
TDDA69	Data	and	Program	Structure

Summary
Cyrille	Berger

2	/	34

Lectures
1Introduction

2Concepts	and	models	of	programming	languages

3Declarative	Computation	Model

4Declarative	Programming	Techniques

5Declarative	Computation	Implementation

6Declarative	Concurrency

7Message	Passing	Concurrency

8Explicit	State	and	Imperative	Model

9Imperative	Programming	Techniques

10Imperative	Programming	Implementation

11Shared-State	Concurrency

12Relational	Programming

13Specialized	Computation	Models

14Macro

15Running	natively	and	JIT

16Garbage	Collection

17SummarySummary

3	/	34

Programming	Paradigms

4	/	34

Lecture	content
Summary

Choosing	an	appropriate

Programming	Language	Paradigm
The	different	types	of	interpreter

GUI	Programming



Summary

6	/	34

Do	we	need	new	programming	languages?

New	Concepts
in	the	early	days,	object	orientation

New	problems	and	new	infrastructure
Multi-threading

Distributed	computing

...

Develop	a	better	syntax

7	/	34

Motivation	for	creating	Go
Rob	Pike,	Go	creator:	‟A	couple	of	years	ago,	several	of	us	at	Google	became	a	little

frustrated	with	the	software	development	process,	and	particularly	using	C++	to

write	large	server	software.	We	found	that	the	binaries	tended	to	be	much	too	bigbinaries	tended	to	be	much	too	big.

They	took	too	long	to	compiletoo	long	to	compile.	And	the	language	itself,	which	is	pretty	much	the

main	system	software	language	in	the	world	right	now,	is	a	very	old	languagea	very	old	language.	A	lot

of	the	ideas	and	changes	in	hardwareideas	and	changes	in	hardware	that	have	come	about	in	the	last	couple	of

decades	haven’t	had	a	chance	to	influence	C++a	chance	to	influence	C++.”

8	/	34

Motivation	for	creating	Rust
Graydon	Hoare,	Rust	creator:	‟A	lot	of	obvious	good	ideasobvious	good	ideas,	known	and	loved	in	other

languages,	haven't	made	ithaven't	made	it	into	widely-used	systems	languages,	or	are	deployed	in

languages	that	have	very	poor	(unsafe,	concurrency-hostile)	memory	models.	There

were	a	lot	of	good	competitors	in	the	late	70s	and	early	80s	in	that	space,	and	I

wanted	to	revive	some	of	their	ideasrevive	some	of	their	ideas	and	give	them	another	go,	on	the	theory	that

circumstances	have	changed:	the	internet	is	highly	concurrent	and	highly	security-

conscious,	so	the	design-tradeoffs	that	always	favor	C	and	C++	(for	example)	haveso	the	design-tradeoffs	that	always	favor	C	and	C++	(for	example)	have

been	shiftingbeen	shifting.”



9	/	34

Usage	of	C++	vs	Go	vs	Rust

10	/	34

Is	it	easier	to	change	and	fix	existing	languages?

Backward-compatible	changes

Backward-incompatible	changes
Some	changes	are	too	difficult

Introducing	Unicode	in	Python	and	PHP

Garbage	collector	in	C++

Those	changes	introduce	long	development	time	and

long	acceptance	time
Python	3.0	was	introduced	in	2008

PHP	6	was	started	in	2006	and	never	released,	PHP	7	released	in	December

2015

11	/	34

PHP	Criticism
PHP	was	not	designed,	but	developed

Inconsistent	naming	of	functions	and	order	of	their	parameters
Some	function	names	were	chosen	to	improve	the	distribution	of	hash	values

Rather	than	aborting	with	an	error,	PHP	will	try	to	guess	the	developer	intent
Problems	with	weak	typing

PHP	compilation	options,	server	configurations,	applications	configurations	and

global	states	can	affect	function	behaviour

Incoherent	mix	between	functional	and	object-oriented	programming

...

You	need	a	vision	and	a	design	when	developing

a	programming	language!

12	/	34

Design	Considerations	for	a	Programming	Language

A	programming	language	must	be:

predictablepredictable
Source	code	is	read	more	often	than	written,	a	human	must	be	able	to	understand	what	he	read

consistentconsistent
Knowing	part	of	a	language	should	help	learn	other	parts

conciseconcise,	simplesimple	and	generalgeneral

reliablereliable
Programming	language	are	here	to	solve	problem,	not	to	introduce	new	one

debuggabledebuggable
Developers	will	inevability	write	bugs,	they	need	all	the	help	they	can	get	to	find	them

implementableimplementable
This	reduce	the	number	of	bugs	in	the	language	implementation



13	/	34

What	is	the	purpose	of	the	new	language?

First	question	is,	a	new	language,	what	for?
Querying	knowledge?

Distributed	numerical	computation?

Writting	drivers	for	an	Operating	System?

Writting	web	applications?

Answering	the	Ultimate	Question	of	Life,	the	Universe,	and

Everything

A	programming	language	for	teaching	about	interpreters	and

programming	models/paradigms

...

14	/	34

Design	choices	for	a	Programming	Language

Programming	Paradigm

Dynamic	vs	Static	(Typing...)

Low-level	vs	High-level

Direct	interpretation,	Virtual	Machine,

JIT,	Native	Compilation...

Choosing	an	appropriate

Programming	Language	Paradigm

16	/	34

Declarative
Expresses	logic	of	computation	without

control	flow:
What	should	be	computed	and	not	how	it	should	be

computed.

Examples:	XML/HTML,	antlr4/yacc,

make/ants...



17	/	34

Functional
Computation	are	treated	as

mathematical	function
without	changing	any	internal	state

Examples:	Lisp,	Scheme,	Haskell...

18	/	34

Logic	Programming
Based	on	Formal	logic:	expressing	facts

and	rules

Examples:	Prolog

19	/	34

Imperative
Express	how	computation	are	executed

Describes	computation	in	term	of	statements	that

change	the	internal	state

Examples:	C/C++,	Pascal,	Java,	Python,

JavaScript...

20	/	34

Object-Oriented
Based	on	the	concept	of	objects,	which	are

data	structures	containing	fields	and	methods
Programs	are	designed	by	making	objects	interact	with	each

others

Examples:	C++,	Java,	C#,	Python,	Ruby,

JavaScript...



21	/	34

How	to	choose	a	programming	paradigm?

The	choice	depends	on	the	goal
Querying	knowledge?

⇒	Declarative	or	logic	(reasoning)

Distributed	numerical	computation?

⇒	Functional

Writting	drivers	for	an	Operating	System?

⇒	Imperative

Writting	web	applications?

⇒	Object-Oriented

The	choice	can	be	considered	controversial!

22	/	34

Conscequences	of	the	choice

Conscequence	for	the	users
Expressivity,	simplicity,	readability

Conscequence	on	the	implementation
Different	types	of	interpreters

The	different	types	of	interpreter

24	/	34

How	is	a	program	interpreted?
Source	code Parser

Parser

Abstract	Syntax	Tree Tree	visitor

Generator Source	code ...

Bytecode Virtual	Machine

Assembler Assembly Operating	System CPU



25	/	34

Interpreting	Declarative	and	Logic

Using	a	query	executor	(for	SQL)

Using	a	reasoning	engine	and

unification	(for	Prolog)

26	/	34

Interpreting	Functional
Functions	are	evaluated	in	order

Applicative	vs	Normal

In	normal	order,	the	tree	needs	to	be

expanded,	virtual	machines	are	more

difficult	(might	be	impossible)

27	/	34

Interpreting	Imperative	/	Object-oriented

Directly	from	the	abstract	syntax	tree

Using	virtual	machines

Running	on	the	CPU

The	most	versatile,	the	most	common,

the	most	studied

GUI	Programming



29	/	34

GUI	Programming
What	model?

Purely	procedural
Sequence	of	graphical	command

Example:	AWT,	SWING...

Purely	declarative
Choosen	from	a	set	of	possibilities

Example:	HTML...

30	/	34

Procedural	approach
Set	of	primitive	operations	combined	in

a	program

Unlimited	expressiveness

Harder	to	do	formal	manipulation

(converting	data	to	user	interface)

31	/	34

Declarative	approach
Set	of	possible	shapes	for	different

attributes

Limited	expressiveness

Easy	match	between	data	and	user

interface

32	/	34

Combining	declarative/procedural	approach

Examples:	QML,	React,

Takes	the	best	of	both

Declarativeness	is	used
Describing	static	structure	of	a	window

The	type	of	widgets

The	initial	state	of	the	widgets

The	resize	behaviour

Procedure	is	used
Procedures	executed	when	events	occurs

Handlers



33	/	34

Example

34	/	34

Conclusion
Many	problems,	many	solutions,	many

developers,	many	paradigms.

A	large	program	is	likely	to	be	a

combination	of	paradigms

Programming	language	tend	to

combine	from	different	paradigms


