Lectures

2Concepts and models of programming languages
3Declarative Computation Model
4Declarative Programming Techniques
T D DA6 9 D a ta a n d P ro g ra m St r u ct u re 5Declarative Computation Implementation
6Declarative Concurrency
7Message Passing Concurrency
8Explicit State and Imperative Model
9Imperative Programming Techniques
. 10Imperative Programming Implementation
Cyl’ / / / 6 B 6 /1 g E’ / 11Shared-State Concurrency
12Relational Programming
13Specialized Computation Models
14Macro
15Running natively and JIT
16Garbage Collection
17Summary

II LINKOPING
o UNIVERSITY

Lecture content

® Memory Management
“ Garbage Collection

Gartage Callction Ao Memory Management

INKOPINC LINKOPING
II.U UNIVERSITY Ilo UNIVERSITY

Drawbacks of imperative programming |_OW-|€V€|

® Difficulty in reasoning ® Two operations
® Side effects “ malloc: allocate a continuous array of bytes
® Concurrenc “ free: disallocate the array
o\ y t ® Problem: people forget to free memory,
emory managemen - :
. y J . which introduces leaks in the program
Compared to functional programming, states _
outlives function calls @ Solution: use a garbage collector

Garbage Collection

® Automatically free unused memory
® Need an allocation algorithm
® Need a garbage collection algorithm

One Rin Free Snace (1/7

® Pros

© Very simple and fast allocation
algorithm

© Free space not subject to

Allocation Algorithms ,

free—f © Requires a compacting garbage
collection algorithm (slower)

© That s, in-use blocks have to be
shifted and pointers have to be
adjusted during garbage collection

II LINKOPING
@' UNIVERSITY

Free | ist

One Rin Free Snace (7/7

® Before; ® After:

free — 5}

® Pros
© Can use a non-compacting garbage
collection algorithm (faster)
© That is, in-use blocks do not have to be
shifted and pointers do not have to be
adjusted during garbage collection

® Cons
© More complicated and slower allocation
algorithm
© Free space subject to fragmentation
© In the figure, you can't allocate a 10-word
block, even though there are 10 total free
words

hw hw

Fir<t fit Allocation Rect fit Allncation

® Before: ® After (allocate 3): ® Before: ® After (allocate 3):

When allocation fails

® Try to allocate
“ If there's no free block big enough...

® Do a garbage collection, then try to allocate again

“ If there's still no free block big enough... Ga rbage COl Iecnon Algorlth mS

® Increase the size of the heap (if possible), then try

to allocate again
“ If you can't increase the size of the heap...

® QutOfMemoryError!

LINKOPING
II." UNIVERSITY

Reference Counting (1/2 Reference Counting (2/2

® Pros

e © Very simple, non-compacting garbage collection

[s — “ Heap maintenance spread throughout program execution (instead of
suspending the program when the garbage collector runs)

nWaords
-+—Block header

—{-+—Block data area

B N ® Cons
© Extra word in block header to hold reference count

® Header
> Words: the size of the block area © Fragile; if you forget to adjust reference counts on any pointer
' assignment (including passing pointers as subroutine arguments),

“ refCount: The number of pointers pointing to this block)
disaster can happen
 Major problem: Cannot garbage collect circularly linked data structures

Mark-Sweep (1/2 Mark-Sweep (2/2

/—Mark bit [) PFOS
ﬂv nWords -+—EBlock header .. .
T “ Minimal overhead in block header
-] o
B T Hea!o maintenance not reqmred on every pointer assignment
o s | (unlike reference counting)
 Head “ Can garbage collect circularly linked data structures
eaaer
© nWords: the size of the block area ® Cons
© mark: 1if in use, 0 if garbage . .
® Algorithm: “ Doesn't deal with heap fragmentation
“ Suspend the entire system during collection

© Mark all blocks reachable from the root
© At this point, all unmarked blocks are unreachable, hence garbage
© Sweep all unmarked blocks into the free list (non-compacting)

II INXOBIN
o UNIVERSITY

II INKOPINC
o UNIVERSITY

Tri-color markino

® Three colors:

“ White: candidate for deletion

“ Black: objects with no connection to white objects
and reachable from root

© Variation of the mark-sweep

© Copy in-use blocks from the fromspace to the top of the tospace (compacting) © G ray: ObJ ectsrea Cha ble fro m root bUt Wlth pOSS| b | e
f(r)ges big free space organization means very simple allocation refe re n ce S to Wh ite 0 bj e Cts
© Compacting garbage collection means heap fragmentation does not occur

® Cons

© Heap requires twice the memory that would otherwise be needed — most of the time, half of this memory is “wasted”

Tri-color marking - Algorithm Tri-color marking - Advantage

® Initialisation ® Can be performed on-the-fly

“ No need for freezing the application

° White set: all objects not directly reachable from root
° Black set: empty

“ Gray set: all objects directly reachable from root
® Pick an object in the gray set

“ Mark as gray all the white objects it references
“ Mark as black this object

® End when gray set is empty

Generational

mark&swee vs tri-color marking

® In many programs, the newest objects
are the most likely to become
unreachable

® Hence the idea to only put recent
objects in the white set

Mark&Sweep Tri-color

Summar

® Memory allocation
® Garbage collection

