
Lab 6: Garbage Collector

February 28, 2023

The goal of this lab is to develop a garbage collector. In the first part of the lab,
you will be developing a memory allocator, using the best fit allocation algorithm.
In the second part of the lab, you will be implementing mark-sweep algorithm and
tri-color marking garbage collector.

1 Get the code

The base code used in the labs is in the directory /courses/TDDE55/Labs/Lab6/src.
To get the code and start working on it, in your home directory:

1 cp -r /courses/TDDE55/Labs/Lab6/src $HOME/Lab6

This will copy the skeleton for the Lab6 assignments, you can now find them in
the directory $HOME/Lab6. In the rest of the document and in other lab, we will
refer to this directory as dir to lab6.

2 Memory structure

First you need to be able to store and represent values in memory.

2.1 Python bytearray

During this lab, you will be using a byte array as a block of memory. To create a
byte array in python you can use the bytearray function. It takes an integer as an
argument to select the size, for instance, the following create a 200-bytes array:

1 arr = bytearray(200)

You can access the values with the normal [] operator:

1 arr[5] = 124

2 print(arr[5])

2.2 Minimal type system

The strict minimum number of type that you need to support are:

� array of bytes (8bits integers)

� array of pointers, in this lab, we will use 32bits integers to represent pointers,
the pointers correspond to an index in the memory block

Using a combination of those two types, you can represent any value, for instance:

1

� 32bits integers can be represented by a 4-elements array of bytes

� strings are stored in array of bytes

� dictionaries can be represented with an array of pointers (as shown in lecture
2)

� an object is an array of pointers, where the first field is a pointer to the class
type, and the second one is a pointer to a dictionnary where the value members
will be stored

� ...

Such a type system might not give the best performance but it is the simplest
one.

2.3 Header

An object in memory is represented by a byte array, where the first 32bits correspond
to the header, and the rest to the value.

The header should follow the format:

� bit 0: reserved for the garbage collection algorithm

� bit 1: indicate if a block of memory is used or not

� bit 2: indicate the type of the object, either array of bytes or array of pointers
(0 means array of bytes, 1 means are of pointers)

� bit 3-31: the size of the memory block (in bytes)

We have provided for you a few helper function to manipulate the header of an
object:

� header get garbage flag(heap, pointer) return true or false, depending on if the
garbage flag is set or not

� header set garbage flag(heap, pointer, value) value is true or false, after a call
to true, the flag should be set to 1

� header get used flag(heap, pointer) return true or false, depending on if the
object is used or not

� header set used flag(heap, pointer, value) value is true or false, after a call to
true, the flag should be set to 1

� header is pointers array(heap, pointer) return true if the object is an array of
pointers, false otherwise

� header mark as pointers array(heap, pointer) mark the object as an array of
pointers

� header mark as bytes array(heap, pointer) mark the object as an array of bytes

� header get size(heap, pointer get the size (in bytes) of the object (without
including the size of the header)

2

� header set size(heap, pointer, size set the size (in bytes) of the object (without
including the size of the header)

Note: int.from bytes and (int).to bytes might prove helpful. Note that
the byte array

b’\x05\x00\x00\x00’

represents the integer 5, and has bit 31 set to 1 (which endian does this correspond
to?).

As per usual, you can test your code using:
1 tdde55_lab6_tests dir_to_lab6 header_helpers

2.4 Data

In this lab, we can assume that the content of an array of bytes is random and we
do not need to be concern by the actual values (unless we have freed the space, in
which case the operation should zero it out1. We do need to be able to manipulate
pointer-arrays, and for this purpose we need to be able to access some values:

� pointer array count(heap, pointer) return the number of elements in the array
of pointers

� pointer array get(heap, pointer, index) return the pointer in the array at the
given index

� pointer array set(heap, pointer, index, value) set the value (which is a pointer)
in the array at the given index

1 tdde55_lab6_tests dir_to_lab6 pointer_array_helpers

3 Best-fit allocator

The best-fit allocator is a memory allocator that attempts to balance between per-
formance and reduced fragmentation.

You should implement a heap class with the following prototype:

1This is unnecessary in many applications, though possibly not for security.

3

Figure 1: Allocation of a 3 bytes object in the heap with a best-fit allocator. On
the left, the state of the heap before allocation, on the right, the state of the heap
after allocation. Note that we do not necessarily have aligned data (ie we
may have allocated space which is not a multiple of 32 bytes)!

1 class heap(object):

2 # size: the size (in bytes) of the heap

3 def __init__(self, size):

4 pass

5 # return the index to the begining of a block with size (in bytes)

6 def allocate(self, size):

7 pass

8

9 # unallocate the memory at the given index

10 def deallocate(self, size):

11 pass

12 # Return the current total free space

13 def total_free_space(self):

14 pass

15 # Return the current total allocated memory

16 def total_allocated_space(self):

17 pass

Remember that the header has a size of four bytes, so you need to allocate a
byte array of slightly longer dimension.

Note that deallocating a block that is followed by a free spaces creates one
contiguous free space. This will of course affect the amount of data allocated for
headers.

1 tdde55_lab6_tests dir_to_lab6 best_fit_allocator

4

4 Mark-sweep garbage collector

The object at index 0 is assumed to be the root object. At the begining of the
collection, all objects are unmarked, except for the root object.

The algorithm follow the steps:

1. Unmark all objects

2. Mark the root object

3. Mark all the objects directly reachable by root

4. Repeat step 3 for all marked objects

Once all objects directly reachable from root are marked, the garbage collector
can deallocate all the unmarked objects.

Implement a mark sweep gc class with the following prototype:

1 class mark_sweep(object):

2 def __init__(self, heap):

3 pass

4 # This function should collect the memory in the heap

5 def collect(self):

6 pass

Test it with:
1 tdde55_lab6_tests dir_to_lab6 mark_sweep

5 tri-color marking garbage collector

The mark-sweep algorithm has several issues, the most important one is that it re-
quires that the entire system is suspended for the duration of the garbage collection,
which is problematic for real-time application or user interfaces. The other issues is
that the entire heap memory is examined twice, one time for marking a second time
for deallocation.

The tri-color garbage collector use three sets:

� The white set contains the list of objects that are candidates for deallocation

� The black set contains all the objects that have no connection to an object in
the white set

� The gray set contains all the objects that are reachable from root and that
might have a connection to objects in the white set

The algorithm follow the steps:

1. Initialise the white set with all objects except the root set

2. The black set starts empty

3. The gray set is initialised with the root object

4. Repeat the following until the gray set is empty:

� Take an object from the gray set and move it to the black set

5

� Move all the white objects that are directly reachable from object in the
gray set

Implement a tri color gc class with the following prototype:

1 class tri_color(object):

2 def __init__(self, heap):

3 pass

4 # This function should collect the memory in the heap

5 def collect(self):

6 pass

Test it with:
1 tdde55_lab6_tests dir_to_lab6 tri_color

6

