
System Security – Malware Defense II
TDDE62 – Information Security:
Privacy, System and Network Security

Ulf Kargén
Department of Computer and Information Science
Linköping University

Original slides by Alireza Mohammadinodooshan

What Has Been Covered …

• Malware basics

– Different types of functionality

– Different infection methods

• AV cat and mouse game

– Signature-based detection

– Static heuristics

– Static unpacking and emulation

– Cloud-based detection

– Machine learning detection

2TDDE62 - Malware Defense II

Agenda
• Mobile malware

– Specific challenges

– Specific risks

– Security models and their effect on malware detection

• iOS

• Android

– Detection countermeasures

• Machine learning for malware detection

– Motivation

– Terminology

– Learning types

– Machine learning-based malware detection challenges

3TDDE62 - Malware Defense II

Mobile Malware Definition

• Malicious software designed to attack mobile devices

– Phone

– Tablet

– Watch

– TV

6TDDE62 - Malware Defense II

Samples of Mobile Malware

• iOS stock

– PawnStorm.A

• Able to upload GPS location, contact list, photos to a remote server.

– YiSpecter

• Able to download, install and launch arbitrary apps

• Android

– Android/Filecoder.C

• Able to spread via text messages and contains a malicious link. Encrypts all of
your local files in exchange for a ransom between $94 and $188.

– Plankton

• Communicates with a remote server, downloads and install other applications
and sends premium SMS messages

7

https://forensics.spreitzenbarth.de/

TDDE62 - Malware Defense II

Mobile Malware Specific Challenges

1. Personal-info and privacy concerns

– Banking info

– Personal photos

– Contact info

2. Widespread access to networks

– 4G

– Wifi

– Bluetooth

8TDDE62 - Malware Defense II

Mobile Malware Specific Challenges

3. Less computation power

– Limited capabilities for on-device detection

4. Almost exclusively trojans

– Repackaging

• Add malicious functionality to a legitimate app, and re-release
under own Android developer ID.

– Much easier to reverse-engineer and modify Android apps
than, e.g., PC software

• A very simple technique is to replace the advertisement logic
and re-bundle and publish the app

– Fake apps also exist!

9TDDE62 - Malware Defense II

Mobile Malware Specific Challenges

5. Due to limited computation power, most of the trust
in apps is moved to app stores to analyze the apps

– While for the 3rd party stores and perhaps to a degree even
for the Google Play store, this is a mistrust (we will elaborate
on this …)

– Attackers also have the motivation to deliver their malware
through stores (official or third party)

10TDDE62 - Malware Defense II

Mobile Malware Specific Challenges

6. Harder to detect with 3rd party AV on the device
compared to PC malware due to stronger isolation
(sandboxing) between apps

– Memory isolation

– User isolation

• Each app is treated as a separate user on Android

• Applications cannot interact with each other, and they have
limited access to the system as well as other apps resources

11TDDE62 - Malware Defense II

Mobile Malware Risks

• System damage

– Battery draining

– Cryptocurrecy mining

– Disabling system functions

• Block calling functionality

• Litter phone UI with ads

• Economic

– Sending SMS or MMS messages to premium numbers

– Dialing premium numbers

– Deleting important data

12

Peng, S., Yu, S., & Yang, A. (2013). Smartphone malware and its propagation modeling: A
survey. IEEE Communications Surveys & Tutorials, 16(2), 925-941

TDDE62 - Malware Defense II

Mobile Malware Risks

• Information leakage

– Privacy-sensitive data (personal photos, contacts, etc.)

– Stealing bank account information

• Disturbing mobile networks

– Denial-of-service (DoS)

13TDDE62 - Malware Defense II

iOS Security Model

• System Security

– Startup and updates are authorized

• Data security

– File-level data protection uses strong encryption keys
derived from the user’s unique passcode.

• App security

– Application run in their sandboxes.

– More important than this …

14

https://developer.apple.com/app-store/review/

TDDE62 - Malware Defense II

iOS Security Model

• Before releasing on App Store, apps go through a
strict vetting process

– Manual testing

– Static analysis

– Apps cannot do actions outside of what they claim

• Previously, Apple only allowed app installs from their
own App Store

– The EU now requires Apple to allow 3rd party app stores –
possibly not as strict vetting in those

15TDDE62 - Malware Defense II

Android Security Model

• Application Sandboxing

– Android automatically assigns a unique Linux user ID to each app at
installation

• Each app runs as a unique “user” on Android

– App is allowed to access:

• Own files

• World-accessible resources

– More access:

• Managed through defining in the androidmanifest.xml

E.g.: <uses-permission android:name="android.permission.READ_PHONE_STATE"/>

16TDDE62 - Malware Defense II

Android Vetting Process

Android does not require an exhaustive app vetting process

• More lenient compared to iOS

• Apps are dynamically tested with a Google security service known as
Bouncer

– Attempts to exercise different code paths by interacting with app in
simulator while checking for malicious behavior

– The results are combined with the output coming from the Google
reputation system

• Researchers have shown the feasibility of fingerprinting Bouncer*

– Android ID, phone number, etc.

– Malware may be able to bypass Bouncer by not displaying
malicious behavior within Bouncer

17

* https://jon.oberheide.org/files/summercon12-bouncer.pdf

TDDE62 - Malware Defense II

https://jon.oberheide.org/files/summercon12-bouncer.pdf

Android Application Compiling

18

https://justamomentgoose.wordpress.com/2013/06/04/android-started-note-2-android-file-
apk-decompile/

Bytecode for

Dalvik VM

(c.f. Java VM)

TDDE62 - Malware Defense II

https://justamomentgoose.wordpress.com/2013/06/04/android-started-note-2-android-file-apk-decompile/
https://justamomentgoose.wordpress.com/2013/06/04/android-started-note-2-android-file-apk-decompile/

Android Architecture

• Android Runtime

– Each app runs in its own process and with its
own instance of the Android Runtime (ART).

– It is possible to have compiled C/C++ code
packaged with an Apk which can be called
through Java Native Interface (JNI)

– Apps are pre-compiled from Dalvik bytecode
to native code during installation

• Old Android versions ran Dalvik
bytecode directly in a VM

19

https://developer.android.com/guide/platform

TDDE62 - Malware Defense II

https://developer.android.com/guide/platform

Androidmanifest.xml

• Provides the essential information to the Android
system regarding this app

– Minimum Android API

– Linked libraries

– Components, activities, services, …

– Required permissions

20TDDE62 - Malware Defense II

Mobile Malware Detection

• Static Code Analysis

– Signature-based techniques

• Specific strings or patterns in the byte code

• Extracting the strings is straightforward

– Permission-based techniques

• Analyzing the requested permissions to identify the potential
malware samples – useful for heuristic flagging of potential
malware

– Dalvik bytecode-based techniques

• Analyzing the byte code to identify malicious Android samples
(API calls, data flows, …)

21TDDE62 - Malware Defense II

Mobile Malware Detection

• Dynamic Behavior Analysis

– Sequence of system/API calls

– Accessed files

• Hybrid Analysis (dynamic + static)

22TDDE62 - Malware Defense II

Malware Detection Countermeasures

• Static

– Obfuscation

• Making the byte code hard to understand

• Making signature or even some static heuristics-based analysis
harder

– Packing

• Dynamic

– Sandbox detection

• Many of the sandboxes still do not have real device behaviors

– E.g. do not support GPS or do not have a real GPS
accuracy

23TDDE62 - Malware Defense II

Obfuscation
• Identifier renaming

– Replace identifiers (e.g., variable or method names) used in the source code
with meaningless names, e.g., ’a’, ‘b’, ‘aa’, ‘ab’, ‘ac’

– Mostly used to prevent humans from reverse-engineering apps

• String encryption

– Replacing constant strings with their encrypted form and adding the code to
decrypt them on the fly

• Control-flow obfuscation: changing the logical
flow of the program

– Injecting dead code, re-ordering statements

– Inserting opaque predicates

– Generally harder to do control-flow obfuscation
on Android apps – more strict checks on
control-flow consistency than native code

24

obj = benign()
v1 = 10
v2 = [v1 for i in range(10)]
if v1 == v2[0]:

obj = malware()
obj.load()

TDDE62 - Malware Defense II

Packing

25TDDE62 - Malware Defense II

Different schemes for packing

• Encrypt individual classes, decrypt at startup

• Encrypt all code, decrypt at startup

• Encrypt individual methods, decrypt on the fly, remove from memory
when done executing

Some advanced packers implement unpacking in obfuscated
native-code libs

Machine Learning for
Malware Analysis

Why?

• Creating detection rules (signatures) manually
couldn’t keep up with the emerging flow of malware.

– Zero-day malware

• Need a more reliable method when we know that the
relation between the sample features is hard to find
for the human

• Sometimes we need a triage method

– A procedure we use to prioritize the samples that
should be examined

27TDDE62 - Malware Defense II

Machine Learning

• Machine learning is a set of methods that gives
computers the ability to learn without being explicitly
programmed

– Learning from the data

– It is used when we want to (explicitly or implicitly)
learn relations between variables using some
available data (known as training data)

28TDDE62 - Malware Defense II

Terminology

• (Predictive) Model: The hidden relation

• Training data: Data based on which we make the
model

• Testing data: Data based on which we evaluate the
model

• (Hidden relation) Learning types:

– Unsupervised

– Supervised

29TDDE62 - Malware Defense II

• Given features X (X1 and X2 in the following figure)

• The goal is to discover the structure of the data

– Clustering: splitting a data set into groups of similar objects

• Application example

– Grouping malware into
potential families

Unsupervised learning

30

X1

X1

X2

TDDE62 - Malware Defense II

Supervised Learning

• Having both X (X1 and X2 in the following figure) and y (the colors in the

figure) we try to learn the relation between them (X and y)

• For example, malware detection:

– X: features of malware and benign apps

– y: “malware” or “benign” label

31

X1

X2

TDDE62 - Malware Defense II

Classification vs. Regression

Classification

• When y is a categorical variable

– For example, “malware” or “benign” (binary classification)

• Also: So called one-class classification or anomaly detection

– Train classifier to learn distribution of expected (or “normal”) data

– Detect samples that deviate too much from the training data

Regression

• When y is a continuous variable

– For example, probability of belonging to a specific malware family
(e.g., can be used for triaging the app)

32TDDE62 - Malware Defense II

ML-based Malware Detection procedure

• Collecting training data

• Extracting features from training data

• Training the model: finding the model

• Testing (Evaluating) the model

33TDDE62 - Malware Defense II

ML-based Malware Detection Workflow

34

Benign apps

Malwares

Feature
extraction

Benign app
features

Malware
features

Training Predictive
model

Predictive
model

Unknown app

Testing

TDDE62 - Malware Defense II

Benign

Malware
?

Collect Training data

Dataset should be representative of real-world malware

• Example of bad practice

– Suppose that we collected some benign and malware samples, but

• all benign apps happen to have sizes > 1 MB, and

• all malware samples happen to be < 100 kB

– Not representative of all malware/benign apps …

– The model overfits to this unrealistic pattern

• For example, model might classify all small apps as malware!

35TDDE62 - Malware Defense II

Extracting Features

• The extracted features should be relevant.

• Usually, domain knowledge helps a lot here

– Examples

• PC

– The header values of executables

• Mobile

– Set of privileges (in androidmanifest.xml)

• Both

– Obfuscation status

– Feature selection methods can be used to limit the number of features

• For example, low-variance features can be removed (i.e., having similar
values for both benign and malcious apps)

36TDDE62 - Malware Defense II

Training

• Models have some parameters which during the
training phase are optimized using the training data

– This optimization happens based on a particular
metric.

– This particular metric is usually the classification
or regression error

37TDDE62 - Malware Defense II

Training (Example)

• Linear regression

– We have a set of (Xi , Yi) training points

– We want to find the regression line

• Which with the least error estimates the
points

• F = aX + b

– aopt ?

– bopt ?

38

X1

X

Y

b

TDDE62 - Malware Defense II

Training(Example)

• Learning workflow

– For each point Xi compute the response Fi

• Fi = aXi + b

– Compute ERRtot = SUM((Fi - Yi)
2)

– Now we can compute aopt and bopt

• Which minimizes ERRtot

– Closed form

– Optimization

• This was a regression example

– For the classification, for example

• We can find the discriminative line or hyperplane between the points

39

X1

X

Y

b

TDDE62 - Malware Defense II

Testing

• After finding the optimal values of parameters (in this case
a and b) we test it on testing data.

– To see whether it can generalize to unseen data

– Or it has just memorized the training data

• In this case (testing) we will also have some error

– We train a model by minimizing its error on the training data

– The training error is different from the testing error

– This testing error value is computed on test data

• Very important: Training data must not overlap with
training data – otherwise testing results will be biased

40TDDE62 - Malware Defense II

Machine Learning-based Malware Detection
Challenges

• Under- and Over-fitting

• Imbalanced datasets

• Performance evaluation measures

• Dataset quality

41TDDE62 - Malware Defense II

Underfitting and Overfitting

• Underfitting

– The model is unable to obtain a low error even on the
training set

• Model might be too simple (too few parameters) to
accurately reflect training data – too low learning
capacity

• Overfitting (Memorization)

– The training error is small, but not the testing error

• Model might have too many parameters compared to
the volume of training data – too high learning capacity

• Model learns “noise” in training data

42TDDE62 - Malware Defense II

Underfitting and Overfitting

43

https://blog.booleanhunter.com/using-machine-learning-to-predict-the-quality-of-wines/

TDDE62 - Malware Defense II

https://blog.booleanhunter.com/using-machine-learning-to-predict-the-quality-of-wines/

Solution: Adjust model complexity to minimize error

• Most ML algorithms have several tunable hyperparameters
(= parameters not learned directly from training data)

– Number of hidden layers in neural networks, maximum depth of decision
trees in random forest, etc.

• Hyperparameter tuning: Test different
combinations of hyperparameters until
we get the best generalization on
testing/validation data

• New problem: What if we don’t
have enough data to “spare” for a
separate test set?

44

https://vitalflux.com/overfitting-underfitting-concepts-interview-questions

Underfitting and Overfitting

TDDE62 - Malware Defense II

https://vitalflux.com/overfitting-underfitting-concepts-interview-questions/

Cross-Validation

• Basic idea

– Each observation in our dataset has the opportunity of being tested

• Procedure for k-fold cross validation

– We divide the dataset into k sets

– For k rounds, we go over the dataset, and in each round (or fold):

• One part is used for validation (testing)

• Remaining parts used for training

• Based on the average performance
value across all k folds, we can select
the optimal hyperparameters

45

http://ethen8181.github.io/machine-learning/model_selection/model_selection.html

TDDE62 - Malware Defense II

http://ethen8181.github.io/machine-learning/model_selection/model_selection.html

The problem of imbalanced datasets

• Malware datasets are usually imbalanced

• Suppose that we have a dataset in which 99 percent of samples are
benign

– Now a naïve malware detection classifier which classifies all the
samples as being benign reaches an accuracy of 99 percent

– Probably no other model can reach this optimal accuracy

– But is accuracy a good metric to train the model on?

– Evidently not. This model cannot detect any malware!

• Accuracy only meaningful when we have a 50/50 distribution
of malware and benign samples

• We need to focus on some other performance measures!

46TDDE62 - Malware Defense II

Performance Measures

• Accuracy

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

• Recall (Sensitivity)

𝑇𝑃

𝑇𝑃+𝐹𝑁

• Precision

𝑇𝑃

𝑇𝑃+𝐹𝑃

• F-score : F-Score is the harmonic mean
of Precision and Recall.

2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

47

https://en.wikipedia.org/wiki/Precision_and_recall

TDDE62 - Malware Defense II

https://en.wikipedia.org/wiki/Precision_and_recall

Dataset quality

• Having a representative dataset is crucial for machine
learning methods.

– Recall the bad practice for data collection

• It is not possible to train the models on the end points

– We cannot collect representative data there!

• The training is done on the cloud

48TDDE62 - Malware Defense II

Summary
• We motivated the need for mobile malware detection

• We discussed mobile malware specific challenges

– Low-powered devices, app isolation, ...

• Mobile malware risks were reviewed

– System damage, economic risks, privacy risk, ...

• We reviewed the security model of iOS and Android

– We discussed the differences between iOS and Android vetting processes

• We have reviewed different techniques for mobile malware detection

– Static, dynamic, hybrid

• Obfuscation techniques were reviewed

49TDDE62 - Malware Defense II

Summary

• The role of machine learning in malware detection

• Different learning types:

– Supervised

• Classification

– Binary classification vs anomaly detection

• Regression

– Unsupervised

• Clustering

50TDDE62 - Malware Defense II

Summary

• ML-based Malware Detection procedure

– Collecting training data

– Extracting features from training data

– Training the model

– Validating the model

• Machine Learning-based Malware Detection Challenges

– Under- and Overfitting

– Imbalanced datasets

– Performance evaluation measures

– Dataset quality

51TDDE62 - Malware Defense II

	Bild 1: System Security – Malware Defense II TDDE62 – Information Security: Privacy, System and Network Security
	Bild 2: What Has Been Covered …
	Bild 3: Agenda
	Bild 6: Mobile Malware Definition
	Bild 7: Samples of Mobile Malware
	Bild 8: Mobile Malware Specific Challenges
	Bild 9: Mobile Malware Specific Challenges
	Bild 10: Mobile Malware Specific Challenges
	Bild 11: Mobile Malware Specific Challenges
	Bild 12: Mobile Malware Risks
	Bild 13: Mobile Malware Risks
	Bild 14: iOS Security Model
	Bild 15: iOS Security Model
	Bild 16: Android Security Model
	Bild 17: Android Vetting Process
	Bild 18: Android Application Compiling
	Bild 19: Android Architecture
	Bild 20: Androidmanifest.xml
	Bild 21: Mobile Malware Detection
	Bild 22: Mobile Malware Detection
	Bild 23: Malware Detection Countermeasures
	Bild 24: Obfuscation
	Bild 25: Packing
	Bild 26: Machine Learning for Malware Analysis
	Bild 27: Why?
	Bild 28: Machine Learning
	Bild 29: Terminology
	Bild 30: Unsupervised learning
	Bild 31: Supervised Learning
	Bild 32: Classification vs. Regression
	Bild 33: ML-based Malware Detection procedure
	Bild 34: ML-based Malware Detection Workflow
	Bild 35: Collect Training data
	Bild 36: Extracting Features
	Bild 37: Training
	Bild 38: Training (Example)
	Bild 39: Training(Example)
	Bild 40: Testing
	Bild 41: Machine Learning-based Malware Detection Challenges
	Bild 42: Underfitting and Overfitting
	Bild 43: Underfitting and Overfitting
	Bild 44: Underfitting and Overfitting
	Bild 45: Cross-Validation
	Bild 46: The problem of imbalanced datasets
	Bild 47: Performance Measures
	Bild 48: Dataset quality
	Bild 49: Summary
	Bild 50: Summary
	Bild 51: Summary

