
TDDA69	Data	and	Program	Structure

Garbage	Collection
Cyrille	Berger

2	/	27

Lectures
1Introduction

2Concepts	and	models	of	programming	languages

3Declarative	Computation	Model

4Declarative	Programming	Techniques

5Declarative	Computation	Implementation

6Declarative	Concurrency

7Message	Passing	Concurrency

8Explicit	State	and	Imperative	Model

9Imperative	Programming	Techniques

10Imperative	Programming	Implementation

11Shared-State	Concurrency

12Relational	Programming

13Specialized	Computation	Models

14Macro

15Running	natively	and	JIT

16Garbage	CollectionGarbage	Collection

17Summary

3	/	27

Lecture	content
Memory	Management
Garbage	Collection
Allocation	Algorithms

Garbage	Collection	Algorithms Memory	Management



5	/	27

Drawbacks	of	imperative	programming

Difficulty	in	reasoning

Side	effects

Concurrency

Memory	management
Compared	to	functional	programming,	states

outlives	function	calls

6	/	27

Low-level
Two	operations
malloc:	allocate	a	continuous	array	of	bytes

free:	disallocate	the	array

Problem:	people	forget	to	free	memory,

which	introduces	leaks	in	the	program

Solution:	use	a	garbage	collector

Garbage	Collection

8	/	27

Garbage	Collection
Automatically	free	unused	memory

Need	an	allocation	algorithm

Need	a	garbage	collection	algorithm



Allocation	Algorithms

10	/	27

One	Big	Free	Space	(1/2)
Pros
Very	simple	and	fast	allocation

algorithm

Free	space	not	subject	to

fragmentation

Cons
Requires	a	compacting	garbage

collection	algorithm	(slower)

That	is,	in-use	blocks	have	to	be

shifted	and	pointers	have	to	be

adjusted	during	garbage	collection

11	/	27

One	Big	Free	Space	(2/2)
Before: After:

12	/	27

Free	List
Pros
Can	use	a	non-compacting	garbage

collection	algorithm	(faster)

That	is,	in-use	blocks	do	not	have	to	be

shifted	and	pointers	do	not	have	to	be

adjusted	during	garbage	collection

Cons
More	complicated	and	slower	allocation

algorithm

Free	space	subject	to	fragmentation

In	the	figure,	you	can't	allocate	a	10-word

block,	even	though	there	are	10	total	free

words



13	/	27

First	fit	Allocation
Before: After	(allocate	3):

14	/	27

Best	fit	Allocation
Before: After	(allocate	3):

15	/	27

When	allocation	fails
Try	to	allocate
If	there’s	no	free	block	big	enough...

Do	a	garbage	collection,	then	try	to	allocate	again
If	there’s	still	no	free	block	big	enough...

Increase	the	size	of	the	heap	(if	possible),	then	try

to	allocate	again
If	you	can’t	increase	the	size	of	the	heap...

OutOfMemoryError!

Garbage	Collection	Algorithms



17	/	27

Reference	Counting	(1/2)

Header
nWords:	the	size	of	the	block	area

refCount:	The	number	of	pointers	pointing	to	this	block

18	/	27

Reference	Counting	(2/2)
Pros
Very	simple,	non-compacting	garbage	collection

Heap	maintenance	spread	throughout	program	execution	(instead	of

suspending	the	program	when	the	garbage	collector	runs)

Cons
Extra	word	in	block	header	to	hold	reference	count

Fragile;	if	you	forget	to	adjust	reference	counts	on	any	pointer

assignment	(including	passing	pointers	as	subroutine	arguments),

disaster	can	happen

Major	problem:	Cannot	garbage	collect	circularly	linked	data	structures

19	/	27

Mark-Sweep	(1/2)

Header
nWords:	the	size	of	the	block	area

mark:	1	if	in	use,	0	if	garbage

Algorithm:
Mark	all	blocks	reachable	from	the	root

At	this	point,	all	unmarked	blocks	are	unreachable,	hence	garbage

Sweep	all	unmarked	blocks	into	the	free	list	(non-compacting)

20	/	27

Mark-Sweep	(2/2)
Pros
Minimal	overhead	in	block	header

Heap	maintenance	not	required	on	every	pointer	assignment

(unlike	reference	counting)

Can	garbage	collect	circularly	linked	data	structures

Cons
Doesn’t	deal	with	heap	fragmentation

Suspend	the	entire	system	during	collection



21	/	27

Copying	Garbage

Variation	of	the	mark-sweep

Copy	in-use	blocks	from	the	fromspace	to	the	top	of	the	tospace	(compacting)

Pros
One	big	free	space	organization	means	very	simple	allocation

Compacting	garbage	collection	means	heap	fragmentation	does	not	occur

Cons
Heap	requires	twice	the	memory	that	would	otherwise	be	needed	—	most	of	the	time,	half	of	this	memory	is	“wasted”

22	/	27

Tri-color	marking
Three	colors:
White:	candidate	for	deletion

Black:	objects	with	no	connection	to	white	objects

and	reachable	from	root

Gray:	objects	reachable	from	root	but	with	possible

references	to	white	objects

23	/	27

Tri-color	marking	-	Algorithm

Initialisation
White	set:	all	objects	not	directly	reachable	from	root

Black	set:	empty

Gray	set:	all	objects	directly	reachable	from	root

Pick	an	object	in	the	gray	set
Mark	as	gray	all	the	white	objects	it	references

Mark	as	black	this	object

End	when	gray	set	is	empty

24	/	27

Tri-color	marking	-	Advantage

Can	be	performed	on-the-fly
No	need	for	freezing	the	application



25	/	27

mark&swee	vs	tri-color	marking

26	/	27

Generational
In	many	programs,	the	newest	objects

are	the	most	likely	to	become

unreachable

Hence	the	idea	to	only	put	recent

objects	in	the	white	set

27	/	27

Summary
Memory	allocation

Garbage	collection


