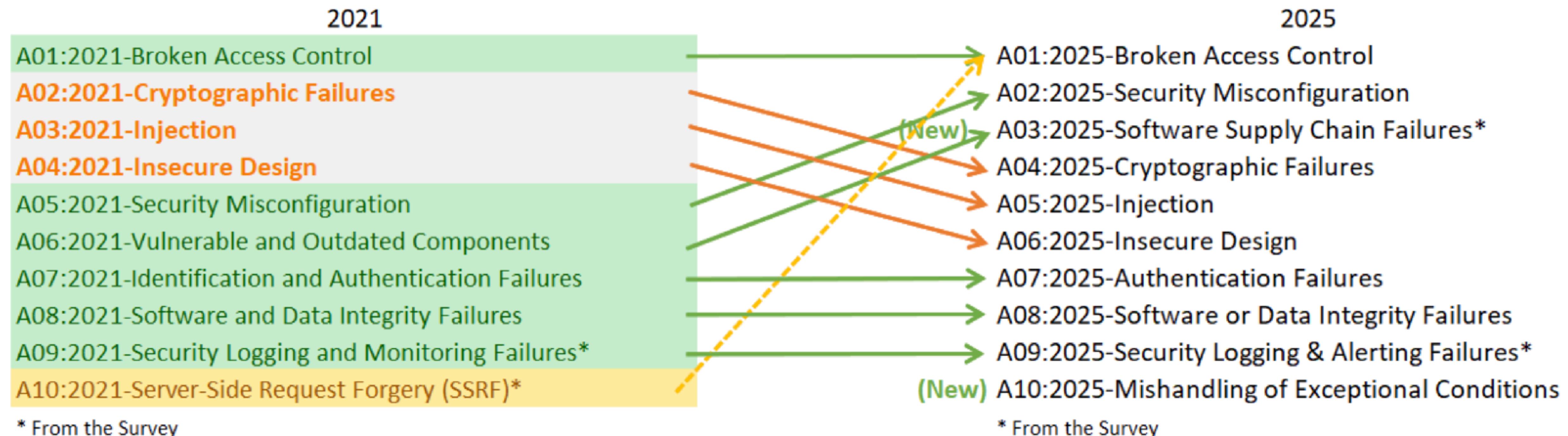
An attacker can exploit this vulnerability to elevate privileges from ring 0 to ring -2, execute arbitrary code in System Management Mode – an environment more privileged than operating system (OS) and completely isolated from it. Running arbitrary code in SMM additionally bypasses SMM-based SPI flash protections against modifications, which can help an attacker to install a firmware backdoor/implant into BIOS. Such a malicious firmware code in BIOS could persist across operating system re-installs. Additionally, this vulnerability potentially could be used by malicious actors to bypass security mechanisms provided by UEFI firmware (for example, Secure Boot and some types of memory isolation for hypervisors). This issue affects: Module name: OverClockSmil-Handler SHA256: a204699576e1a48ce915d9d9423380c8e4c197003baf9d17e6504f0265f3039c Module GUID: 4698C2BD-A903-410E-AD1F-5EEF3A1AE422

Details

Source: Mitre, NVD

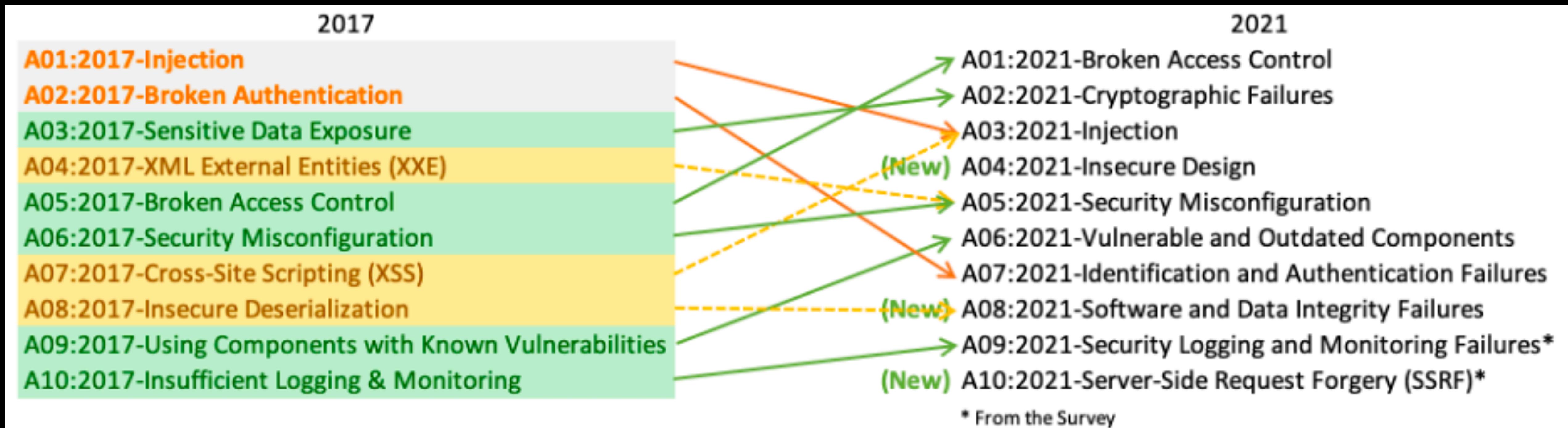

Published: 2022-09-20

CVSS v3


Base Score: 8.2

Vector: CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H

Severity: High



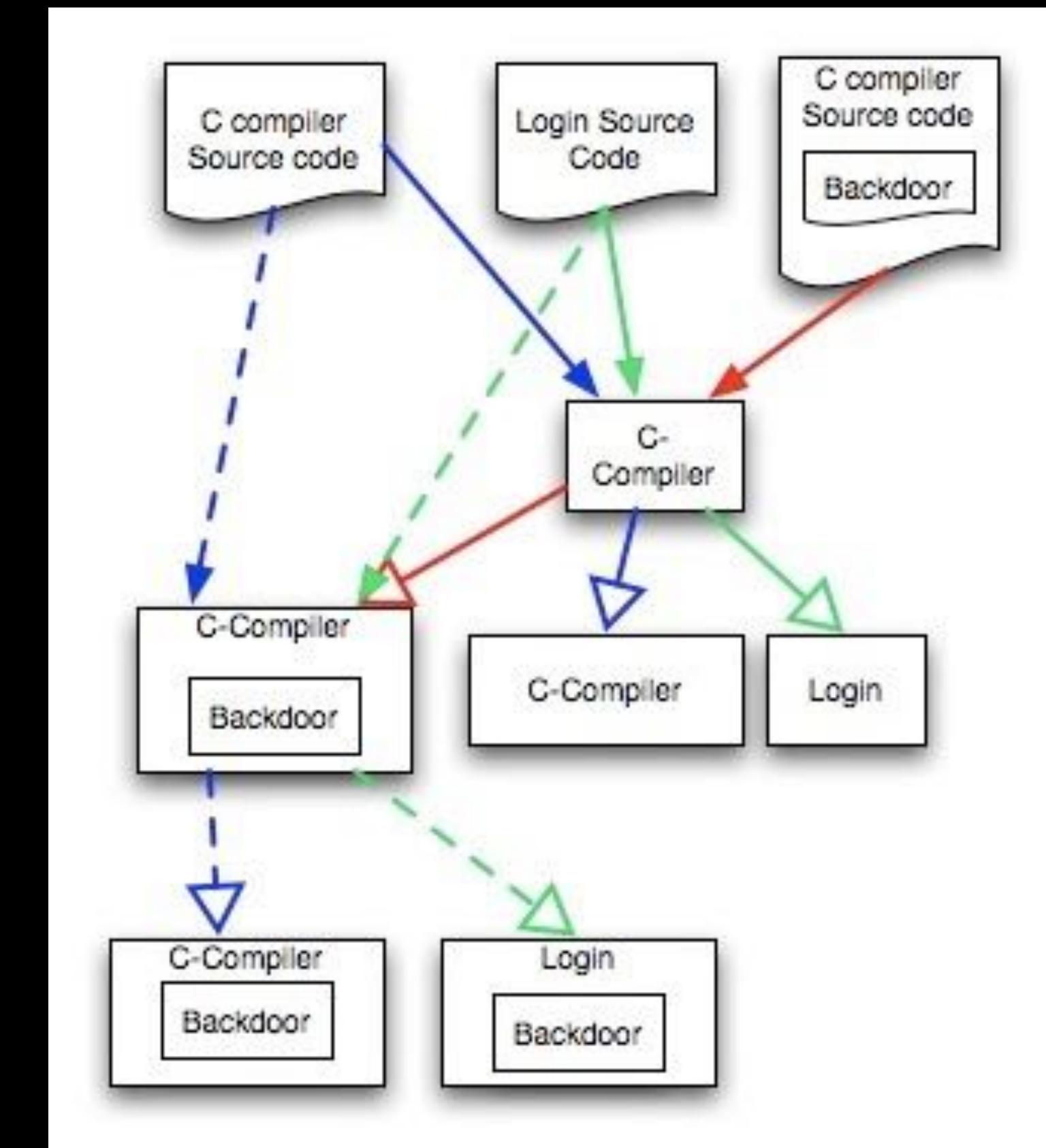
Most common attacks?

OWASP top-10 2025 list

Most common attacks?

OWASP top-10 list

Reconnaissance 10 techniques	Resource Development 7 techniques	Initial Access 9 techniques	Execution 12 techniques	Persistence 19 techniques	Privilege Escalation 13 techniques	Defense Evasion 40 techniques
■ Active Scanning (2)	■ Acquire Infrastructure (6)	Drive-by Compromise	■ Command and Scripting Interpreter (8)	■ Account Manipulation (4)	■ Abuse Elevation Control Mechanism (4)	■ Abuse Elevation Control Mechanism (4)
■ Gather Victim Host Information (4)	■ Compromise Accounts (2)	Exploit Public-Facing Application	Container Administration Command	BITS Jobs	■ Access Token Manipulation (5)	■ Access Token Manipulation (5)
■ Gather Victim Identity Information (3)	■ Compromise Infrastructure (6)	External Remote Services	Deploy Container	■ Boot or Logon Autostart Execution (16)	■ Boot or Logon Autostart Execution (15)	BITS Jobs
■ Gather Victim Network Information (2)	■ Develop Capabilities (4)	Hardware Additions	Exploitation for Client Execution	■ Boot or Logon Initialization Scripts (5)	■ Boot or Logon Initialization Scripts (5)	Build Image on Host
■ Gather Victim Org Information (4)	■ Establish Accounts (2)	■ Phishing (3)	■ Inter-Process Communication (2)	■ Browser Extensions	■ Boot or Logon Initialization Scripts (5)	Deobfuscate/Decode Files or Information
■ Phishing for Information (3)	■ Obtain Capabilities (6)	Replication Through Removable Media	Native API	■ Compromise Client Software Binary	■ Create or Modify System Process (4)	Deploy Container
■ Search Closed Sources (2)	■ Stage Capabilities (5)	■ Supply Chain Compromise (3)	■ Scheduled Task/Job (5)	■ Create Account (3)	■ Domain Policy Modification (2)	Direct Volume Access
■ Search Open Technical Databases (5)		Trusted Relationship	Shared Modules	■ Create or Modify System Process (4)	■ Escape to Host	■ Domain Policy Modification (2)
■ Search Open Websites/Domains (2)		■ Valid Accounts (4)	Software Deployment Tools	■ Event Triggered Execution (15)	■ Event Triggered Execution (15)	■ Execution Guardrails (1)
Search Victim-Owned Websites			■ System Services (2)	■ External Remote Services	■ Exploitation for Privilege Escalation	■ Exploitation for Defense Evasion
			■ User Execution (3)	■ Hijack Execution Flow (11)	■ Hijack Execution Flow (11)	■ File and Directory Permissions Modification (2)
			Windows Management Instrumentation	■ Implant Internal Image	■ Process Injection (11)	■ Hide Artifacts (9)
				■ Modify Authentication Process (4)	■ Scheduled Task/Job (6)	■ Hijack Execution Flow (11)
				■ Office Application Startup (6)	■ Valid Accounts (4)	■ Impair Defenses (9)
				■ Pre-OS Boot (5)		■ Indicator Removal on Host (5)
				■ Scheduled Task/Job (5)		Indirect Command Execution
				■ Server Software Component (4)		■ Masquerading (7)
				■ Traffic Signaling (1)		■ Modify Authentication Process (4)
				■ Valid Accounts (4)		■ Modify Cloud Compute Infrastructure (1)
						Modify Registry
						■ Modify System Image (2)
						■ Network Boundary Bridging (1)
						■ Obfuscated Files or Information (6)
						■ Pre-OS Boot (5)
						■ Process Injection (11)
						Reflective Code Loading
						Rogue Domain Controller
						Rootkit
						■ Signed Binary Proxy Execution (13)
						■ Signed Script Proxy Execution (1)
						■ Subvert Trust Controls (6)
						Template Injection
						■ Traffic Signaling (1)
						■ Trusted Developer Utilities Proxy Execution (1)
						Unused/Unsupported Cloud Regions
						■ Use Alternate Authentication Material (4)
						■ Valid Accounts (4)
						■ Virtualization/Sandbox Evasion (3)
						■ Weaken Encryption (2)
						XSL Script Processing


MITRE ATT&CK framework

Credential Access 15 techniques	Discovery 29 techniques	Lateral Movement 9 techniques	Collection 17 techniques	Command and Control 16 techniques	Exfiltration 9 techniques	Impact 13 techniques
II Adversary-in-the-Middle (2)	II Account Discovery (4)	Exploitation of Remote Services	II Adversary-in-the-Middle (2)	II Application Layer Protocol (4)	II Automated Exfiltration (5)	Account Access Removal
II Brute Force (9)	Application Window Discovery	Internal Spearphishing	II Archive Collected Data (3)	Communication Through Removable Media	Data Transfer Size Limits	Data Destruction
Credentials from Password Stores (5)	Browser Bookmark Discovery	Lateral Tool Transfer	Audio Capture	II Data Encoding (2)	Exfiltration Over Alternative Protocol (3)	Data Encrypted for Impact
Exploitation for Credential Access	Cloud Infrastructure Discovery	II Remote Service Session Hijacking (2)	Automated Collection	II Data Obfuscation (3)	Exfiltration Over C2 Channel	Data Manipulation (3)
Forced Authentication	Cloud Service Dashboard	II Remote Services (6)	Browser Session Hijacking	II Dynamic Resolution (3)	II Exfiltration Over Other Network Medium (1)	Defacement (2)
II Forge Web Credentials (2)	Cloud Service Discovery	Replication Through Removable Media	Clipboard Data	II Encrypted Channel (2)	Exfiltration Over Physical Medium (1)	Disk Wipe (2)
II Input Capture (4)	Cloud Storage Object Discovery	Software Deployment Tools	Data from Cloud Storage Object	Fallback Channels	II Exfiltration Over Web Service (2)	Endpoint Denial of Service (4)
II Modify Authentication Process (4)	Container and Resource Discovery	Domain Trust Discovery	II Data from Configuration Repository (2)	Ingress Tool Transfer	Scheduled Transfer	Firmware Corruption
Network Sniffing	File and Directory Discovery	File and Directory Discovery	II Data from Information Repositories (3)	Multi-Stage Channels	Transfer Data to Cloud Account	Inhibit System Recovery
II OS Credential Dumping (8)	Group Policy Discovery	Group Policy Discovery	Data from Local System	Non-Application Layer Protocol	II Network Denial of Service (2)	Network Denial of Service (2)
Steal Application Access Token	Network Service Scanning	Network Service Scanning	Data from Network Shared Drive	Non-Standard Port	Resource Hijacking	Resource Stop
II Steal or Forge Kerberos Tickets (4)	Network Share Discovery	Network Share Discovery	Data from Removable Media	Protocol Tunneling	System Shutdown/Reboot	System Shutdown/Reboot
Steal Web Session Cookie	Network Sniffing	Network Sniffing	II Data Staged (2)	II Proxy (4)		
Two-Factor Authentication Interception	Password Policy Discovery	Password Policy Discovery	II Email Collection (3)	Remote Access Software		
II Unsecured Credentials (7)	Peripheral Device Discovery	Peripheral Device Discovery	II Input Capture (2)	II Traffic Signaling (1)		
	II Permission Groups Discovery (3)		Screen Capture	II Web Service (3)		
	Process Discovery		Video Capture			
	Query Registry					
	Remote System Discovery					
	II Software Discovery (1)					
	System Information Discovery					
	II System Location Discovery (1)					
	II System Network Configuration Discovery (1)					
	System Network Connections Discovery					
	System Owner/User Discovery					
	System Service Discovery					
	System Time Discovery					
	II Virtualization/Sandbox Evasion (3)					

MITRE ATT&CK framework

A classic attack

- Ken Thompson's trojanized c compiler
 - Modify the source code to the compiler to recognize if it recompile itself or the login program - insert backdoor in login
 - recompile compiler
 - remove source code changes and recompile the compiler
 - recompile the login program with the modified compiler
- No visible signs for humans or tools to see the backdoor in source code. Calls for binary inspection or decompilation.

Attacks and counter measures

- *Chaining of attacks* - combining a number of exploits to achieve goal
 - finding and abusing a number of different vulnerabilities might allow an attacker to achieve goals not possible with just one potent exploit
 - *Code execution in gadgets (ROP) + sandbox escape + elevation of privileges + execution of privileged code*

Example of attacks

Remember that there is a number of ways that all OS security controls can be bypassed,

***especially if the operating system
is not running***

- a very good side-channel attack ;-)

How do you create
security in the OS?

How do you create security in the OS?

- Follow well-known design principles
- Use well-known pattern
- Use ordinary developer best-practices
- Decide to use principles, e.g. secure-by-default
- Use programming languages that support secure practices
- Have the design and implementation evaluated and certified

Principles for secure design*

Economy of mechanism	Keep the design as <i>simple</i> and small as possible
Fail-safe defaults	Base access decisions on permission rather than exclusion
Complete mediation	<i>Every access to every object</i> must be checked for authority
Open design	The design should not be secret
Separation of privilege	technique in which a program is divided into parts which are limited to the specific privileges they require in order to perform a specific task
Least privilege	Every program and every user of the system should operate using the least set of privileges necessary to complete the job
Least common mechanism	Minimize the amount of mechanism common to more than one user and depended on by all users
Psychological acceptability	It is essential that the human interface be designed for ease of use, so that users routinely and automatically apply the protection mechanisms correctly

Comparing security in Operating systems (1/6)

- When in time was the system developed?
 - What was the state-of-the-art at that time?
 - What trends were currently in fashion?
 - What languages was available for creating the operating system?

OS	Developed	Released
Unix	1969	1971
Mach Kernel	1985	1986
Windows NT	1988	1993
Linux	1991	1991
MacOS	Late 1990's	2001
iOS	2005-07	2007
Android	2003	2008

Comparing security in Operating systems (2/6)

- In what language is an operating system developed?
 - **Unix**: assembler (1969), C (1973)
 - **Windows**: C/C++, C#&.NET
 - **Linux**: C/C++/asm, Python/bash/perl, **Rust** (2022-)
 - **MacOS X/iOS**: C/C++/Objective-C (1999–2010), **Swift** (2014-)
 - **Android**: C/C++/Java (2008–2016), Kotlin (2014-), **Rust** (2020-)

Comparing security in Operating systems (3/6)

- Development methodologies
 - Open Source or Closed Source?
 - What support do one use to ensure that security is *built into the product?*
 - How does one ensure that implementation is a correct representation of the design, that is a correct interpretation of the analysis?

*"Given enough eyeballs, all
bugs are shallow"*

- Linus' Law

Comparing security in Operating systems (4/6)

Source Lines Of Code - SLOC

Year	OS	SLOC in millions
1993	Windows NT 3.1	4-5
1994	Windows NT	3.5 7-8
1996	Windows NT 4.0	11-12
2000	Windows 2000	more than 29
2001	Windows XP	40-45
2003	Windows Server 2003	50
2007	Windows vista	50
2015	Windows 10	40-60
2021	Windows 11	50-100

Year	OS	SLOC*
2000	Debian 2.2 (Potato)	55-59
2002	Debian 3.0 (Woody)	104
2005	Debian 3.1 (Sarge)	215
2007	Debian 4.0 (Etch)	283
2009	Debian 5.0 (Lenny)	
2013	Debian 7.0 (Wheezy)	419
2023	Debian 12 (bookworm)	1,341
2005	Mac OS X 10.4	86

Year	OS	SLOC*
1991	Linux 0.0.1	10,239 lines
1994	Linux 1.0	176,250 lines
2003	Linux kernel 2.6.0	5,2
2005	Linux kernel 2.6.11	6.6
2009	Linux kernel 2.6.29	11.0
2009	Linux kernel 2.6.32	12.6
2011	Linux kernel 3.0	14.6
2018	Linux kernel 4.X	25
2020	Linux kernel 5.12	28.8
2023	Linux kernel 6.5-rc5	~36
2025	Linux kernel 6.14-rc1	>40

But really, *what good is this comparison?*

Write more code = get higher salary?

Manage a 200K-SLOC project is *cooler* than a 5K-SLOC?

More code = more bugs?

Yes, more code is often more bugs

More code = more *security checks* and *advanced concepts* like
crypto, resillient failure checking built into everything?

But certainly, complexity is considered **bad** and **evil** in the context of security.

There is often a relation between complexity, size of program and bugs

Code Quality Level	Bugs per 1,000 SLOC (Defect Density)
Typical commercial software	10 - 50 bugs
Well-tested open-source software	1 - 5 bugs
Mission-critical software (NASA, avionics, medical, etc.)	0.1 - 1 bugs
High-reliability software (e.g., space systems, nuclear control)	< 0.1 bugs

There is often a relation between complexity, size of program and bugs

Comparing security in Operating systems (6/6)

- What can one gain by having formal certification of operating systems, subsystems or application
- Trusted Computer System Evaluation Criteria (TCSEC), Common Criteria (CC, ISO/IEC 15408), etc
- More a theoretical exercise than of any real value?

General example of control principles

Security controls	Description	Example	Where?
Encryption	<i>Protection against eavesdropping or unauthorized access</i>	network traffic, file content, disk partitions, memory pages, swap files/page area	OpenSSL, IPSec, SSH, OS kernel
Electronic signatures	<i>Protection against changes or unauthorized modifications by third parties,</i>	network traffic, file content, disk partitions	OpenSSL, IPSec, SSH, OS kernel
Cryptographically strong hash values	<i>Protection against unauthorized changes, detect errors or changes</i>	Saved passwords, file content,	Password file, user database, checksums on files

General example of control principles

Security controls	Description	Example	Where?
Random numbers	<i>Make a resource non-deterministic</i>	File names, process ID's, port numbers, session keys, session id's, transaction numbers, DNS query ID's, execution time & timing	getrandom() /dev/urandom
Constant numbers	<i>Make a resource non-deterministic</i>	execution time, timing of events	Crypto code to prevent side channel attacks

General example of control principles

Security controls	Description	Example
Compiler generated airbag - canary	<i>Make sure buffer overflows dont get undetected</i>	ProPolice, VisualStudio /GS
ASLR	<i>Randomize addresses used by applications. Make sure its hard to write code that knows of addresses. Where did that lib go?</i>	Android >4.0, iOS > 4.3, Windows >Vista, OpenBSD/NetBSD, Linux >2.6.12, MacOSX >10.5, Solaris >11.1, etc
KASLR	<i>Randomize addresses used by kernel</i>	Windows Vista, NetBSD, Linux >3.14, MacOSX 10.8, Android 11, etc

General example of control principles

Security controls	Description	Example
DEP, NX, W^X	<i>Make sure memory is not executable</i>	IE on Windows Vista, Android >2.3, FreeBSD > 5.3, OpenBSD, Linux >2.6.8, MacOSX >10.5, etc
MTE	<i>Memory Tagging Extension</i>	Using ARM architecture feature to better protect against memory safety violations

General example of control principles

Security controls	Description	Example
Secure boot chain / Verified boot	<i>Make system startup sequence is secure</i>	Make sure that each step of boot is cryptographically signed to ensure code integrity, e.g. BIOS vs UEFI
Secure pairing	<i>Make sure to connect to peripherals and resources in a secure way</i>	Using bluetooth to connect to headset,

General example of control principles

Security controls	Description	Example
Scrubing, zeroing	<i>Make sure that old data areas are cleaned before usage or returned to system</i>	memory, file systems, VM system
Logs, audit trails	<i>Traces, error messages and dumps from systems and applications</i>	Windows Eventlog, Syslog, audit, BSM

Attacks and counter measures

Hijacking JIT compilers

ROP attacks

Address Space Layout
Randomization (ASLR)

No-executable
(NX,W^X) stacks

Data Execution
Prevention (DEP)

More advanced buffer
overflows, defeating canary

Stack canaries
Buffer overflow/memory
corruption attacks

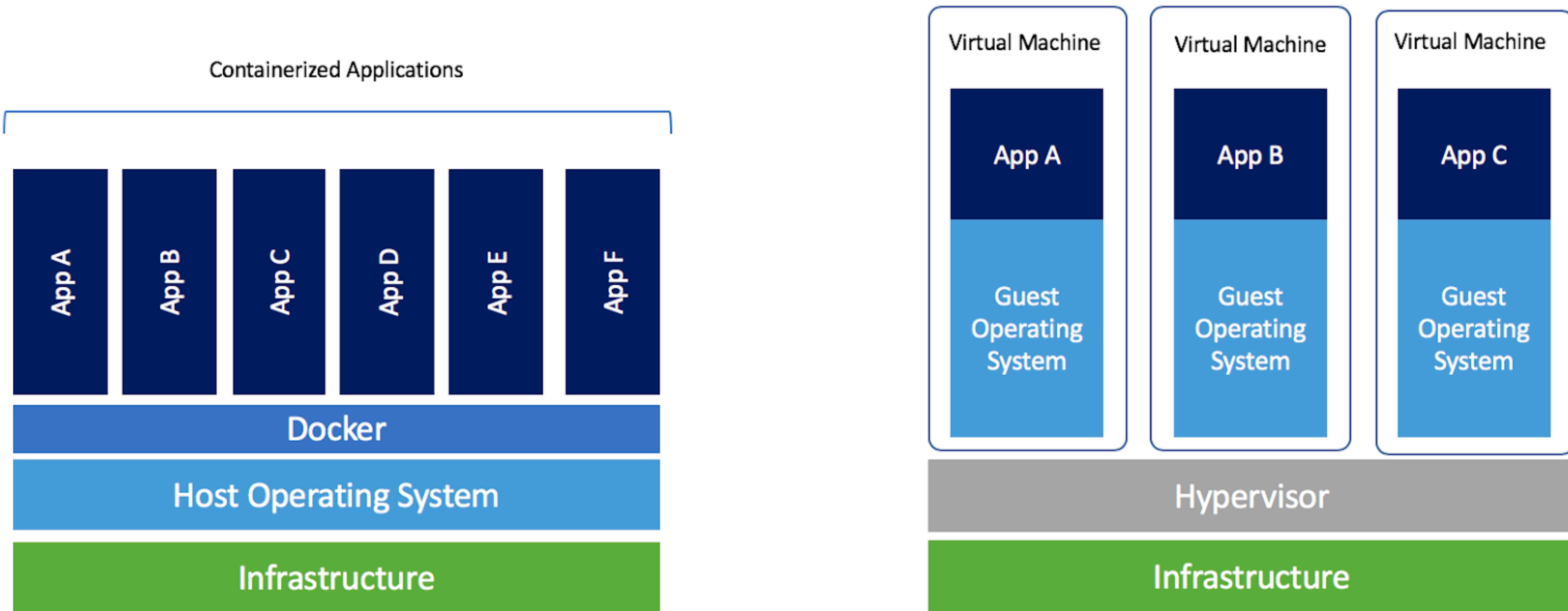
Note - several of these counter
measures does not work for
protection **within** the kernel

Virtualization and isolation

sandboxes, containers, hypervisors, etc

Sandboxing

- Various types of OS supported or application supported **sandboxing** is good as a way to get defense-in-depth
- Create **temporary execution environments** for certain tasks
 - test of exe files to lure out malicious code execution
 - perform certain tasks that is more prone to attacks
 - perform certain tasks that is more sensitive
- Provide **isolation**, from other parts of system


Pro's and con's with virtualization

- Some sandbox and isolation technologies are not complete virtualization or separation
 - E.g. share *name space* (processes, file system, etc)
 - Share operating system kernel
 - Share drivers

Isolation, separation and virtualization

Type	Example	Description
chroot	Change root for network service	Classic Unix concept. No virtualization, just isolation
jails	FreeBSD Jails	Userland. Can run FreeBSD and Linux binaries. Integrated into OS.
user mode linux, uml		Userland. More lightweight and thus faster than virtual machines
Containers	Docker, podman, k8s	Userland. 3rd party tool on top of OS. Need container engine, not hypervisor. More lightweight and thus faster than virtual machines
Virtual machines	Xen, VMware vSphere, HyperV,	Type 1 hypervisor based. Stronger isolation than container
Virtual machines	VMware Workstation, KVM	Type 2 hypervisor based. Stronger isolation than container
Hardware partitioning	Sun LDOMs, IBM LPAR	Best isolation and separation. Hardware support gives superior performance and security

Overview of virtualization

Pro's and con's with virtualization

- Isolation, and to have hardened and dedicated servers running specific services, are standard ways to minimize attack surface. Virtualization tools can help this
- Its easy to believe that virtualization will automatically make things secure, and that there is no way to jump between guest os', but exploits have shown this not hold true, e.g. cloudburst

VM's vs Containers vs WebAssembly

Feature	Virtual Machines	Containers	WebAssembly (Wasm)
Isolation	Full OS virtualization, strong	OS-level isolation	Sandboxed execution (virtual CPU)
Performance	Slower (heavy overhead)	Near-native	Near-native, optimized
Startup	Minutes	Seconds	Milliseconds
Size	GBs (full OS image)	MBs (includes OS dependencies)	KBs to MBs (minimal overhead)
System Access	Full OS access (kernel, drivers)	Shares OS kernel	No direct OS access (sandboxed)
Security	Strong (separate OS instances)	Moderate (kernel shared)	Strong (sandboxed, minimal attack surface)
Portability	Limited (OS-dependent)	Cross-platform (container runtimes)	Universal (Wasm runtimes)
Use Cases	Legacy applications, multi-OS environments	Cloud-native applications, microservices	Edge computing, serverless, high-security apps

Advanced attacks

Hardware attacks, etc

Attack tools

- Reverse Engineering Frameworks, such as Ghidra help debugging, disassemble, reverse engineer binaries
- Give attackers powerful tools to introspect into firmware, drivers, kernels, applications

Example of attacks

- Attacks by attaching malicious hardware to buses and ports
 - Using debug interfaces to snoop & manipulate bus
 - **JTAG** (IEEE standard 1149.1-1990)
 - **SWD** (Serial Wire Debug)
- Firewire and other DMA based methods to access memory of a computer (*evil maid attacks, evil devices*)
- UEFI attacks via Thunderbolt (*thunderstruck attack*)


Example of attacks

- Removal of, or direct attachment to, physical memory chips (*cold boot attacks*)

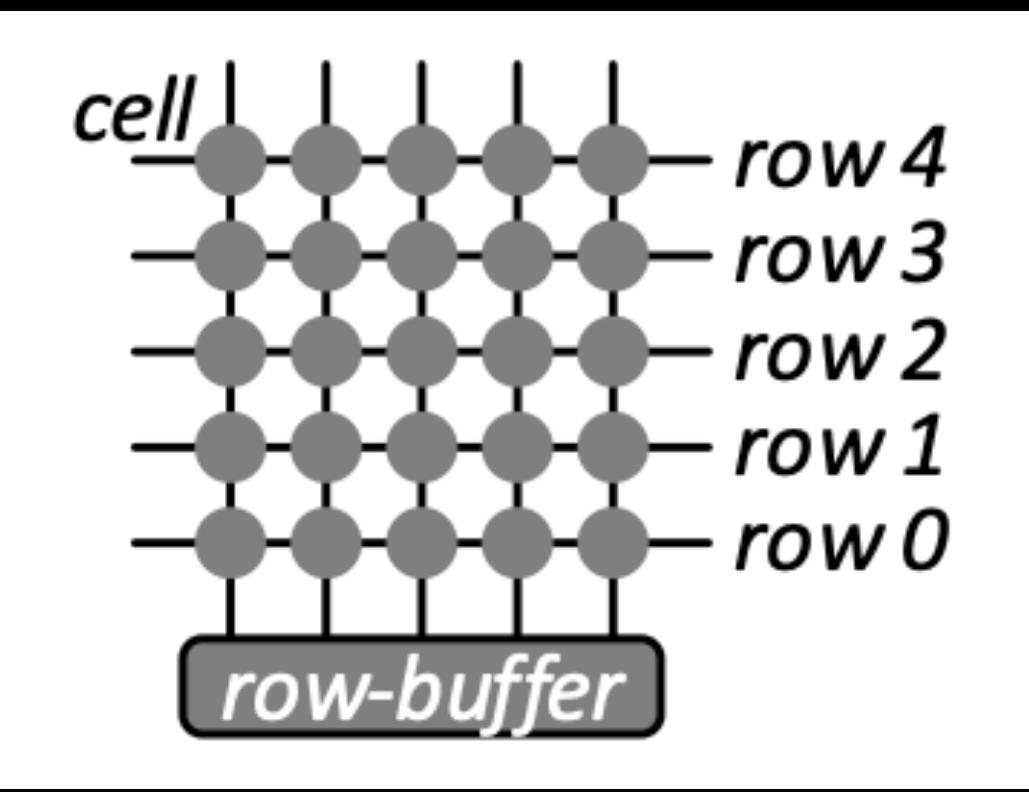
Example of attacks

- Removal of, or direct attachment to, physical memory chips (*cold boot attacks*)

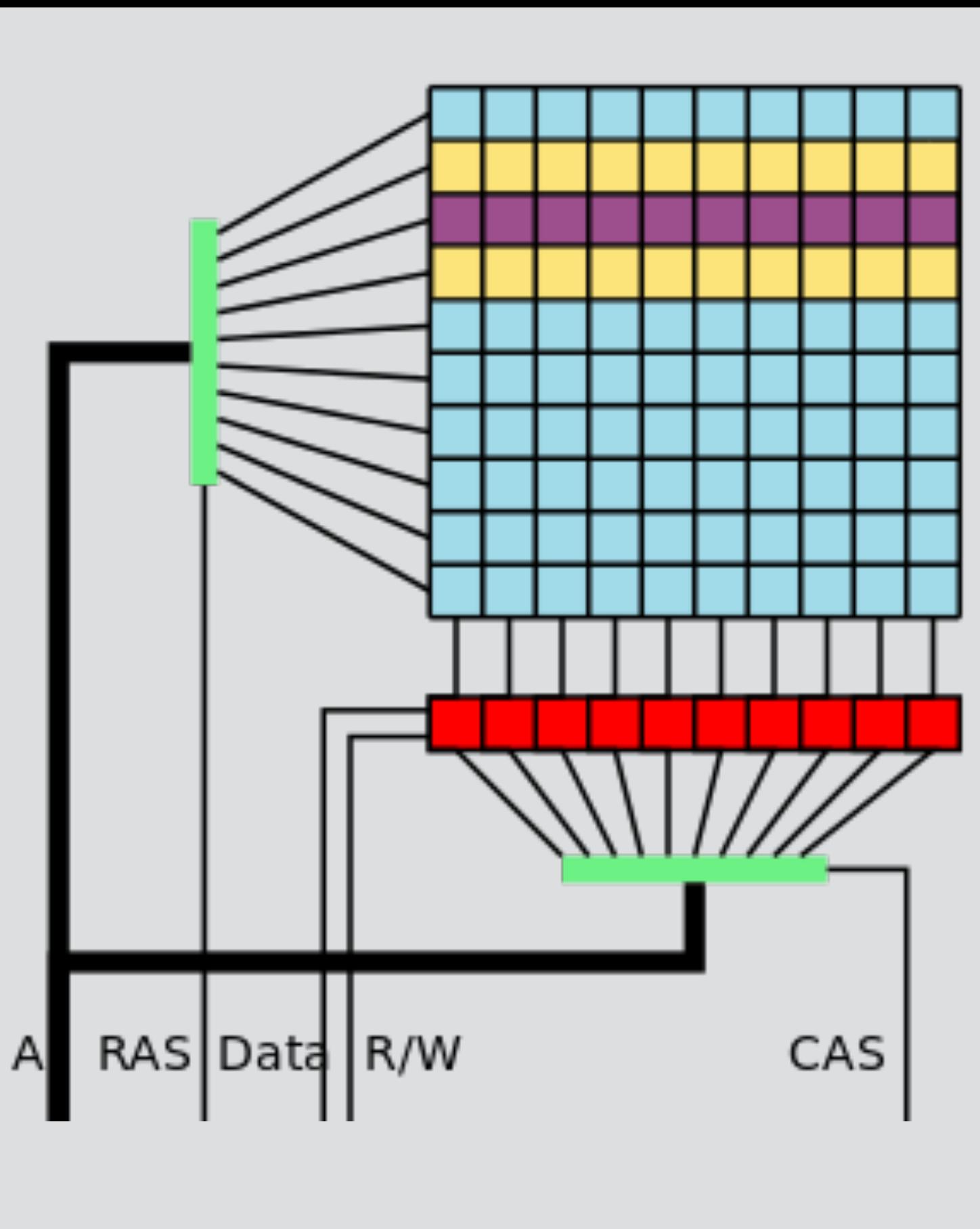
Example of attacks: *cold boot attacks*

Example of attacks: *PCILeech*

Attacking
UEFI Runtime Services
and Linux


Example of attacks: *HW implants*

(TS//SI//NF) Left: Intercepted packages are opened carefully; Right: A “load station” implants a beacon


Advanced attacks

- *Rowhammer**
 - Flipping bits without accessing them
 - *Method of reading writing memory cells so that memory cells in adjacent rows become changed*
 - *Based on an unintended side effect in dynamic random-access memory (DRAM) that causes memory cells to leak their charges and interact electrically between themselves, possibly altering the contents of nearby memory rows that were not addressed in the original memory access*

Advanced attacks

- *Rowhammer**
- *This circumvention of the isolation between DRAM memory cells*
 - Memory leak == information leak
- *Have been used to **Gain Kernel Privileges**, e.g. **DRAMMER attack on Android***
- *Can be used to attack **Virtual Machines***

Advanced attacks

- *Rowhammer*
- *Have been implemented in JavaScript and runned in a browser*
- *Modern variants* have been used to **defeat ECC memory***

* "Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks" <https://cs.vu.nl/~lcr220/ecc/ecc-rh-paper-eccploit-press-preprint.pdf>

Advanced attacks

- *Rowhammer**
- Initial research published 2014, but variants have been developed later
 - Rowhammer.js (2015)
 - Blacksmith (2022)
 - Half-double (2021)
 - Zenhammer (2024, AMD architecture)
 - RISC-Hammer (2024, RISC-Y architecture)
- Hardware solutions to protect against it have been circumvented

Advanced attacks

- *Meltdown* & Spectre***
- *Initial research published January 2018*
- *Microarchitectural bugs in CPU*
- *Meltdown breaks isolation between **user land and kernel***
- *Spectre breaks isolation between **applications in user land***

<https://meltdownattack.com/>

* Lipp et al "Meltdown: Reading Kernel Memory from User Space" <https://meltdownattack.com/meltdown.pdf>

** Kocker et al "Spectre Attacks: Exploiting Speculative Execution" <https://spectreattack.com/spectre.pdf>

Advanced attacks

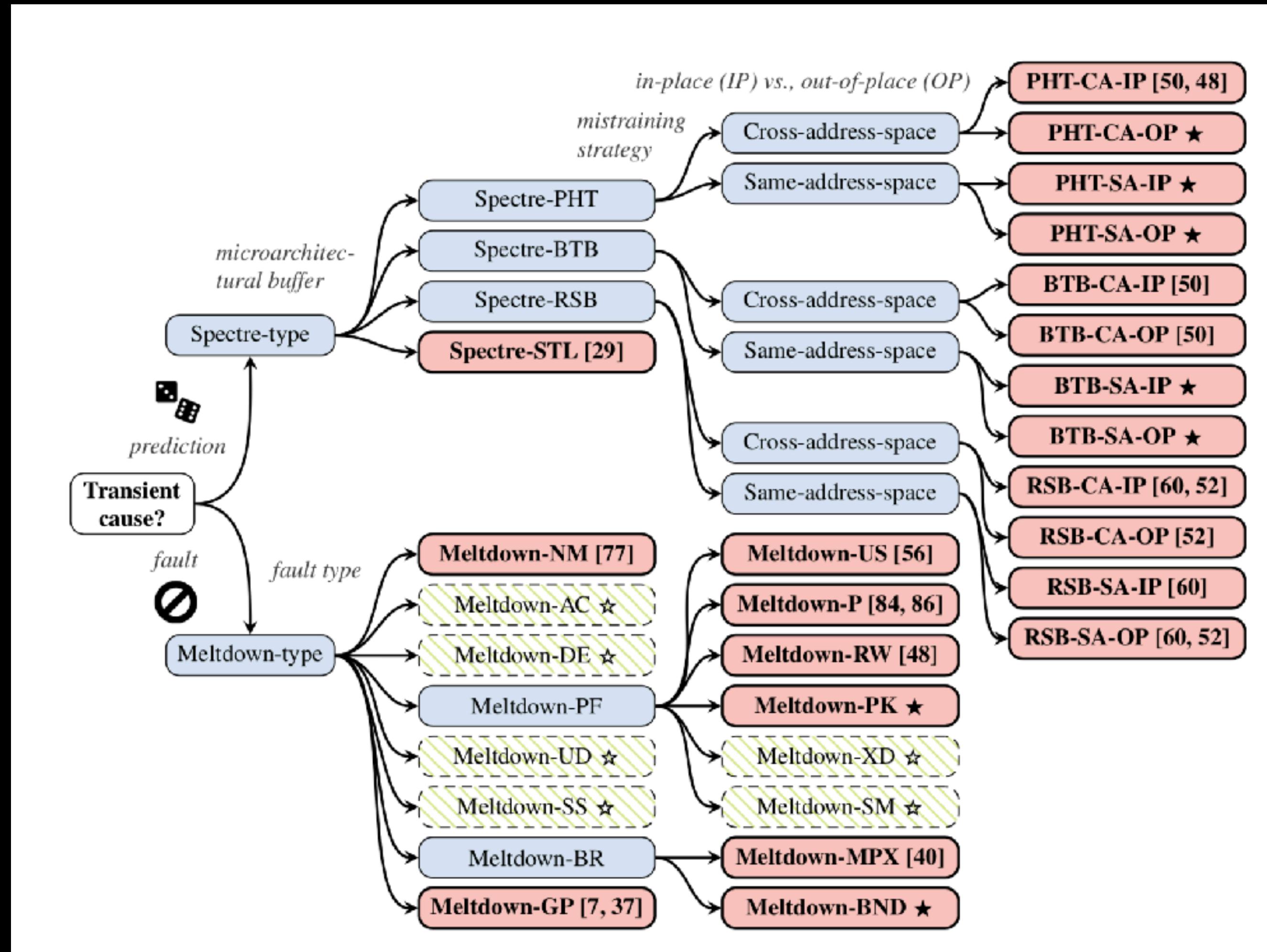
- *Meltdown & Spectre*
 - *work on personal computers, mobile devices, and in the cloud*
 - *Works on Windows, Linux, Android, etc*
 - *Works on containers: docker, LXC, OpenVZ etc*

Advanced attacks

- *Meltdown & Spectre*
- *All modern CPUs are vulnerable (x86,AMD,ARM) in various degrees*

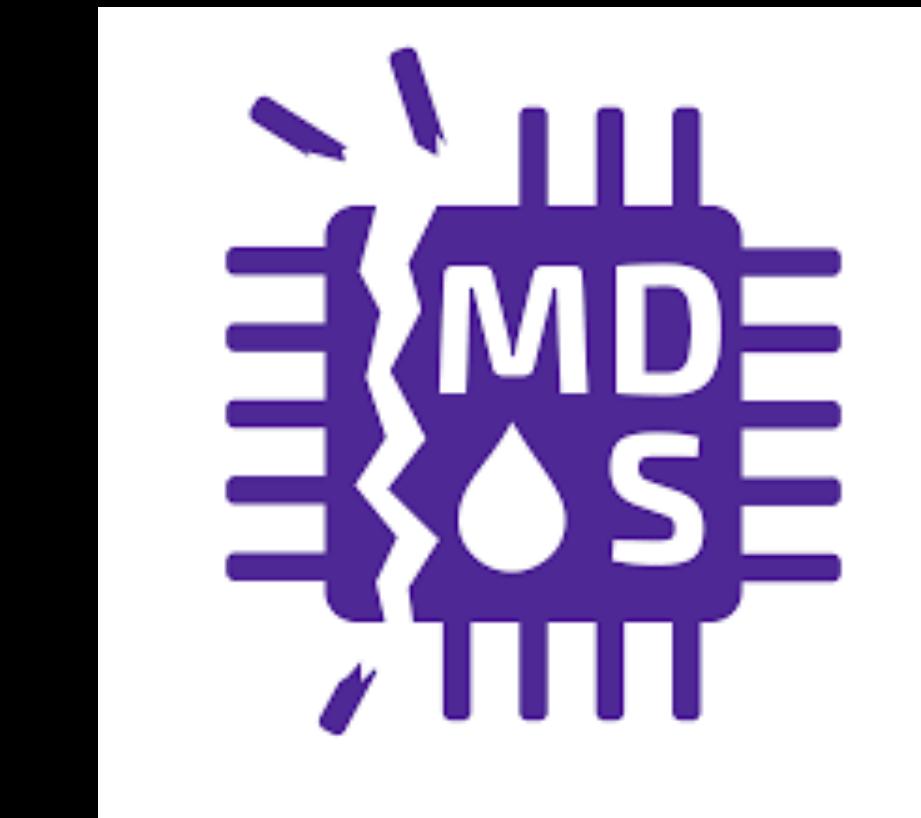
Method	Attack	Spectre-PHT	Spectre-BTB	Spectre-RSB	Spectre-STL
Intel	same-address-space	in-place ● [52, 50] ★	● [62]	● [32]	
		out-of-place ★	● [18]	● [62, 54] ○	
	cross-address-space	in-place ★	● [52, 18]	● [62, 54] ○	
		out-of-place ★	● [52]	● [54]	○
ARM	same-address-space	in-place ● [52, 50] ★	● [6]	● [6]	
		out-of-place ★	★	● [6]	○
	cross-address-space	in-place ★	● [6, 52]	★	○
		out-of-place ★	★	★	○
AMD	same-address-space	in-place ● [52]	★	★	● [32]
		out-of-place ★	★	★	○
	cross-address-space	in-place ★	● [52]	★	○
		out-of-place ★	★	★	○

Symbols indicate whether an attack is possible and known (●), not possible and known (○), possible and previously unknown or not shown (★), or tested and did not work and previously unknown or not shown (☆). All tests performed with no defenses enabled.


Vendor	Attack	Meltdown-US [59]	Meltdown-P [90, 93]	Meltdown-GP [10, 40]	Meltdown-NM [83]	Meltdown-RW [50]	Meltdown-PK	Meltdown-BR	Meltdown-AC	Meltdown-UD	Meltdown-SS	Meltdown-XD	Meltdown-SM
Intel		●	●	●	●	●	★	★	★	★	★	★	★
ARM		●	○	●	—	●	—	—	★	★	★	—	★
AMD		○	○	○	○	—	★	★	★	★	★	★	★

Symbols indicate whether at least one CPU model is vulnerable (filled) vs. no CPU is known to be vulnerable (empty). Glossary: reproduced (● vs. ○), first showed in this paper (★ vs. ☆), not applicable (—). All tests performed without defenses enabled.

* Canello et al "A Systematic Evaluation of Transient Execution Attacks and Defenses"
<https://arxiv.org/pdf/1811.05441.pdf>



Advanced attacks

Advanced attacks

Advanced attacks

- *Spectre class vulnerabilities will remain unfixed because otherwise CPU designers will have to disable speculative execution which will entail a massive performance loss*

Advanced attacks

- *Microarchitecture Data Sampling attacks*
- *Side channel attacks*
- *Timing side channel attacks*
- *Power Analysis side channel attack*

ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10123915

☰ Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study 1 / 32 | - 173% + ⌂ ⌂ | ⌂ ⌂ | ⌂ ⌂

IEEE Access
Multidisciplinary | Rapid Review | Open Access Journal

Received 18 April 2023, accepted 4 May 2023, date of publication 12 May 2023, date of current version 24 May 2023.
Digital Object Identifier 10.1109/ACCESS.2023.3275757

 SURVEY

Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

ARSALAN JAVEED[✉], CEMAL YILMAZ[✉], (Member, IEEE), AND ERKAY SAVAS, (Member, IEEE)
Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
Corresponding author: Arsalan Javeed (ajaveed@sabanciuniv.edu)

ABSTRACT Over the course of recent years, microarchitectural side-channel attacks emerged as one of the most novel and thought-provoking attacks to exfiltrate information from computing hardware. These attacks leverage the unintended artefacts produced as side-effects to certain architectural design choices and proved difficult to be effectively mitigated without incurring significant performance penalties. In this work, we undertake a systematic mapping study of the academic literature related to the aforementioned attacks. We, in particular, pose four research questions and study 104 primary works to answer those questions. We inquire about the origins of artefacts leading up to exploitable settings of microarchitectural side-channel attacks; the effectiveness of the proposed countermeasures; and the lessons to be learned that would help build secure systems for the future. Furthermore, we propose a classification scheme that would also serve in the future for systematic mapping efforts in this scope.

INDEX TERMS Cybersecurity, microarchitecture, side-channel, systematic-mapping.

AMD CPU Microcode Signature

amd.com/en/resources/product-security/bulletin/amd-sb-7033.html

AMD Products Solutions Resources & Support Shop

ON THIS PAGE

- Summary
- CVE Details
- Affected Products and Mitigation
- Acknowledgment
- Revisions

Back to Security Bulletins and Briefs ←

AMD CPU Microcode Signature Verification Vulnerability

AMD ID: AMD-SB-7033

Potential Impact: Loss of integrity of x86 instruction execution, loss of confidentiality and integrity of data in x86 CPU privileged context and compromise of SMM execution environment

Severity: Medium

Summary

Researchers from Google® have provided AMD with a report titled "AMD Microcode Signature Verification Vulnerability." This vulnerability may allow an attacker with system administrative privilege to load malicious CPU microcode patches. In the report, the researchers describe how they were able to load patches that were not signed by AMD. The researchers also demonstrate how they falsified signatures for arbitrary microcode patches.

AMD has not received any reports of this attack occurring in any system.

AMD believes this issue is caused by a weakness in signature verification algorithm that could allow an administrator privileged attacker to load arbitrary microcode patches. AMD plans to issue mitigations to fix this issue. Please see below for additional details.

CVE Details

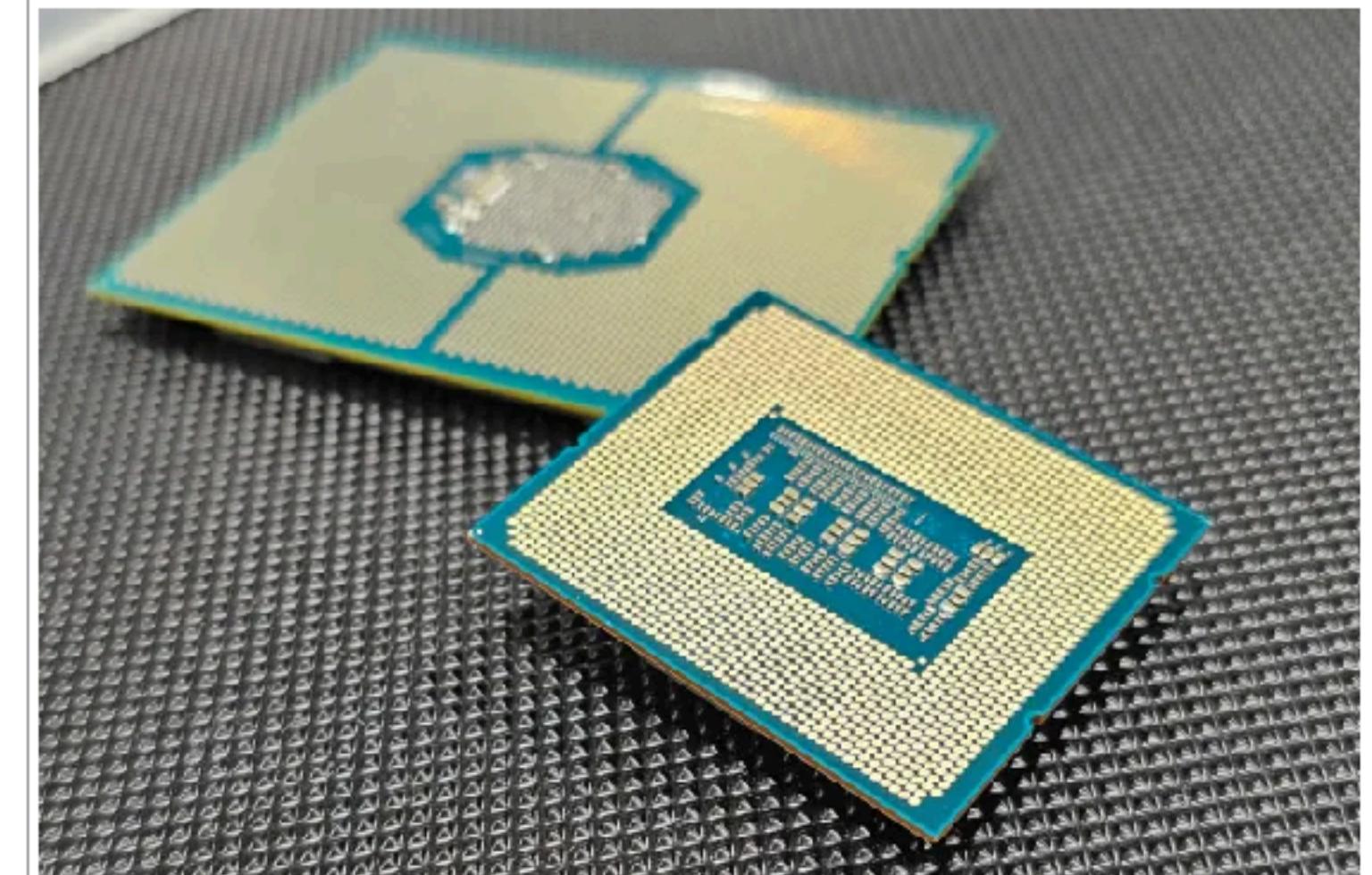
Refer to [Glossary](#) for explanation of terms

CVE	CVSS Score	CVE Description
CVE-2024-36347	6.4 (Medium) AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:H/A:H	Improper signature verification in AMD CPU ROM microcode patch loader may allow an attacker with local administrator privilege to load malicious microcode, potentially resulting in loss of integrity of x86

Intel CPU Microcode Updates x +
phoronix.com/news/Intel-CPU-Microcode-August-2025

Intel CPU Microcode Updates Released For Six High Severity Vulnerabilities

Written by [Michael Larabel](#) in [Intel](#) on 12 August 2025 at 01:13 PM EDT. [16 Comments](#)


 This Patch Tuesday has brought a slew of Intel CPU microcode updates for the past few processor generations to address six new high severity vulnerabilities.

New CPU microcode was released today for Arrow Lake, Xeon Scalable Gen3 and newer through Xeon 6 Sierra Forest / Granite Rapids, Xeon D-17xx / Xeon D-27xx, Core Ultra 200V Lunar Lake, and Core Gen 13 Raptor Lake.

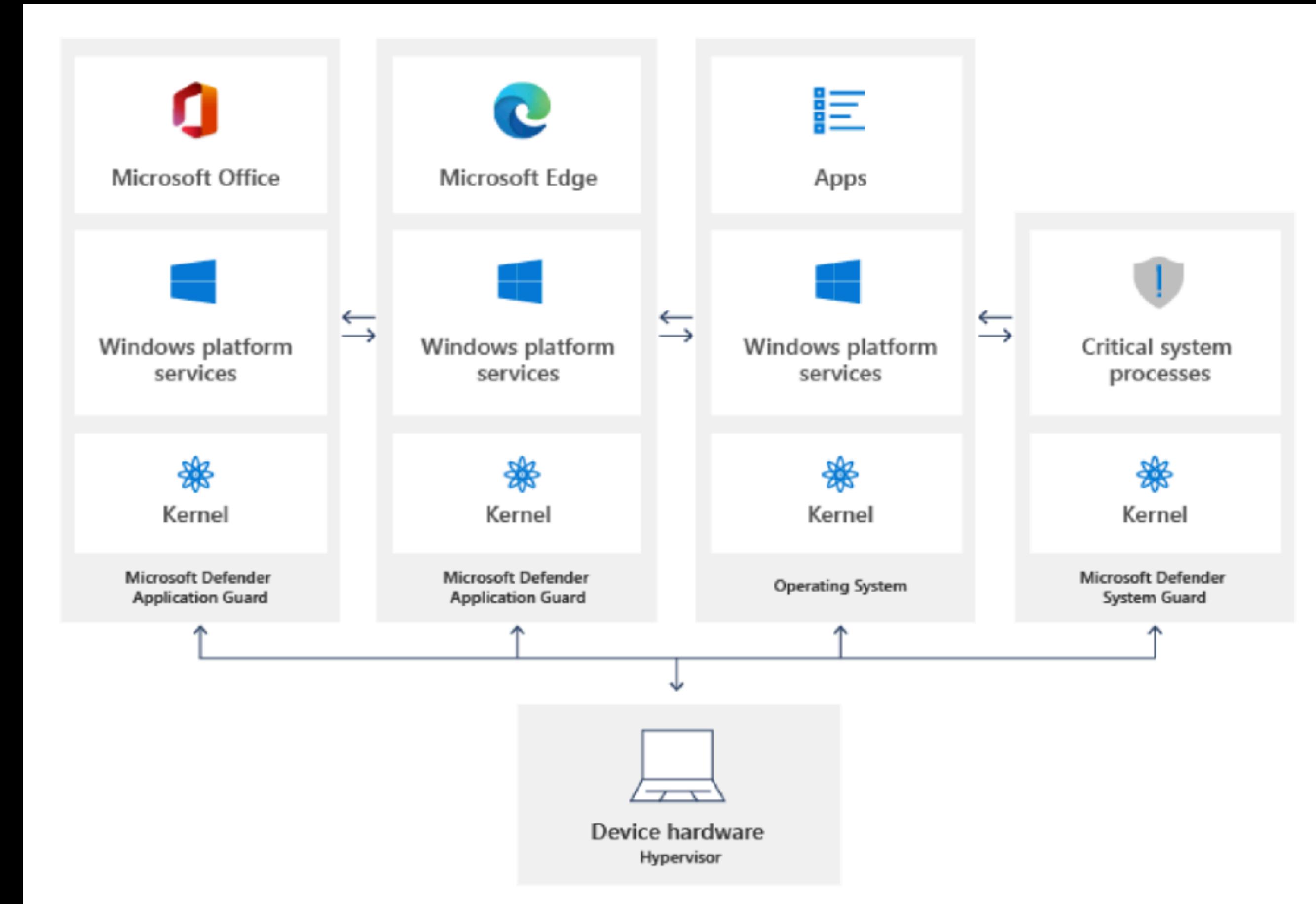
There are a number of functional issues resolved in the new CPU microcode plus six new high severity items made public today for Patch Tuesday:

INTEL-SA-01249 - 2025.2 IPU, Intel® Processor Stream Cache Advisory for escalation of privilege.
INTEL-SA-01308 - Intel Xeon 6 Scalable Processors Advisory for escalation of privilege.
INTEL-SA-01310 - Intel OOBM Services Module Advisory for escalation of privilege.
INTEL-SA-01311 - Intel Xeon 6 Processor with Intel TDX Advisory for escalation of privilege.
INTEL-SA-01313 - 2025.3 IPU, Intel Xeon Processor Firmware Advisory for escalation of privilege and denial of service.
INTEL-SA-01367 - Intel Xeon 6 Processor Firmware Advisory for escalation of privilege.

All rated as "HIGH" severity. Particular on the Intel Xeon side these CPU microcode updates are quite pressing.

Those wanting to grab the newest Intel CPU microcode files for use on Linux can find them via today's [microcode-20250812](#) release.

Advanced attacks


- *Attacks against Intel Management Engine*
 - *Proprietary and non-documented*
 - *Own OS (Minix!)*
 - *Reverse engineered and analysed by attackers*
 - *Found multiple vulnerabilities in Skylake & Kabylake architecture*

Examples of modern security controls

Windows Defender security features in Win 10, Win 11

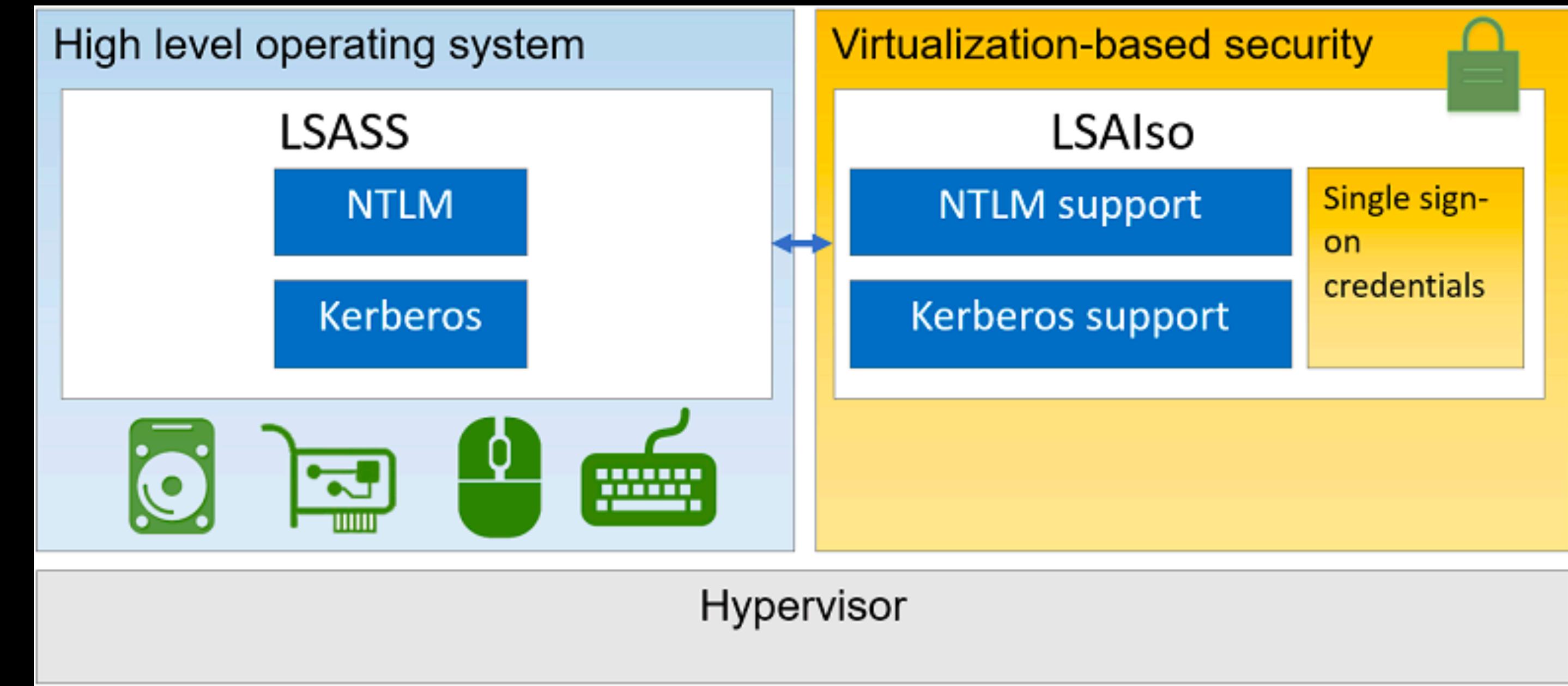
Windows

- Application Guard, **WDAG**
 - App & browser control
 - Isolation browsing
- WDAC (Windows Defender Application Control) give application & driver whitelisting
- VBS (Virtualization-Based Security)
- WDAC & VBS used to be Windows Device Guard

Windows

- Windows Device Guard, And Applocker, now called Windows Defender Application Control
 - Attributes of the **codesigning certificate(s)** used to sign an app and its binaries
 - Attributes of the app's binaries that come from the **signed metadata for the files**, such as Original Filename and version, or the hash of the file
 - The **path from which the app or file is launched**

Windows

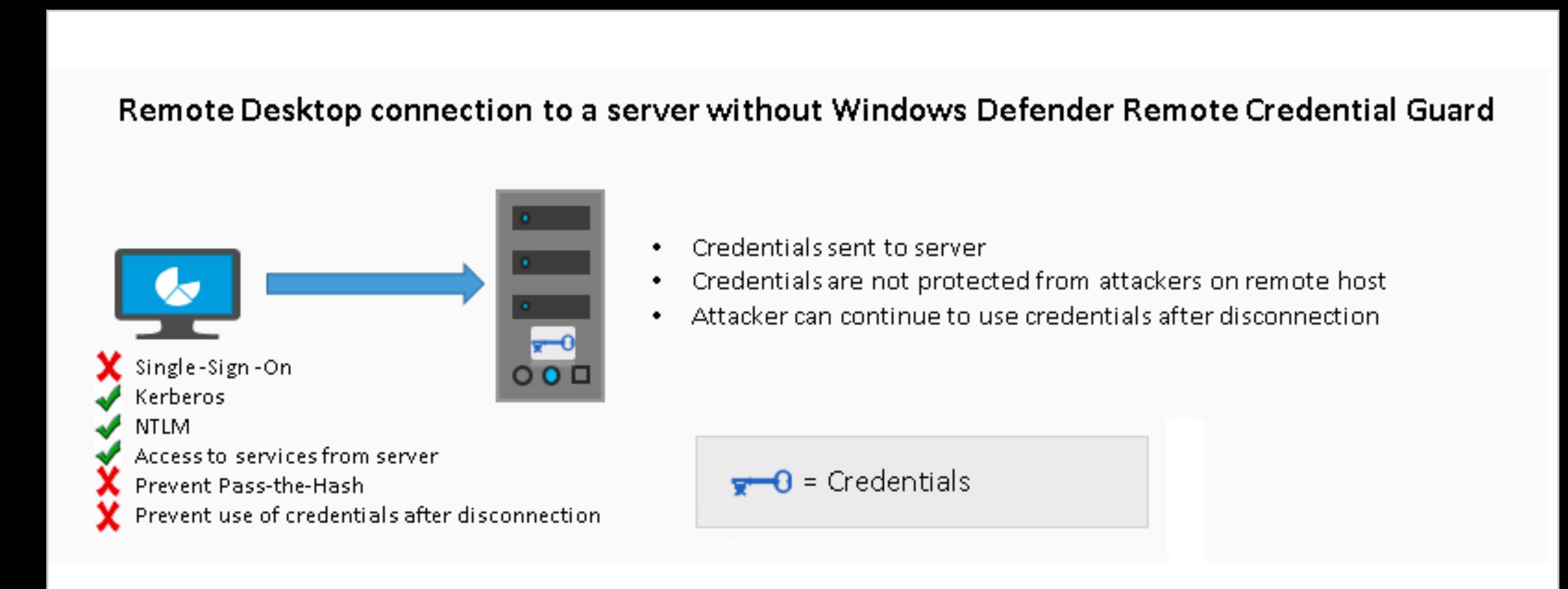

- *Core isolation with Memory integrity*, aka Hypervisor-protected Code Integrity (**HVCI**)
 - make it difficult for malicious programs to use low-level drivers to hijack your computer

Windows

- Windows Defender Exploit Guard, **WDEG**
- **Attack Surface Reduction (ASR)**: A set of controls that enterprises can enable to prevent malware from getting on the machine by blocking Office-, script-, and email-based threats
- **Network protection**: Protects the endpoint against web-based threats by blocking any outbound process on the device to untrusted hosts/IP through Windows Defender SmartScreen
- **Controlled folder access**: Protects sensitive data from ransomware by blocking untrusted processes from accessing your protected folders
- **Exploit protection**: A set of exploit mitigations (replacing EMET) that can be easily configured to protect your system and applications

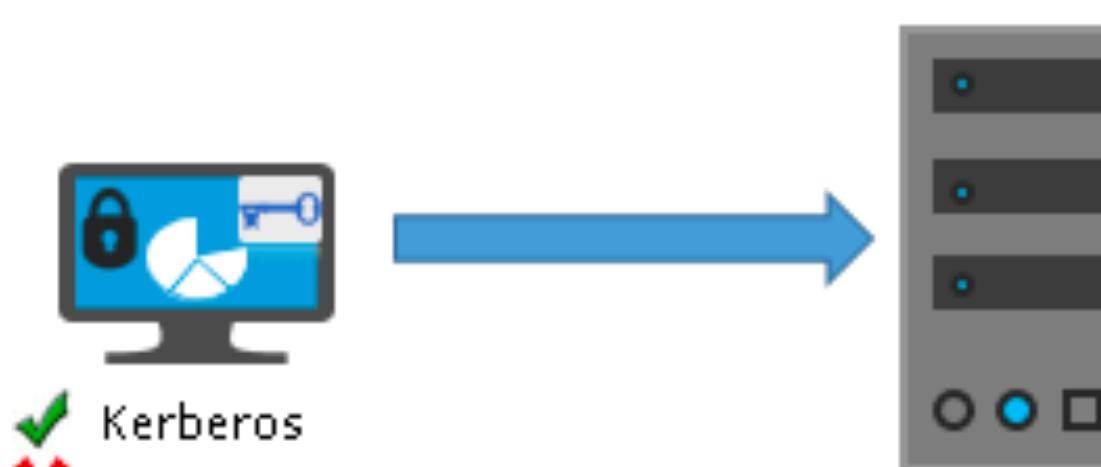
Windows

- Windows Credential Guard
 - To protect *Local Security Authority Server Service* (LSASS) by moving it into *LSAlso*
 - Build on top of
 - Virtualization Based Security (VBS)
 - Secure boot
 - Trusted Platform Module (TPM)
 - UEFI lock


Windows

- Windows Remote Credential Guard

- To protect *against theft of credentials sent to server side*

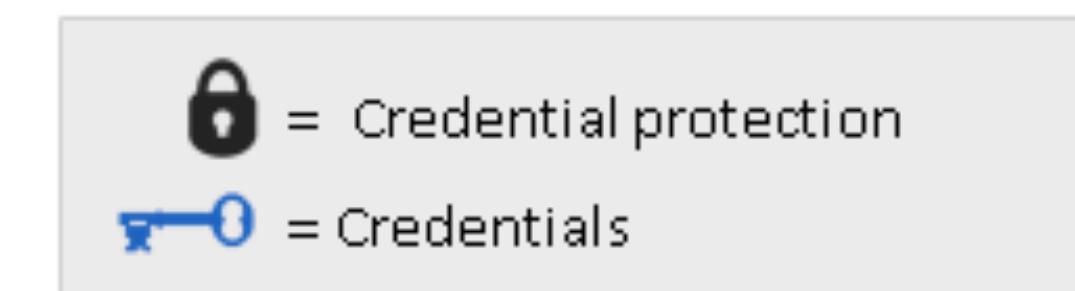

- *Others that have admin access to the server*

- *Especially important on jump hosts*

Windows

Windows Defender Remote Credential Guard

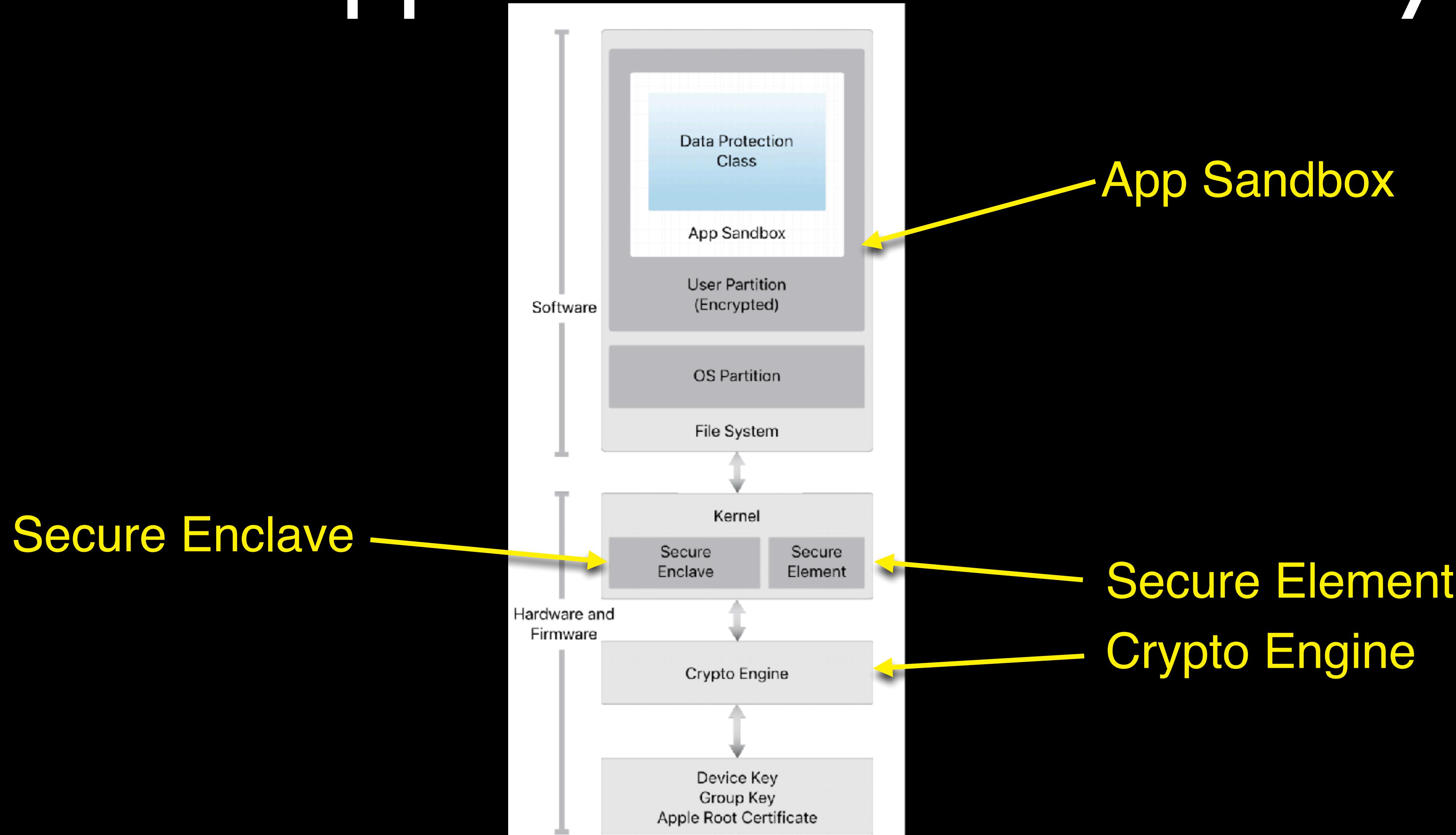
- ✓ Kerberos
- ✗ NTLM
- ✓ Access to services from server
- ✓ Prevent Pass-the-Hash
- ✓ Prevent use of credentials after disconnection


- Credentials protected by Windows Defender Remote Credential Guard
- Connect to other systems using SSO
- Host must support Windows Defender Remote Credential Guard

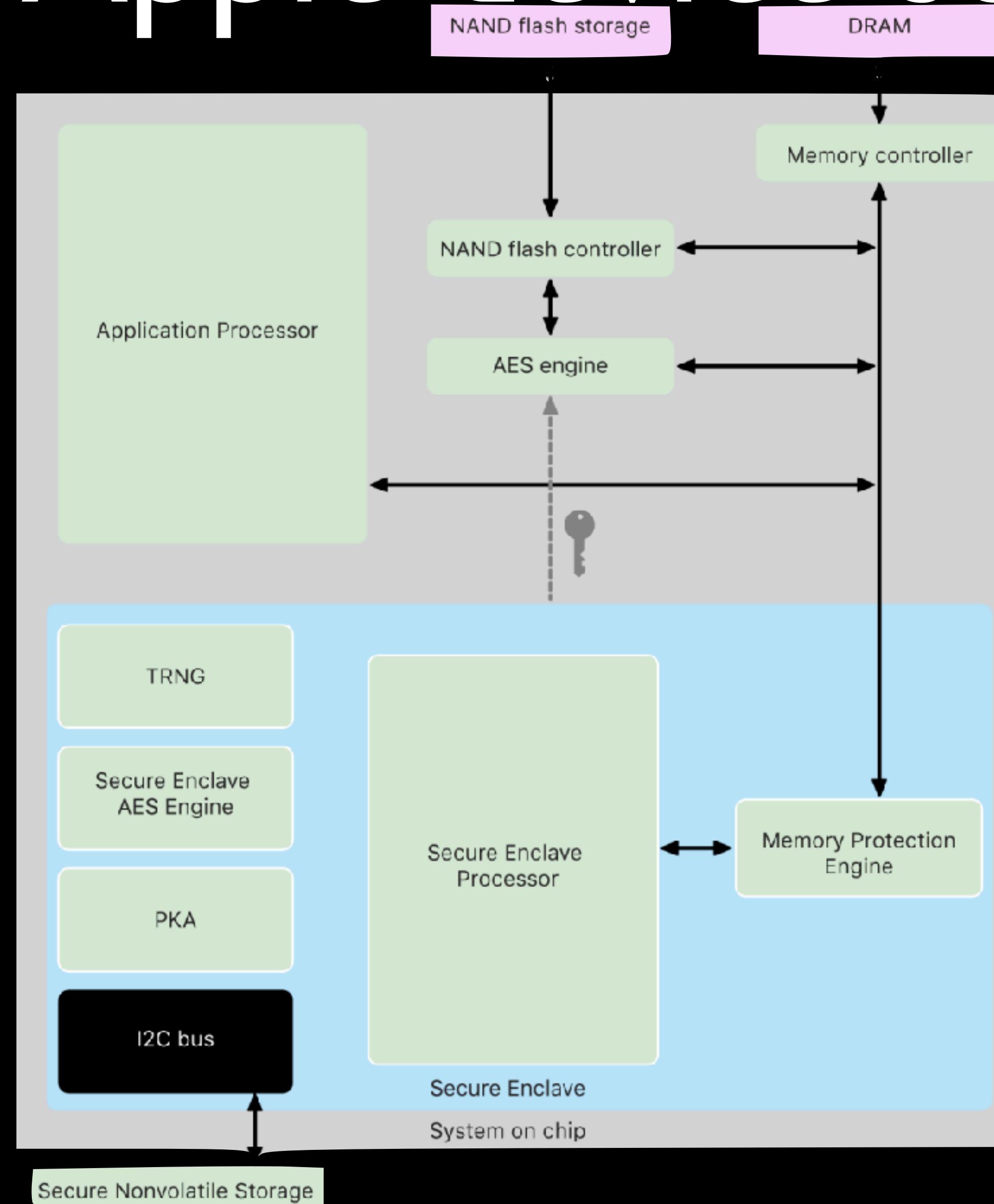
Restricted Admin Mode

- ✓ Kerberos
- ✓ NTLM
- ✗ Access to services from server
- ✓ Prevent Pass-the-Hash
- ✓ Prevent use of credentials after disconnection

- Credentials used are remote server local admin credentials
- Connect to other systems using the host's identity
- Host must support Restricted Admin mode
- Highest protection level
- Requires user account administrator rights


MacOS X

- **Hardware based security**
 - Secure Enclave
 - Memory Tagging & Pointer Authentication
 - Hardware-Accelerated Encryption
- **Isolation**
 - App sandbox
- **FileVault**
 - Full disk encryption
- **GateKeeper**
 - Checks code signing
- **XProtect**
 - Malware protection


iOS/iPadOS

- Share many security features with MacOS X
- Additional ones include
 - **BlastDoor**: A way to takes a look at all incoming messages and inspects their content in a secure environment, which prevents any malicious code inside of a message from interacting with iOS or accessing user data.
 - **LockDown mode**: add many restrictions to applications, e.g. web browsing, messaging, FaceTime, photos, etc

Apple iOS device security

Apple device security

Tools mentioned during the class

- Ghidra - Reverse Engineering Framework
- IDA pro - Disassembler
- Hexray - Decompiler
- Ollydbg, windbg - Other disassemblers
- Bindiff - Advanced tool from zynamics to compare binaries, with call graphs etc. Not same as built-in windows tool with same name.

Referenses used during the class

- <https://www.commoncriteriaproducts.org/>
- <https://www.cs.virginia.edu/~av6ds/papers/isca2021a.pdf>
- <https://www.cvedetails.com/top-50-products.php>
- <https://owasp.org/www-project-top-ten/>

Referenses used during the class

- http://en.wikipedia.org/wiki/Source_lines_of_code
- <https://sources.debian.org/stats/>
- <https://informationisbeautiful.net/visualizations/million-lines-of-code/>
-

Referenses used during the class

- <https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-how-it-works>
- <https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard>
- <https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview>
- <https://docs.microsoft.com/en-us/windows/security/identity-protection/remote-credential-guard>

Referenses used during the class

- <https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78>
- https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service
- <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf>
-

Referenses used during the class

- https://www.cisa.gov/sites/default/files/2024-04/CSRB_Review_of_the_Summer_2023_MEO_Intrusion_Final_508c.pdf
- https://media.ccc.de/v/37c3-12142-breaking_drm_in_polish_trains
- <https://www.ccc.de/en/updates/2024/das-ist-vollig-entgleist>
- <https://attack.mitre.org/>
- https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsOnTrustingTrust.pdf
-

Referenses used during the class

- <https://umatechnology.org/the-truth-about-the-intels-hidden-minix-os-and-security-concerns/>
- <https://www.bleepingcomputer.com/news/hardware/intels-secret-cpu-on-chip-management-engine-me-runs-on-minix-os/>
-