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What Has Been Covered ...

« Malware basics
— Different types of functionality
— Different infection methods
« AV cat and mouse game
— Signatures based detection
— More complex signatures and static heuristics
— Static unpacking and emulation
— Cloud-based detection

— Machine learning detection
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Agenda

* Mobile malware
— Specific challenges
— Specific risks
— Security models and their effect on malware detection
« i0S
» Android
— Detection countermeasures
e Machine learning for malware detection
— Motivation
— Terminology
— Learning types

— Machine learning-based malware detection challenges
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Motivation

* 5.48 billion smartphone users in the world in 2022

48%

36%

< Windows <O Android < i0S - 05X <O Unknown <O Linux = Other (dotted)

II. HNK/%EIQ% https://gs.statcounter.com/os-market-share
https://datareportal.com/global-digital-overview
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Motivation

« Many phones with old versions /\\\
of Android still around

« Itis not surprising that the _ mer—

mobile platform became an

appealing target for malware —___—— —— —————————

authors.
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30,000,000
25,000,000
20,000,000

15,000,000

10,000,000

5,000,000

II LINKOPING
o UNIVERSITY



TDDE62 - Malware Defense Il

Mobile Malware Definition

« Malicious software designed to attack mobile devices
— Phone
— Tablet
— Watch
— TV
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Samples of Mobile Malware

* 10S stock

— PawnStorm.A
» Able to upload GPS location, contact list, photos to a remote server.
— YiSpecter
» Able to download, install and launch arbitrary apps
* Android

— Android/Filecoder.C

« Able to spread via text messages and contains a malicious link. Encrypts all of
your local files in exchange for a ransom between $94 and $188.

— Plankton

« Communicates with a remote server, downloads and install other applications
and sends premium SMS messages
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Mobile Malware Specific Challenges

1. Personal-info and privacy concerns
— Banking info
— Personal photos
— Contact info
2. Widespread access to networks
— 4G
— Wifi
— Bluetooth
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Mobile Malware Specific Challenges

3. Less computation power

— Limited capabilities for on-device detection

4. Almost exclusively trojans
— Repackaging

« Add malicious functionality to a legitimate app, and re-release
under own Android developer ID.

— Much easier to reverse-engineer and modify Android apps
than, e.g., PC software

» A very simple technique is to replace the advertisement logic
and re-bundle and publish the app

— Fake apps also exist!
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Mobile Malware Specific Challenges

5. Due to limited computation power, most of the trust
in apps is moved to app stores to analyze the apps
— While for the 3™ party stores and perhaps to a degree even

for the Google Play store, this is a mistrust (we will elaborate
on this ...)

— Attackers also have the motivation to deliver their malware
through stores (official or third party)
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Mobile Malware Specific Challenges

6. Harder to detect with 3 party AV on the device
compared to PC malware due to stronger isolation

between apps
— Memory isolation

— User isolation
« Each app is treated as a separate user

 Applications cannot interact with each other, and they have
limited access to the system as well as other apps resources

11
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Mobile Malware Risks

» System damage
— Battery draining
— Cryptocurrecy mining
— Disabling system functions
* Block calling functionality
« Litter phone UI with ads
* Economic
— Sending SMS or MMS messages to premium numbers

— Dialing premium numbers

— Deleting important data

12
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Mobile Malware Risks

» Information leakage
— Privacy-sensitive data (personal photos, contacts, etc.)

— Stealing bank account information

 Disturbing mobile networks

— Denial-of-service (DoS)

13
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I0S Security Model

* System Security
— Startup and updates are authorized

« Data security

— File-level data protection uses strong encryption keys
derived from the user’s unique passcode.

« App security
— Application run in their sandboxes.

— More important than this ...

14
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I0S Security Model

« Before releasing on store, they go through a strict
vetting process

— Manual testing
— Static analysis

— Apps can not do actions outside of what they claim
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Android Application Compiling

, Byte Bytecode for
b . Dalvik VM
i (c.f. Java VM)
Jjava .class — —
classes.dex aapt
Other .class files AndroidManifest.xm!

@ |

Resources
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Android Architecture

Calendar Camera

Java APl Framework

« Android Runtime

Content Providers
Activity Location Package Notification

— Each app runs in its own process and with its
own instance of the Android Runtime (ART).

View System Resource Telephony Window

Native C/C++ Libraries

— Itis possible to have compiled C/C++ code
packaged with an Apk which can be called Webt OpenMAX AL

through Java Native Interface (JNI) -
Media Framework OpenGL ES ___ Core Libraries

Android Runtime (ART)

— Apps are pre-compiled from Dalvik bytecode
to native code during installation

e Old Android versions ran Dalvik
bytecode directly in a VM Linux Kernel

Drivers

Hardware Abstraction Layer (HAL)

Audio Bluetooth Camera Sensors

Binder (IPC)

Camera

Shared Memory

Power Management
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Androidmanifest.xml

* Provides the essential information to the Android
system regarding this app

— Minimum Android API
— Linked libraries
— Components, activities, services, ...

— Required permissions

18

LINKOPING
II.“ UNIVERSITY



TDDE62 - Malware Defense Il 19

Android Security Model

« Application Sandboxing

— Android automatically assigns a unique Linux user ID to each app at
installation

« Each app runs as a unique “user” on Android
— App is allowed to access:

« Own files

« World-accessible resources
— More access:

« Managed through defining in the androidmanifest.xml

E.g.: <uses-permission android:name="android.permission.READ_PHONE_STATE" />
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Android Vetting Process

Android does not require an exhaustive app vetting process
« More lenient compared to iOS

« Apps are dynamically tested with a Google security service known as
Bouncer

— Attempts to exercise different code paths by interacting with app in
simulator while checking for malicious behavior

— The results are combined with the output coming from the Google
reputation system

« Researchers have shown the feasibility of fingerprinting Bouncer*
— Android ID, phone number, etc.

— Malware may be able to bypass Bouncer by not displaying
malicious behavior within Bouncer

II. HN&OEEIQ% * https://jon.oberheide.org/files/summerconi12-bouncer.pdf
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Mobile Malware Detection

« Static Code Analysis
— Signature-based techniques
« Specific strings or patterns in the byte code
 Extracting the strings is straightforward
— Permission-based techniques

 Analyzing the requested permissions to identify the potential
malware samples — useful for heuristic flagging of potential
malware

— Dalvik bytecode-based techniques

 Analyzing the byte code to identify malicious Android samples
(API calls, data flows, ...)

21
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Mobile Malware Detection

e Dynamic Behavior Analysis
— Sequence of system calls

— Accessed files

« Hybrid Analysis

22
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Malware Detection Countermeasures

+ Static
— Obfuscation
« Making the byte code hard to understand

« Making signature or even some static heuristics-based analysis
harder

— Packing
* Dynamic
— Sandbox detection

« Many of the sandboxes still do not have real device behaviors

— E.g. do not support GPS or do not have a real GPS
accuracy

23
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Obfuscation

« Identifier renaming

— Replace identifiers (e.g., variable or method names) used in the source code
with meaningless names, e.g., ’a’, ‘b’, ‘aa’, ‘ab’, ‘ac’

— Mostly used to prevent humans from reverse-engineering apps
« String encryption

— Replacing constant strings with their encrypted form and adding the code to
decrypt them on the fly

« Control-flow obfuscation: changing the logical
flow of the program

— Injecting dead code obj = benign()
. varl =10
~ Re-ordering statements var2 = [vari for i in range(10)]
— Inserting opaque predicates if var1t == var2[o]:
obj = malware()
obj.load()
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Packing

APK file )

AndroidManifest.xml
{binary)

( classes.dex )_

lﬁ

New APK file

Modified
AndroidMani fest.xml

)

(

new classes.dex
{loader)

Packed
original classes.dex
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Why?

» Creating detection rules (signatures) manually
couldn’t keep up with the emerging flow of malware.

— Zero-day malware

 Need a more reliable method when we know that the
relation between the sample features is hard to find
for the human

« Sometimes we need a triage method

— A procedure we use to prioritize the samples that
should be examined

LINKOPING
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Machine Learning

e Machine learning is a set of methods that gives
computers the ability to learn without being explicitly
programmed

— Learning from the data

— It is used when we want to (explicitly or implicitly)
learn the relation using some available data
(known as training data)

LINKOPING
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Terminology

e (Predictive) Model: The hidden relation

« Training data: Data based on which we make the
model

« Testing data: Data based on which we evaluate the
model

* (Hidden relation) Learning types:
— Unsupervised

— Supervised

LINKOPING
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Unsupervised learning

« Given features X (X1 and X2 in the following figure)
« The goal is to discover the structure of the data
— Clustering: splitting a data set into groups of similar objects

« Application example

— Grouping malware into

potential families *
o o
X2

X1

LINKOPING
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Supervised Learning

« Having both X (X1 and X2 in the following figure) and y (the colors in the
figure) we try to learn the relation between them (X and y)

» For example, malware detection:

— X: features of malware and benign apps

— y: “malware” or “benign” label \

X2 h
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Classification vs. Regression

Classification
 Whenyis a categorical variable
— For example, “malware” or “benign” (binary classification)
« Also: So called one-class classification or anomaly detection
— Train classifier to learn distribution of expected (or “normal”) data

— Detect samples that deviate too much from the training data

Regression
Wheny is a continuous variable

— For example, probability of belonging to a specific malware family
(e.g., can be used for triaging the app)

LINKOPING
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ML-based Malware Detection procedure

Collecting training data

Extracting features from training data

Training the model: finding the model

Testing (Evaluating) the model

33
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ML-based Malware Detection Workflow
— ) CRE T
e
N
=
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Collect Training data

Dataset should be representative of real-world malware
- Example of bad practice
— Suppose that we collected some benign and malware samples, but
« all benign apps happen to have sizes > 1 MB, and
« all malware samples happen to be < 100 kB
— Not representative of all malware/benign apps ...
— The model overfits to this unrealistic pattern

« For example, model might classify all small apps as malware!

35
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Extracting Features

The extracted features should be relevant.
Usually, domain knowledge helps a lot here
— Examples
« PC
— The header values of executables
* Mobile
— Set of privileges (in androidmanifest.xml)
* Both
— Obfuscation status
— Feature selection methods can be used to limit the number of features

» For example, low-variance features can be removed (i.e., having similar
values for both benign and malcious apps)

LINKOPING
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Training

* Models have some parameters which during the
training phase are optimized using the training data

— This optimization happens based on a particular
metric.

— This particular metric is usually the classification
Or regression error

LINKOPING
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Training (Example)

« Linear regression
— We have a set of (X;, Y;) training points
— We want to find the regression line

 Which with the least error estimates the

points
« F=aX+b
— Aopt?
- bopt?

38
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Training(Example)

« Learning workflow

— For each point X, compute the response F;

® Fl = aXl + b
— Compute ERR, , = SUM((F;- Y;)?) °
— Now we can compute q,,, and b,,,

* Which minimizes ERR,, Y

— Closed form ® o
— Optimization :

« This was a regression example b

— For the classification, for example X

* We can find the discriminative line or hyperplane between the points

II LINKOPING
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Testing

« After finding the optimal values of parameters (in this case
a and b) we test it on testing data.

— To see whether it can generalize to unseen data
— Or it has just memorized the training data
 In this case (testing) we will also have some error
— We train a model by minimizing its error on the training data
— The training error is different from the testing error
— This testing error value is computed on test data

» Must not overlap with training data — otherwise testing
results will be biased

LINKOPING
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Machine Learning-based Malware Detection
Challenges

e Under- and Over-fitting

Imbalanced datasets

Performance evaluation measures

« Dataset quality

41
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Underfitting and Overfitting

* Underfitting

— The model is unable to obtain a low error even on the
training set

» Model might be too simple (too few parameters) to
accurately reflect training data — too low learning
capacity

« Opverfitting (Memorization)
— The training error is small, but not the testing error

« Model might have too many parameters compared to
the volume of training data — too high learning capacity

LINKOPING
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Underfitting and Overfitting

UHderﬁﬁﬁn@
SRV e
RV errc
» X1
Classification Regression

OverPHHng

43

Classification

Regre;r;ion
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Underfitting and Overfitting

44

Solution: Adjust model complexity to minimize error

Most ML algorithms have several tunable hyperparameters
(= parameters not learned directly from training data)

— Number of hidden layers in neural networks, maximum depth of decision

trees in random forest, etc.

Hyperparameter tuning: Test different
combinations of hyperparameters until
we get the best generalization on
testing/validation data

New problem: What if we don’t
have enough data to “spare” for a
separate test set?

Error

< Underfitting | Overfitting =2

Best: Fit

~ TrQ,i'ﬂ”g Error

Model “complexity”

LINKOPING
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Cross-Validation

« Basicidea

— Each observation in our dataset has the opportunity of being tested
« Procedure for k-fold cross validation

— We divide the dataset into k sets

— For k rounds, we go over the dataset, and in each round (or fold):

* One part is used for validation (testing)

Validation Training
o« e . Fold Fold
» Remaining parts used for training S B
1st | | I |—> Performance
* Based on the average performance -
value across all k folds, we can select o ™ [ B [ [ | reromance,
the optimal hyperparameters 2 s [ [ L | |— rerormnces | rerormance
2 = |
§ 4th | I | D |—> Performance 4 — 2 gPerformance‘
¥
5th | | | | — Performance 5
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The problem of imbalanced datasets

« Malware datasets are usually imbalanced

« Suppose that we have a dataset in which 99 percent of samples are
benign

— Now a naive malware detection classifier which classifies all the
samples as being benign reaches an accuracy of 99 percent

— Probably no other model can reach this optimal accuracy
— But is accuracy a good metric to train the model on?
— Evidently not. This model cannot detect any malware!

 Accuracy only meaningful when we have a 50/50 distribution
of malware and benign samples

* We need to focus on some other performance measures!

46
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relevant elements
I 1

false negatives true negatives

Performance Measures

Accuracy

TP+TN
TP+FP+TN+FN

« Recall (Sensitivity)

TP
TP+FN

o PI‘ECiSiOIl selected elements

TP
How many selected How many relevant

TP'I‘FP items are relevant? items are selected?

» F-score : F-Score is the weighted average
of Precision and Recall. Precision =

Recall = ——

2 * precision x recall

precision+recall

II LINKOPING
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Dataset quality

« Having a representative dataset is crucial for machine
learning methods.

— Recall the bad practice for data collection
 Itis not possible to train the models on the end points
— We cannot collect representative data there!

* The training is done on the cloud

LINKOPING
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Summary

We motivated the need for mobile malware detection
We discussed mobile malware specific challenges
— Low-powered devices, app isolation, ...
Mobile malware risks were reviewed
— System damage, economic risks, privacy risk, ...
We reviewed the security model of i0OS and Android
— We discussed the differences between i0OS and Android vetting processes
We have reviewed different techniques for mobile malware detection
— Static, dynamic, hybrid

Obfuscation techniques were reviewed

49
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Summary

« The role of machine learning in malware detection
« Different learning types:
— Supervised
* Classification
— Binary classification vs anomaly detection
» Regression
— Unsupervised

* Clustering

50
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Summary

« ML-based Malware Detection procedure
— Collecting training data
— Extracting features from training data
— Training the model
— Validating the model
« Machine Learning-based Malware Detection Challenges
— Under- and Overfitting
— Imbalanced datasets
— Performance evaluation measures

— Dataset quality
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