
System Security – Malware Defense I
TDDE62 – Information Security:
Privacy, System and Network Security

Ulf Kargén
Department of Computer and Information Science
Linköping University

Malware Defense – Agenda

• Two lectures

– Lecture I: Malware basics, malware on the PC, antivirus
techniques

– Lecture II: Mobile malware and machine learning for
malware detection

• Today’s agenda:

– Basic concepts and terminology

– Types of malware

– The malware detection cat-and-mouse game

• Common techniques used by antivirus software

• Common obfuscation used by malware to evade detection

2

325,000 new unique malware samples per day according
to AV-TEST

• Around 1.1 billion known unique malware samples exist today

Estimated cost of cyberattacks 2023 was $8 trillion

3

Definition and Terminology

Malware is software designed with the intention of
causing some harmful effects.

Basic terminology

• A piece of malware typically belong to an entire family of malicious software with
similar functionality and code structure

– New variants of a family appear as malware authors update their code to add
new functionality, or to evade existing malware defenses

• An individual member of a family is called a variant

• A specific malware binary is typically referred to as a sample

Most PC malware target the Windows platform due to its large market share

• Mac and Linux malware also exist, but is comparably more rare

• Today, smartphones are also heavily targeted by malware authors – more about
this in next lecture

5

Malware Naming

Antivirus (AV) companies often assign names to malware

• For example, “W32/Zeus.B” is the name given to a variant of the Zeus malware
by a particular AV company

Common that different AV companies use different names and naming
schemes

• For example, “Trojan-Spy:W32/Zbot” is an alias for the Zeus malware
(assigned by a different AV company)

• File hashes (e.g. MD5, SHA1 or SHA256) are typically used to uniquely identify
individual samples

6

Malware Nomenclature

Malware is divided into different types according to an “informal”
nomenclature

• Not entirely consistent…

Based on either

• The malware’s goal/functionality

• The method of infection

7

Malware Types based on Functionality
• Spyware extracts sensitive information from victim system and sends

it to attacker. Logs keystrokes or scrapes screen contents for stealing
e.g.:

– Credentials for email/social media accounts,

– Credit card numbers,

– Banking details

• Adware modifies e.g. browser settings to litter user with ad popups.

• Botnet clients silently turn victim machines into a remotely
controlled node in a botnet

– Malware connects to a Command & Control (C&C) server to
receive instructions from botnet operator

– Botnet can be used to stage DDoS attacks for e.g. extortion

– Operators of botnet frequently also rent out DDoS capacity to
other criminals

8

Malware Types based on Functionality
• Cryptojackers use infected computer’s hardware to mine

cryptocurrency for attackers

• Ransomware encrypts all files on hard drive and then requires a
ransom to be paid for restoring the system.

– Typically use public-key crypto Only operators have secret to decrypt files

– After ransom is paid (typically in Bitcoin), operators use C&C channel to
instruct malware to decrypt files

– Also common to threaten to release sensitive data if victim doesn’t pay

• Droppers are simple executables designed to “drop” other malware
onto a computer. Payload malware can either be contained inside
dropper itself, or be downloaded

• Remote Access Tools (RATs) provide remote “back door” access
into infected machines

• “Advanced Persistent Threats” (APTs) are advanced malware
designed to evade detection for an extended period of time. Used for
e.g. espionage (nation state or corporate) or “cyber warfare”.

9

Malware Types based on Method of Infection

Three main types based on infection strategy

• Viruses

• Worms

• Trojans

10

Malware Types based on Method of Infection

True viruses are the earliest form of malware

• Emerged during the 1980s – basically extinct today

• Needs a “host” program to be able to function

– When executed, virus will splice its own code into other
executables in system

11

11010101001011101010
10011011011010101001
01110101010011011001
10100010101101101001
10101010101011101001
00000000000000000000
00000000000000000000
00000000000000000000
01011101001010111010
11101101000101011011
01001111010101001011
10101010011011001101

00111001001011101010
10011011011010101001
01110101010011011001
10100010101101101001
10101010101011101001
00011010010001011101
11101111110101001101
01011111010011011010
01011101001010111010
11101101000101011011
01001111010101001011
10101010011011001101

Then virus code
is copied into

executable

…and entry
point is patched
to jump to virus

code

Virus must first
locate unused
part in victim

executable
(e.g. padding

between sections)

Virus code
jumps back to
real program

starting point to
retain program

functionality

Malware Types based on Method of Infection

Virus code must be small to allow piggybacking on existing
executables

• Viruses typically had simple functionality

• Written mostly as digital “pranks” (though some were extremely
destructive)

• Motivation was mostly the challenge itself and to “show off” to
others in the hacker community

Today, malware writers are almost exclusively motivated by some
kind of gains (economical, political, etc.)

• Viruses too simple to support “useful” functionality – therefore
basically unheard of nowadays

12

Malware Types based on Method of Infection

Worms are standalone malicious programs capable of
automatically spreading from system to system

• Most prevalent from mid-early 2000s until around 2010

• Typically exploits unprotected network shares or unpatched
vulnerabilities in network protocols to spread

• More rarely seen today

– Modern systems have sufficiently
hardened default configuration to
avoid automatically exploitable
flaws in most cases

– This means too few infectable
systems to support worm
“business model”

13

For example the Conficker worm
exploited a buffer overflow in a
Windows service to spread and
form a botnet.

Later versions attempted to
spread via poorly configured
network shares, using a dictionary
attack to attempt to break
password-protected shares.

Malware Types based on Method of Infection

Trojans are malware that attempts to pose as useful software to
trick victims into installing/running it

• A very broad term…

• In practice, used for most malware that doesn’t contain
functionality for automatically spreading to new
systems (i.e. everything that isn’t a virus or worm)

Trojans frequently pose as, for example

• Seemingly legitimate documents with malicious macros – drops malware onto
system if opened and macro execution is allowed

• Fake video codecs/players

• Fake antivirus software

• Fake pirated software/games or fake game “cracks” (DRM bypasses)

• Trojanized versions of real software

• … among others

14

Malware Types based on Method of Infection

According to recent statistics, > 90% of malware is delivered via
email (e.g. malicious Word documents)

Another common infection vector are drive-by-downloads

• Automatically infect users who visit a malicious web page

Often performed using an exploit kit (EK)

• Web app specifically designed to infect visitors with malware

• Either made for in-house use by organized crime group,
or sold to others on the black market

15

Exploit Kits

Attacks typically happen like this:

1. Attackers either manage to get an ad distributor to show malicious ads on a web
page, or they hack a legitimate web page

– Malicious ad or hacked page opens an iframe or redirects to exploit kit
landing page

2. Visitors of affected web page is redirected to EK landing page

3. EK uses the “user agent” information to find out OS and browser version

– Checks internal database for known exploits for the browser, and serves up
the right exploit to victim

4. Exploit runs in victim browser, and installs malware of attacker’s choice

EKs usually uses relatively “old” known exploits, taking advantage of users who
don’t install updates.

16

Malware Detection

Antivirus programs detect malware samples by scanning files of the
computer and matching them against signatures and heuristics

Exact inner workings of AV software is mostly kept secret

• Knowledge of commercial AV techniques pieced together from public
documentation, educated guesswork and reverse-engineering of AV
products…

17

Malware Detection – AV Fundamentals

AV software scan files in filesystem both periodically and on-demand

• By “hooking” system APIs for opening files, a file can be scanned as soon
as it is e.g. downloaded or the user attempts to access it

The database of malware signatures is updated typically several times a day

• AV companies typically receive millions of new samples every day

– Filtered using data-mining techniques before manual analysis to
create new signatures and updated heuristics to be sent out to clients

– Signatures can match individual samples or entire families of
malware

18

Malware Detection – Misclassification

The false negative rate (FNR) of an AV product determines how
many malwares that are missed (i.e. detected as benign software)

The false positive rate (FPR) determines how frequently benign
software is misclassified as malicious

• AV software must have a reasonably low FNR to be useful.

• It is crucial that AV have extremely low FPR!

– For example, important system files mistakenly flagged as malicious and
deleted by AV software can have disastrous effects!

Challenge: Malware authors often use obfuscation to increase chance of
AV misclassifying their malware as benign

• Primary reason is to prevent/slow down automatic detection

• Also to slow down manual analysis, but this is a secondary goal
(c.f., for example, DRM schemes where manual analysis is the main threat)

19

The Malware Detection Cat-and-Mouse Game

Malware authors constantly attempt new ways of evading AV software.

• AV companies constantly update their products to
defeat evasion techniques…

Most basic detection technique: Signatures

• Simple string matching (binary or ASCII) at fixed offsets in files
Example: “match the string X5O!P%@AP[4\PZX54(P^)7CC)7} at offset 126”

• Hashes over the entire file are sometimes also used – matches a specific sample

• Still the “main line of defense” in many AV products

Malware countermeasure: Simple polymorphism

• Change a few bytes, append or prepend data to executable – changes offsets or
content of matched sections

20

The Malware Detection Cat-and-Mouse Game

AV evolution: More complex signatures and static heuristics

• Signatures can be made more resilient to simple polymorphism by being
format-aware

– Parse headers of e.g. executable files and match against specific fields of
header

– However, this requires that AV software contains parsers for a huge
number of complex formats (executables, documents, etc.)

• Increases attack surface for software exploits against
the AV software itself !

• Several examples of exploitable vulnerabilities in AV in the past…

21

The Malware Detection Cat-and-Mouse Game

Fuzzy hashing is another type of advanced signature

• Hash functions constructed so that the difference between H(x) and H(y)
is “proportional” to difference between x and y (minimal diffusion)

• This is the opposite of what we want for cryptographic hashes!

Computing a “diff” between fuzzy hashes gives a good approximation of
the amount of difference between hash inputs

• Can be used as a kind of “soft” signatures to defeat simple polymorphism

22

The Malware Detection Cat-and-Mouse Game

Examples of ssdeep fuzzy hashes:

23

Proin sapien dolor, pellentesque tincidunt nulla id, aliquet
porttitor ligula. Phasellus euismod quam nunc, id ultrices
lorem aliquet eget. Nulla vel sem at sapien condimentum
porttitor sed mattis dolor. Maecenas id faucibus risus, ut
aliquet felis. Nulla efficitur nisi tellus, ut luctus massa
volutpat quis. Pellentesque ultrices pretium imperdiet. Nulla
laoreet ipsum turpis, id aliquam nisl volutpat sit amet. Nulla
eget odio ut nibh fringilla consequat eget quis quam. Duis in
lacinia cras amet.

Proin sapien dolor, pellentesque tincidunt nulla id, aliquet
porttitor ligula. Phasellus euismod quam nunc, id ultrices
lorem aliquet eget. Nulla vel sem at sapien condimentum
porttitor sed mattis dolor. Maecenas id faucibus risus, ut
aliquet felis. Nulla efficitur nisi tellus, ut luctus massa
volutpat quis. Pellentesque ultrices pretium imperdiet. Nulla
laoreet lorem turpis, id aliquam nisl volutpat sit amet. Nulla
eget odio ut nibh fringilla consequat eget quis quam. Duis in
lacinia cras amet.

12:08tK4FBFcKdQRsgYmK43MyGanjI
WUqQxozy:0jUFcKWjK431dUWVD+

12:08tK4FBFcKdQRsgYmK43MyranjI
WUqQxozy:0jUFcKWjK431+UWVD+

Proin sapien dolor, pellentesque tincidunt nulla id, aliquet
porttitor ligula. Phasellus euismod quam nunc, id ultrices
lorem aliquet eget. Nulla vel sem at sapien condimentum
porttitor sed mattis dolor. Maecenas id faucibus risus, ut
aliquet felis. Nulla efficitur nisi tellus, ut luctus massa
volutpat quis. Pellentesque ultrices pretium imperdiet. Nulla
laoreet ipsum turpis, id aliquam nisl volutpat sit amet. Nulla
eget odio ut nibh fringilla consequat eget quis quam. Duis in
lacinia cras amet.

Proin sapien dolor, pellentesque tincidunt nulla id, aliquet
porttitor ligula. Phasellus euismod quam nunc, id ultrices
lorem aliquet eget. Ut porttitor finibus massa sed commodo
sed mattis dolor. Maecenas id faucibus risus, ut aliquet felis.
Nulla efficitur nisi tellus, ut luctus massa volutpat quis.
Pellentesque ultrices pretium imperdiet. Nulla laoreet ipsum
turpis, id aliquam nisl volutpat sit amet. Nulla eget odio ut
nibh fringilla consequat eget quis quam. Duis in lacinia cras
amet.

12:08tK4FBFcKdQRsgYmK43MyGanjI
WUqQxozy:0jUFcKWjK431dUWVD+

12:08tK4FBFcKOb5V9RsgYmK43MyG
anjIWUqQxoz7v:0jUFcKOb5V9jK431d
UWVDXv

The Malware Detection Cat-and-Mouse Game

Heuristic matching is also common in AV engines

• Instead of “fingerprinting” malware using some unique signature, check for
general signs of suspiciousness

– If enough suspiciousness indicators are found, sample may be flagged as
potential malware

– Heuristic matching can have high FPR – often used as a pre-filter to
determine if a file should be subjected to more expensive (and precise)
analysis

• Heuristic engines are typically expert systems that approximate the decision-
making process of a human analyst – similar to a manually-crafted decision trees

Example of suspiciousness indicators:

• Certain combinations of API imports

• Malformed headers in executables

• Use of obfuscation

24

The Malware Detection Cat-and-Mouse Game

Malware countermeasure: Packing

• Wrap a compressed and/or encrypted copy of malicious executable
inside another executable

– File signature now looks completely different!

– Wrapper binary decrypts malicious code into memory and
transfers execution to it (Note that this is different from a dropper

that writes a malware executable to the file system)

– Easy to create malware with different signature by changing
crypto key

– Unpacking code can further be changed between samples
by employing polymorphism/metamorphism

• Tools that create such “packed” executables are referred to as packers

– Many free and commercial (for DRM purposes) packers

– Also special-purpose malware packers sold on black market

25

Encrypted
malicious

code

Decryption
code

Packed malware
binary

Umbrella terms for methods that transform an executable to “look” different
while preserving its original semantics (i.e. functionality)

Somewhat ill-defined terms…

• Many different exact definitions, but commonly defined roughly as:

– Polymorphism: Transformations that doesn’t actually change the
code of an executable. For example:

• Appending or prepending data

• Packing

• Encrypting resources (strings, etc.)

– Metamorphism: Transformations that create syntactic changes to
make code look different, while retaining semantics. For example:

• Different register allocations

• Superficial changes to control-flow (e.g. swapping order of code in
executable while retaining old flow relationships)

26Side Note: Polymorphism and
Metamorphism

The Malware Detection Cat-and-Mouse Game

AV evolution: Static unpacking and emulation

• For simple packers with known functionality, possible to statically unpack payload
executable

– Requires that crypto keys are stored at a known position in wrapper
executable

– More advanced packers compute keys dynamically, or use other tricks

• Therefore, most AV products today use emulation to run suspicious
binaries in a simulated environment

– Can apply signature matching after unpacking code has run – works also on
advanced or unknown packers

– Dynamic heuristics can be applied to check for
suspicious behavior (sequences of API calls,
API call arguments, etc.)

• Emulation is resource-intensive

– Typically applied only if heuristics indicate suspiciousness

– For example, a large high-entropy section in a binary indicates use of packing

27

The Malware Detection Cat-and-Mouse Game

Malware countermeasure 1: Emulator fingerprinting

• Perfect emulation is not possible in practice

– Emulator only handles subset of machine instructions

– Only a subset of system APIs are emulated – typically in a highly simplified
fashion

Possible for malware to detect that it runs in a simulated
environment and refrain from exposing malicious
functionality!

• AV companies need to constantly update their software to keep track with
emulation bypass techniques used in malware!

28

The Malware Detection Cat-and-Mouse Game

Malware countermeasure 2: Malware creation kits allow easy
creation of new malware variants – “overwhelm” AV companies
with new samples

• User-friendly modular tools sold on black market for malware creation

• Allows less tech-savvy cybercriminals to carry out e.g. ransomware attacks

AV evolution: Cloud-based detection

• Send samples for analysis in cloud instead of on local client

– Select candidates for cloud-based detection using e.g. heuristic
suspiciousness score

– Threat signatures can be updated in real time instead of periodic updates of
AV client software

• Allows more “expensive” analysis

– Advanced dynamic analysis (more accurate emulation, etc.)

– Machine learning based detection – topic of next lecture

29

Evading Antivirus Software

Possible to evade AV products with moderate effort

• Signature-based detection is still the most commonly used way to
detect malware

 Systematically try modifying different parts of a malware binary
until no AV detects it

Heuristic detection of entire families of malware is becoming more
common due to the ease of creating new malware variants.

• Also possible to evade:

– Black-box testing like above

– Manual reverse-engineering of AV to understand heuristic rules

30

Malware Detection Conclusions

AV good for protecting against (variants of) known malicious programs

• Protects mostly against non-targeted opportunistic attacks

• Newly created malware, or new variants of malware designed for
evasion, often slip through the net

Traditional AV mostly useless for detecting targeted APTs created by e.g.
nation states or advanced cybercrime groups, instead:

• (Semi-) manual auditing of computers and networks traffic

• Intrusion detection systems

31

Intrusion Detection
Use either Network Intrusion Detection System (NIDS)

• Detect e.g. anomalous traffic to C&C servers

or use Host Based Intrusion Detection System (HIDS) to detect
malicious activity on host computer

• Detect unexpected changes to filesystem

• Monitor program behavior

– Many AV products implement this kind of HIDS to detect e.g.
software exploits used to plant malware on machine

– Monitor system APIs to detect anomalies indicative of e.g. a
drive-by-download attack

• Processes unexpectedly starting threads, opening new
processes, loading new library binaries, opening sockets, etc.

• AV can suspend execution of suspect process and scan its
memory for e.g. signs of software exploits, etc.

– Still possible to evade by determined attacker…

32

Hindering Manual Reverse-Engineering
Main objective of using obfuscation in malware is to evade automatic
detection (dodging signatures or heuristics)

Also quite common to add obfuscation that slows down manual analysis

• Delay creation of signatures for new malware variants

Common approaches:

• Anti dynamic analysis tricks – make dynamic analysis with e.g.
debugger harder

– Detect if program is being debugged and, if so, terminate

• APIs for checking if a debugger is attached

• Scanning/checksumming own memory space to check for e.g.
added breakpoints in code sections

• Control-flow obfuscation – prevent reconstruction of control-flow
graph from a binary by using various code transformations

• Disassembly desynchronization – makes static analysis of executable
code harder by fooling disassemblers to output incorrect assembly

33

Summary
• Typically many variants of each malware family

• Different types of malicious goals

– Ransomware, spyware, botnets, etc.

• Different infection strategies – viruses, worms, trojans

– Most malware today are some form of trojan – either relies on
social engineering or software exploits (drive-by-downloads,
malicious email attachments, etc.)

• AV use signatures and heuristics for detection

• Malware often employ obfuscation to evade AV detection

– Polymorphism/metamorphism, packing

• AV constantly evolve to handle new evasion methods

– Emulation, static unpacking, behavioral monitoring (HIDS)

38

Summary (cont.)
• AV mostly effective against variants of known malware used in non-

targeted opportunistic attacks

– Determined attackers can craft custom malware for targeted attacks
that evades known AV – since malware is not spread
en masse, malware is never picked up by AV companies and no
signatures are generated

– Intrusion detection systems and network monitoring is necessary to
spot such advanced malware

• Main goal of obfuscation in malware is to evade automatic detection

– Many malwares also employ some obfuscation that deters manual
analysis

– Slows down signature generation malware can generate revenue
for attackers for a longer time before new variant need to be created

39

	Bild 1: System Security – Malware Defense I TDDE62 – Information Security: Privacy, System and Network Security
	Bild 2: Malware Defense – Agenda
	Bild 3
	Bild 5: Definition and Terminology
	Bild 6: Malware Naming
	Bild 7: Malware Nomenclature
	Bild 8: Malware Types based on Functionality
	Bild 9: Malware Types based on Functionality
	Bild 10: Malware Types based on Method of Infection
	Bild 11: Malware Types based on Method of Infection
	Bild 12: Malware Types based on Method of Infection
	Bild 13: Malware Types based on Method of Infection
	Bild 14: Malware Types based on Method of Infection
	Bild 15: Malware Types based on Method of Infection
	Bild 16: Exploit Kits
	Bild 17: Malware Detection
	Bild 18: Malware Detection – AV Fundamentals
	Bild 19: Malware Detection – Misclassification
	Bild 20: The Malware Detection Cat-and-Mouse Game
	Bild 21: The Malware Detection Cat-and-Mouse Game
	Bild 22: The Malware Detection Cat-and-Mouse Game
	Bild 23: The Malware Detection Cat-and-Mouse Game
	Bild 24: The Malware Detection Cat-and-Mouse Game
	Bild 25: The Malware Detection Cat-and-Mouse Game
	Bild 26
	Bild 27: The Malware Detection Cat-and-Mouse Game
	Bild 28: The Malware Detection Cat-and-Mouse Game
	Bild 29: The Malware Detection Cat-and-Mouse Game
	Bild 30: Evading Antivirus Software
	Bild 31: Malware Detection Conclusions
	Bild 32: Intrusion Detection
	Bild 33: Hindering Manual Reverse-Engineering
	Bild 38: Summary
	Bild 39: Summary (cont.)

