
Lab 5: SQpy

February 28, 2023

The goal of this lab is to develop an interpreter for a subset of the SQL pro-
gramming language.

1 Get the code

The base code used in the labs is in the directory /home/TDDE55/Labs/Lab5/src.
To get the code and start working on it, in your home directory:

1 cp -r /home/TDDE55/Labs/Lab5/src $HOME/Lab7

This will copy the skeleton for the Lab7 assignments, you can now find them in
the directory $HOME/Lab7. In the rest of the document and in other lab, we will
refer to this directory as dir to lab5.

2 SQL AST and Database

2.1 database class

The main interface to your SQL interpreter is the database class. The most impor-
tant function is the exec function that can be used to execute a SQL query on the
given database.

1

2 class database(object):

3 def __init__(self):

4 '''Create a new database'''

5 pass

6 def exec(self, sql_ast):

7 '''Execute a query'''

8 ...

Within that database, you will store a list of table, which are made out of a list
of row. For this lab, you should store data in your table using a python namedtuple,
like in lecture 10.

In python3:

1 from collections import namedtuple

2

3 # This create a new class definition with member 'x', 'y'

4 Point = namedtuple('Point', ['x', 'y'])

5

6 # This create a new object, with x=2 and y=4

1

7 pt = Point(2, 4)

8

9 # Access members of point

10 print(pt.x)

11 print(pt.y)

2.2 SQL AST

You can find the class representing the AST for the SQL language in dir to lab5/SQpy/sql ast node.py,
it contains two classes:

1. token which is an enum class contains the list of SQL tokens

2. ast which represent a node in the AST

1 from enum import Enum

2

3 class token(Enum):

4 select = 0,

5 create_table = 1,

6 ...

7

8 class ast(object):

9 def __init__(self, token, **kwargs):

10 self.token = token

11 for name,value in kwargs:

12 self.__setattr__(name,value)

13 ...

3 CREATE TABLE query

The first step in creating your SQL interpreter and database engine is to be able
to create a table. When creating a table in SQL, the user define a set of fields. To
simplify our database engine, we will assume that fields do not have types in our
implementation of SQL, and a query to create a table would look like:

1 CREATE TABLE cities (name, population, longitude,

2 latitude, country, comment)

Which translate to the following AST:

1 query = ast.create_table('cities', ['name', 'population',

2 'longitude', 'latitude',

3 'country', 'comment'])

Then the query can be executed in the database with:

1 db = database()

2 db.execute(query)

SQL has no standard way of accessing the list of tables or the list of field of a
specific table. In your implementation you should provide two functions:

2

� tables which returns the list of tables

� fields which returns the list of fields of a given table You can get the list of
fields of an object by accessing its klass definition:

1 namedtuple('Point', ['x', 'y']).klass._fields == ['x', 'y']

The following code:

1 print(db.tables())

2 print(db.fields('cities'))

should output:

1 ['cities']

2 ['name', 'population', 'latitude', 'longitude', 'country', 'comment']

To test your code you should use the command:

1 tdde55_lab5_tests dir_to_lab5 create_table

4 INSERT query

Now that you can create tables, you will need to be able to fill the table with data,
in SQL the following queries could be used to add a city:

1 INSERT INTO cities VALUES 'Linkoping', 152966, 58.410833, 15.621389,

2 'Sweden', 'My home town';

3 INSERT INTO cities (name, population, longitude, latitude, country)

4 VALUES 'Paris', 11836970, 48.85, 2.35, 'France';

Which translate to the following AST:

1 query1 = ast.insert_into(

2 'cities', values = ['Linkoping', 152966, 58.410833,

3 15.621389, 'Sweden', 'My home town'])

4 query2 = ast.insert_into(

5 'cities', columns = ['name', 'population', 'longitude',

6 'latitude', 'country'],

7 values = ['Paris', 11836970, 48.85, 2.35, 'France'])

Note that query2 does not specify the comment field.
At this point, you have not implemented the SELECT query yet, to be able

to test that your implementation of the insert function works, you will need to
implement a dump table function in the database class that take the name of a table
and return its content. The following code should insert the two cities and printout
the content of the table:

1 db.execute(query1)

2 db.execute(query2)

3 print(db.dump_table('cities'))

3

This should output something like:

1 [cities_row(name='Linkoping', population=152966, longitude=58.410833,

2 latitude=15.621389, country='Sweden',

3 comment='My home town'),

4 cities_row(name='Paris', population=11836970, longitude=48.85,

5 latitude=2.35, country='France', comment=None)]

To test your code you should use the command:

1 tdde55_lab5_tests dir_to_lab5 insert

5 DELETE query

Now you can insert data in a table, but your user might want to be able to remove
some of that data. This is done with DELETE FROM SQL query:

1 DELETE FROM cities WHERE country = 'France' AND latitude < 3;

Which is translate to the following AST:

1 query = ast.delete_from(

2 'cities', where=ast.op_and(

3 ast.op_eq(

4 ast.identifier('country'), 'France'),

5 ast.op_inferior(

6 ast.identifier('latitude'), 3)))

To test your code you should use the command:

1 tdde55_lab5_tests dir_to_lab5 delete

6 UPDATE query

Now you can insert and remove data in a table, but your user might be interested
in changing the values of a row, this is done with the UPDATE SQL query:

1 UPDATE cities SET comment = 'My birth town' WHERE name = 'Paris'

Which translate to the AST:

1 query = ast.update(

2 'cities',

3 set=[('comment', 'My birth town')]

4 where=ast.op_eq(

5 ast.identifier('name'), 'Paris'))

6

To test your code you should use the command:

1 tdde55_lab5_tests dir_to_lab5 update

4

7 SELECT ALL query

Now that you can modify the content of tables, your users are going to be interested
in getting data out of your database engine, and they will want to be able to execute
SELECT SQL queries. First they will want to extract all rows of the tables, with
either all columns or only a subset:

1 SELECT * FROM cities

2 SELECT name,population FROM cities

Which translate to the AST:

1 query1 = ast.select(ast.star(), from_table='cities')

2 query2 = ast.select(['name', 'population'], from_table='cities')

The execution function should now return a list of namedtuple containing the
results. To execute the query:

1 print(db.execute(query1))

2 print(db.execute(query2))

This should output:

1 [Row(name='Linkoping', population=152966, longitude=58.410833,

2 latitude=15.621389, country='Sweden', comment='My home town'),

3 Row(name='Paris', population=11836970, longitude=48.85,

4 latitude=2.35, country='France', comment=None)]

5 [Row(name='Linkoping', population=152966),

6 Row(name='Paris', population=11836970)]

To test your code you should use the command:

1 tdde55_lab5_tests dir_to_lab select_all

8 SELECT column expression query

Database users are also interested in filtering the result of their query, they would
use the SQL WHERE clause for that purpose:

1 SELECT name, population / 1000000 AS population_proportion FROM cities

Which translate to the following AST:

1 query = ast.select(['name', (ast.op_divide(ast.identifier('population'), 1000000), 'population_proportion')], from_table = 'cities')

And after printing the execution result:

1 [{'name': 'Paris', 'population': 11836970}]

To test your code you should use the command:

1 tdde55_lab5_tests dir_to_lab5 select_exrpression

5

9 SELECT WHERE query

Database users are also interested in filtering the result of their query, they would
use the SQL WHERE clause for that purpose:

1 SELECT name,population FROM cities WHERE population > 1000000

Which translate to the following AST:

1 query = ast.select(['name', 'population'], from_table = 'cities',

2 where=ast.op_superior(

3 ast.identifier('population'), 1000000))

And after printing the execution result:

1 [{'name': 'Paris', 'population': 11836970}]

To test your code you should use the command:

1 tdde55_lab5_tests dir_to_lab5 select_where

10 SELECT aggregation query

Database user are also interested in getting aggregated results, such as the number
of cities above a certain population:

1 SELECT count(name) AS city_count FROM cities WHERE population > 1000000

Which translate to the following AST:

1 query = ast.select([(ast.count([ast.identifier('name')]) , 'city_count')],

2 from_table = 'cities', where=ast.op_superior(

3 ast.identifier('population'), 1000000))

And after printing the execution result:

1 [{'city_count': 1}]

1 tdde55_lab5_tests dir_to_lab5 select_aggregation

11 SELECT JOIN query

Finally, most databases contains several tables that needs to be connected for some
query. We assume that we have a countries table with the following information:

1 CREATE TABLE countries (name, population)

2 INSERT INTO countries VALUES 'Sweden', 9858794;

3 INSERT INTO countries VALUES 'France', 64513000;

If we want to know the proportion of people leaving in each city for each country:

6

1 SELECT name, cities.population / countries.population AS proportion

2 FROM cities INNER JOIN countries ON cities.country = countries.name

Which translate to the following AST:

1 query = ast.select(

2 ['name',

3 (ast.op_divide(

4 ast.identifier('cities', 'population'),

5 ast.identifier('countries', 'population')),

6 'proportion')],

7 from_table = 'cities',

8 joins=[ast.inner_join('countries',

9 on=ast.op_equal(

10 ast.identifier('cities', 'country'),

11 ast.identifier('countries', 'name')))])

Which when executed should output:

1 [{'name': 'Linkoping', 'proportion':0,015515691},

2 {'name': 'Paris', 'proportion': 0,18348193}]

1 tdde55_lab5_tests dir_to_lab5 select_join

7

