

Introduction to Trusted Computing

Goals of this lab:

❖ Get hands-on experience working with hardware for trusted computing

❖ Understand basic principles for implementing security solutions based on the TPM hardware

I

Table of Contents
MAIN LAB ... II

Part 1: The lab environment .. 1
Setting up the lab directory structure ... 1
Starting the web server .. 1
Using the token .. 1

Part 2: The assignments ... 3

II

MAIN LAB

In this lab you will implement a simple login token for an e-banking service, using a (simulated)
Trusted Platform Module (TPM). Both the simulated bank token and the bank server will run as
Apptainer containers locally on your SU-room computer. It is also possible to do the lab on ThinLinc.

Solutions to the assignments in the lab will be implemented using command-line tools from the
tpm2-tools packagei. You shouldn’t need to resort to any “real” shell-script programming
(conditional statements, loops, etc.). Simply stringing together inputs and outputs from different
commands using intermediate files is sufficient to complete the lab. However, it is expected that you
know how to use a Unix-like operating system from the command line.

Common TPM commands

Here we summarize a few commonly-used tpm2-tools commands.

Key creation
tpm2_createprimary – create a primary key

tpm2_create – create a child key

tpm2_import – import an existing key

Key storage
tpm2_load – load key into volatile RAM

tpm2_evictcontrol – persist key to NVRAM

Reading PCRs
tpm2_pcrread – read contents of PCRs

tpm2_quote – create signed digest of PCRs

Authorization policy management
tpm2_startauthsession – start an authorization session

tpm2_policypcr – record/specify PCR values for an authorization session

tpm2_flushcontext – remove/unload objects or sessions from TPM memory

Common crypto operations
tpm2_encryptdecrypt – symmetric encrypt/decrypt

tpm2_rsaencrypt – RSA encrypt

tpm2_rsadecrypt – RSA decrypt

tpm2_hash – compute hash

tpm2_hmac – compute HMAC

tpm2_sign – sign a message/digest

tpm2_verifysignature – verify a signature

i https://github.com/tpm2-software/tpm2-tools

https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_createprimary.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_create.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_import.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_load.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_evictcontrol.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_pcrread.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_quote.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_startauthsession.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_policypcr.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_flushcontext.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_encryptdecrypt.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_rsaencrypt.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_rsadecrypt.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_hash.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_hmac.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_sign.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_verifysignature.1.md

1

Part 1: The lab environment

Setting up the lab directory structure

To set up the files needed for the lab, simply run the following command in a terminal:
/courses/TDDE62/lab/tc/setup_tc_lab.sh

This will create the lab directory in your home folder: /home/<liu-id>/tdde62/tc

This directory in turn contains the following two directories:

• server contains files needed for the bank login server. You don’t need to edit these files. They
are just provided for reference.

• token represents a part of the file system for the simulated bank token. This directory
contains the files you will need to edit in order to complete the lab, in the form of two shell
scripts. It will also hold files created by the tpm2-tools, and a file representing the contents
of the simulated TPM’s NVRAM.

Starting the web server

To start the web server for the bank login, run the following script:
/courses/TDDE62/lab/tc/run_server.sh

The server will print the URL for accessing the bank website during startup. It will look something
like this: http://localhost:NNN, where NNN is a randomly generated port number. Hold Ctrl

and click the URL to launch a web browser.

The web site implements a simple challenge-response scheme for logging in and checking one’s
balance. For simplicity’s sake, the customer database is implemented as a single JSON-file called
db.json, located in the server directory. Enter a user ID (a four-digit key from the JSON file) to start
the login process for the corresponding user. A challenge (an 8-digit number) is presented. This
challenge must be fed into the token to get the correct response (also 8 digits) for logging in.

To shut down the web server when you’re done working on the lab, use Ctrl + C

Note that, in order to keep complexity down, and to make debugging of lab solutions easier, the web
server is completely stateless. Moreover, challenges never time out. These would be fatal security
flaws in a real-life setting, as they would allow unlimited replay attacks in cases where an attacker
can eavesdrop on challenge/response pairs.

Using the token

The token directory contains three shell-script files: init.sh, response.sh, and util.sh. The two
former files must be edited in order to complete the lab, while the latter file contains utility functions.
When the token has been executed at least once, this directory will also contain a file called NVChip,
holding the contents of NVRAM for the simulated TPM. In a real-life setting, this data would of course
be stored securely inside an actual hardware TPM.

A script is provided for running the simulated token:
/courses/TDDE62/lab/tc/run_token.sh

The script changes the working directory to the token directory, starts up the simulated TPM, and
then performs one of the following three actions, depending on what command-line arguments are
given:

• run_token.sh --init S is used to initialize the token. In a real-life setting, this script would
only be used once by the bank before a new token is shipped to the customer. S here denotes
a shared secret used to compute responses. It must be a hex-encoding of a 64-bit binary key.
You should simply copy-paste the shared_secret field of a user in db.json when using

the --init mode. This mode will first reset the TPM state by deleting the NVChip file, and then
execute the init.sh script.

2

• run_token.sh C computes a response for the challenge C. The token must have already been
initialized with a shared secret. This mode represents the interface for the end user of the
token, and executes the script response.sh.

• run_token.sh --shell launches a command-line shell inside the token container. This is
meant to be used as a “playground” for testing tpm2-tools commands. It is recommended
that you use this mode to figure out the correct sequence of commands to solve a lab
assignment, before putting the commands in the script files.

Hint 1: If you wish to reset the TPM state after having done work in the --shell mode, you can
manually delete the NVChip file. Note that this will re-generate the owner seed and invalidate all
previously generated keys. It is probably also a good idea to clean up old files created by tpm2-tools
in the token directory before you test your finalized scripts, in order to avoid potential confusion.

Hint 2: At some point, you will probably want to use the utility functions while working in the --shell
mode. Execute the command source util.sh to import the utility functions into the current shell.

Hint 3: While working on the command-line, you can navigate the command history with the up and
down arrows on the keyboard. You can also perform a backwards search in the command history by
pressing Ctrl + R and typing part of a sought-after command.

Hint 4: You can copy-paste from/to the terminal or other places by simply highlighting text (to copy
it implicitly) and then pressing the middle mouse button/scroll wheel to paste it. Alternatively, you
can right click and select Copy, and then right click and select Paste at the destination.

While the token is running, a subdirectory called scratch will also be available in the token directory.
The scratch directory will be automatically deleted once the token shuts down, and is supposed to
be used for temporary files. (I.e., intermediate files that are only used during a single interaction with
the token.)

3

Part 2: The assignments

Your goal in this lab is to implement the token in such a way that the shared secret installed in the
token cannot be extracted by an attacker, even if the attacker has physical access to the device or is
able to install malicious software on it. (I.e., we want to prevent cloning of tokens.)

Assignment 1: Basic functionality

2.1.1 Inspect the response computation in the file check_response.php in the server directory.
How are responses computed from the shared secret and the challenge? (You don’t need
to worry about exactly how the raw binary response is transformed to an 8-digit number.
This step is already implemented for you in the utils.sh file.)

2.1.2 Your first task is to design the procedure for installing and using the shared secret in such
a way that it cannot be extracted by attackers. (I.e., it should be protected by the TPM.)
Your solution should consider the keys and TPM commands involved. (It is recommended
that you work on the owner hierarchy only.)

We recommended you to show your design to the lab assistant before you proceed, to make
sure that you are on the right track.

2.1.3 Your next task is to implement the installation of the shared secret in the init.sh script, and
the computation of responses in response.sh. Keep files needed for the continuous
operation of the token (created during the initialization phase) in the token directory, but
use the temporary scratch directory for intermediate files only used during a single
interaction with the token.

2.1.4 Test that your solution works (i.e., that you can successfully “log in” at the bank).

Hint: The tpm2-tools will generally print information about what they are doing. This might be helpful when
you’re working in the --shell mode, but will clutter the screen when executing the initialization or response
scripts. Use the command line option -Q to turn off tool printouts. (Error messages will still be printed.)

Report: Describe your design from step 2.1.2, how it satisfies the requirement of disallowing device
cloning, and how your implementation in step 2.1.3 relates to it. Also include the contents
of the init.sh and response.sh scripts.

Assignment 2: Ensuring code integrity

2.2.1 Currently, your design should protect against device cloning. However, it would still be
possible to eavesdrop on challenge/response pairs, if an attacker is able to install spyware
on the device. In this assignment you will extend the implementation to prevent responses
from being computed if the software in the token has been manipulated.

In a real-life setting, we would be verifying the entire software stack, all the way from the
firmware/BIOS up to the OS and application code. For the purpose of this lab, we only
consider the integrity of the response.sh script. Concretely, the token will extend PCR 15
of the SHA256 bank with a digest of response.sh during startup. Note that you don’t need
to implement the PCR extend yourselves. (It is already done behind the scenes before the
init.sh/response.sh scripts start to execute.)

2.2.2 Improve your design from step 2.1.2, so that the TPM no longer allows computing
responses if PCR 15 of the SHA256 bank has changed since the token was initialized with
the --init mode. Again, it is recommended to check your design with the lab assistant before
proceeding.

2.2.3 Implement your design from the step above.

2.2.4 Verify that your solution still works as expected, and that it stops working if you make any
changes to response.sh after initialization. (Just adding a blank line to the script is
sufficient for testing this.)

Report: Describe your new design and how you have implemented it. Include the updated contents
of init.sh and response.sh in the report.

