System Security – Malware Defense II TDDE62 – Information Security: Privacy, System and Network Security

Ulf Kargén Department of Computer and Information Science Linköping University

Original slides by Alireza Mohammadinodooshan

What Has Been Covered ...

- Malware basics
 - Different types of functionality
 - Different infection methods
- AV cat and mouse game
 - Signature-based detection
 - Static heuristics
 - Static unpacking and emulation
 - Cloud-based detection
 - Machine learning detection

Agenda

- Mobile malware
 - Specific challenges
 - Specific risks
 - Security models and their effect on malware detection
 - iOS
 - Android
 - Detection countermeasures
- Machine learning for malware detection
 - Motivation
 - Terminology
 - Learning types
 - Machine learning-based malware detection challenges

Mobile Malware Definition

- Malicious software designed to attack mobile devices
 - Phone
 - Tablet
 - Watch
 - TV

Samples of Mobile Malware

- iOS stock
 - PawnStorm.A
 - Able to upload GPS location, contact list, photos to a remote server.
 - YiSpecter
 - Able to download, install and launch arbitrary apps
- Android
 - Android/Filecoder.C
 - Able to spread via text messages and contains a malicious link. Encrypts all of your local files in exchange for a ransom between \$94 and \$188.
 - Plankton
 - Communicates with a remote server, downloads and install other applications and sends premium SMS messages

- 1. Personal-info and privacy concerns
 - Banking info
 - Personal photos
 - Contact info
- 2. Widespread access to networks
 - 4G
 - Wifi
 - Bluetooth

- 3. Less computation power
 - Limited capabilities for on-device detection
- 4. Almost exclusively trojans
 - Repackaging
 - Add malicious functionality to a legitimate app, and re-release under own Android developer ID.
 - Much easier to reverse-engineer and modify Android apps than, e.g., PC software
 - A very simple technique is to replace the advertisement logic and re-bundle and publish the app
 - Fake apps also exist!

- 5. Due to limited computation power, most of the trust in apps is moved to app stores to analyze the apps
 - While for the 3rd party stores and perhaps to a degree even for the Google Play store, this is a mistrust (we will elaborate on this ...)
 - Attackers also have the motivation to deliver their malware through stores (official or third party)

- 6. Harder to detect with 3rd party AV on the device compared to PC malware due to stronger isolation (sandboxing) between apps
 - Memory isolation
 - User isolation
 - Each app is treated as a separate user on Android
 - Applications cannot interact with each other, and they have limited access to the system as well as other apps resources

Mobile Malware Risks

- System damage
 - Battery draining
 - Cryptocurrecy mining
 - Disabling system functions
 - Block calling functionality
 - Litter phone UI with ads
- Economic
 - Sending SMS or MMS messages to premium numbers
 - Dialing premium numbers
 - Deleting important data

Mobile Malware Risks

- Information leakage
 - Privacy-sensitive data (personal photos, contacts, etc.)
 - Stealing bank account information
- Disturbing mobile networks
 - Denial-of-service (DoS)

iOS Security Model

- System Security
 - Startup and updates are authorized
- Data security
 - File-level data protection uses strong encryption keys derived from the user's unique passcode.
- App security
 - Application run in their sandboxes.
 - More important than this ...

iOS Security Model

- Before releasing on App Store, apps go through a strict vetting process
 - Manual testing
 - Static analysis
 - Apps cannot do actions outside of what they claim
- Previously, Apple only allowed app installs from their own App Store
 - The EU now requires Apple to allow 3rd party app stores possibly not as strict vetting in those

Android Security Model

- Application Sandboxing
 - Android automatically assigns a unique Linux user ID to each app at installation
 - Each app runs as a unique "user" on Android
 - App is allowed to access:
 - Own files
 - World-accessible resources
 - More access:
 - Managed through defining in the *androidmanifest.xml*

 $E.g.: < \texttt{uses-permission} \ \texttt{android:name} = \texttt{"android.permission.READ_PHONE} \\ \texttt{STATE}'' > \texttt{android:name} = \texttt{"android.permission.READ_PHONE} \\ \texttt{android.permission.READ_PHONE} \\ \texttt{android.permission.READ_PHONE}$

Android Vetting Process

Android does not require an exhaustive app vetting process

- More lenient compared to iOS
- Apps are dynamically tested with a Google security service known as *Bouncer*
 - Attempts to exercise different code paths by interacting with app in simulator while checking for malicious behavior
 - The results are combined with the output coming from the Google reputation system
- Researchers have shown the feasibility of fingerprinting Bouncer*
 - Android ID, phone number, etc.
 - Malware may be able to bypass Bouncer by not displaying malicious behavior within Bouncer

Android Application Compiling

https://justamomentgoose.wordpress.com/2013/06/04/android-started-note-2-android-file-apk-decompile/

Android Architecture

- Android Runtime
 - Each app runs in its own process and with its own instance of the Android Runtime (ART).
 - It is possible to have compiled C/C++ code packaged with an Apk which can be called through Java Native Interface (JNI)
 - Apps are pre-compiled from Dalvik bytecode to native code during installation
 - Old Android versions ran Dalvik bytecode directly in a VM

https://developer.android.com/guide/platform

Androidmanifest.xml

- Provides the essential information to the Android system regarding this app
 - Minimum Android API
 - Linked libraries
 - Components, activities, services, ...
 - Required permissions

Mobile Malware Detection

- Static Code Analysis
 - Signature-based techniques
 - Specific strings or patterns in the byte code
 - Extracting the strings is straightforward
 - Permission-based techniques
 - Analyzing the requested permissions to identify the potential malware samples useful for heuristic flagging of potential malware
 - Dalvik bytecode-based techniques
 - Analyzing the byte code to identify malicious Android samples (API calls, data flows, ...)

Mobile Malware Detection

- Dynamic Behavior Analysis
 - Sequence of system/API calls
 - Accessed files
- Hybrid Analysis (dynamic + static)

Malware Detection Countermeasures

- Static
 - Obfuscation
 - Making the byte code hard to understand
 - Making signature or even some static heuristics-based analysis harder
 - Packing
- Dynamic
 - Sandbox detection
 - Many of the sandboxes still do not have real device behaviors
 - E.g. do not support GPS or do not have a real GPS accuracy

Obfuscation

- Identifier renaming
 - Replace identifiers (e.g., variable or method names) used in the source code with meaningless names, e.g., 'a', 'b', 'aa', 'ab', 'ac'
 - Mostly used to prevent humans from reverse-engineering apps
- String encryption
 - Replacing constant strings with their encrypted form and adding the code to decrypt them on the fly
- Control-flow obfuscation: changing the logical flow of the program
 - Injecting dead code, re-ordering statements
 - Inserting *opaque predicates*
 - Generally harder to do control-flow obfuscation on Android apps – more strict checks on control-flow consistency than native code

```
obj = benign()
v1 = 10
v2 = [v1 for i in range(10)]
if v1 == v2[0]:
obj = malware()
obj.load()
```


Packing

Different schemes for packing

- Encrypt individual classes, decrypt at startup
- Encrypt all code, decrypt at startup
- Encrypt individual methods, decrypt on the fly, remove from memory when done executing

Some advanced packers implement unpacking in obfuscated native-code libs

Machine Learning for Malware Analysis

Why?

- Creating detection rules (signatures) manually couldn't keep up with the emerging flow of malware.
 – Zero-day malware
- Need a more reliable method when we know that the relation between the sample features is hard to find for the human
- Sometimes we need a triage method
 - A procedure we use to prioritize the samples that should be examined

Machine Learning

- Machine learning is a set of methods that gives computers the ability to learn without being explicitly programmed
 - Learning from the data
 - It is used when we want to (explicitly or implicitly) learn relations between variables using some available data (known as *training data*)

Terminology

- (Predictive) Model: The hidden relation
- Training data: Data based on which we make the model
- Testing data: Data based on which we evaluate the model
- (Hidden relation) Learning types:
 - Unsupervised
 - Supervised

Unsupervised learning

- Given features **X** (X1 and X2 in the following figure)
- The goal is to *discover* the structure of the data
 - Clustering: splitting a data set into groups of similar objects
 - Application example
 - Grouping malware into potential families

Supervised Learning

- Having *both* **X** (X1 and X2 in the following figure) and **y** (the colors in the figure) we try to learn the relation between them (**X** and **y**)
- For example, malware detection:
 - **X**: features of malware and benign apps
 - **y**: "*malware*" or "*benign*" label

Classification vs. Regression

Classification

- When **y** is a *categorical* variable
 - For example, "malware" or "benign" (binary classification)
- Also: So called one-class classification or **anomaly detection**
 - Train classifier to learn distribution of expected (or "normal") data
 - Detect samples that *deviate* too much from the training data

Regression

- When **y** is a *continuous* variable
 - For example, probability of belonging to a specific malware family (e.g., can be used for triaging the app)

ML-based Malware Detection procedure

- Collecting training data
- Extracting features from training data
- Training the model: finding the model
- Testing (Evaluating) the model

ML-based Malware Detection Workflow

Collect Training data

Dataset should be representative of real-world malware

- Example of bad practice
 - Suppose that we collected some benign and malware samples, but
 - all benign apps happen to have sizes > 1 MB, and
 - all malware samples happen to be < 100 kB
 - Not representative of all malware/benign apps ...
 - The model overfits to this unrealistic pattern
 - For example, model might classify *all* small apps as malware!

Extracting Features

- The extracted features should be relevant.
- Usually, domain knowledge helps a lot here
 - Examples
 - PC
 - The header values of executables
 - Mobile
 - Set of privileges (in androidmanifest.xml)
 - Both
 - Obfuscation status
 - Feature selection methods can be used to limit the number of features
 - For example, low-variance features can be removed (i.e., having similar values for both benign and malcious apps)

Training

- Models have some *parameters* which during the training phase are optimized using the training data
 - This optimization happens based on a particular metric.
 - This particular metric is usually the classification or regression error

Training (Example)

- Linear regression
 - We have a set of (X_i, Y_i) training points
 - We want to find the regression line
 - Which with the least error estimates the points

•
$$F = aX + b$$

$$-a_{opt?}$$

 $-b_{opt?}$

Training(Example)

- Learning workflow
 - For each point X_i compute the response F_i
 - $F_i = aX_i + b$
 - Compute $ERR_{tot} = SUM((F_i Y_i)^2)$
 - Now we can compute a_{opt} and b_{opt}
 - Which minimizes *ERR*_{tot}
 - Closed form
 - Optimization
- This was a regression example
 - For the classification, for example
 - We can find the discriminative line or hyperplane between the points

Testing

- After finding the optimal values of parameters (in this case *a* and *b*) we test it on *testing data*.
 - To see whether it can generalize to unseen data
 - Or it has just memorized the training data
- In this case (testing) we will also have some error
 - We train a model by minimizing its error on the *training data*
 - The training error is different from the testing error
 - This testing error value is computed on test data
 - Very important: Training data must not overlap with training data otherwise testing results will be biased

Machine Learning-based Malware Detection Challenges

- Under- and Over-fitting
- Imbalanced datasets
- Performance evaluation measures
- Dataset quality

Underfitting and Overfitting

- Underfitting
 - The model is unable to obtain a low error even on the training set
 - Model might be too simple (too few parameters) to accurately reflect training data too low *learning capacity*
- Overfitting (Memorization)
 - The training error is small, but not the testing error
 - Model might have *too many parameters* compared to the volume of training data *too high* learning capacity
 - Model learns "noise" in training data

Underfitting and Overfitting

https://blog.booleanhunter.com/using-machine-learning-to-predict-the-quality-of-wines/

Underfitting and Overfitting

Solution: Adjust model complexity to minimize error

- Most ML algorithms have several tunable *hyperparameters* (= parameters **not** learned directly from training data)
 - Number of hidden layers in neural networks, maximum depth of decision trees in random forest, etc.
- Hyperparameter tuning: Test different combinations of hyperparameters until we get the best generalization on testing/validation data
- New problem: What if we don't have enough data to "spare" for a separate test set?

Cross-Validation

- Basic idea
 - Each observation in our dataset has the opportunity of being tested
- Procedure for *k*-fold cross validation
 - We divide the dataset into *k* sets
 - For k rounds, we go over the dataset, and in each round (or *fold*):
 - One part is used for validation (testing)
 - Remaining parts used for training
 - Based on the average performance value across all *k* folds, we can select the optimal hyperparameters

http://ethen8181.github.io/machine-learning/model_selection/model_selection.html

The problem of imbalanced datasets

- Malware datasets are usually imbalanced
- Suppose that we have a dataset in which 99 percent of samples are benign
 - Now a naïve malware detection classifier which classifies all the samples as being benign reaches an accuracy of 99 percent
 - Probably no other model can reach this optimal accuracy
 - But is accuracy a good metric to train the model on?
 - Evidently not. This model cannot detect any malware!
 - Accuracy only meaningful when we have a 50/50 distribution of malware and benign samples
- We need to focus on some other performance measures!

Performance Measures

• Accuracy

 $\frac{TP+TN}{TP+FP+TN+FN}$

• Recall (Sensitivity)

 $\frac{TP}{TP+FN}$

• Precision

 $\frac{TP}{TP+FP}$

• F-score : F-Score is the harmonic mean of Precision and Recall.

2 * precision * recall precision+recall

relevant elements

Dataset quality

- Having a representative dataset is crucial for machine learning methods.
 - Recall the bad practice for data collection
- It is not possible to train the models on the end points
 We cannot collect representative data there!
- The training is done on the cloud

Summary

- We motivated the need for mobile malware detection
- We discussed mobile malware specific challenges
 - Low-powered devices, app isolation, ...
- Mobile malware risks were reviewed
 - System damage, economic risks, privacy risk, ...
- We reviewed the security model of iOS and Android
 - We discussed the differences between iOS and Android vetting processes
- We have reviewed different techniques for mobile malware detection
 - Static, dynamic, hybrid
- Obfuscation techniques were reviewed

Summary

- The role of machine learning in malware detection
- Different learning types:
 - Supervised
 - Classification
 - Binary classification vs anomaly detection
 - Regression
 - Unsupervised
 - Clustering

Summary

- ML-based Malware Detection procedure
 - Collecting training data
 - Extracting features from training data
 - Training the model
 - Validating the model
- Machine Learning-based Malware Detection Challenges
 - Under- and Overfitting
 - Imbalanced datasets
 - Performance evaluation measures
 - Dataset quality

