
TDDA69	Data	and	Program	Structure

Running	natively	and	JIT
Cyrille	Berger

2	/	47

Lectures
1Introduction

2Concepts	and	models	of	programming	languages

3Declarative	Computation	Model

4Declarative	Programming	Techniques

5Declarative	Computation	Implementation

6Declarative	Concurrency

7Message	Passing	Concurrency

8Explicit	State	and	Imperative	Model

9Imperative	Programming	Techniques

10Imperative	Programming	Implementation

11Shared-State	Concurrency

12Relational	Programming

13Specialized	Computation	Models

14Macro

15Running	natively	and	JITRunning	natively	and	JIT

16Garbage	Collection

17Summary

3	/	47

How	is	a	program	interpreted?
Source	code Parser

Parser

Abstract	Syntax	Tree Tree	visitor

Generator Source	code ...

Bytecode Virtual	Machine

Assembler Assembly Operating	System CPU

4	/	47

Lecture	content
Type	system

Native	Code	Generation
Just-In-Time,	Ahead-Of-Time

From	Bytecode	to	Native	code

V8	Case	Study

Tracing	JIT

Type	system

6	/	47

What	is	a	type	system?
A	type	system	defines	how	a	type	is	associated	to	a

variable

Variables	are	stored	as	bits	in	memory
	1011101010011100011...

A	type	give	meaning	to	a	set	of	bits

In	a	program,	a	value	is	associated	to	at	least	one

type
C	has	void,	assembly	has	no	type

7	/	47

Type-Checking
Static-type	checking
Types	are	checked	at	compilation

from	static	analysis

Usually	variables	have	a	single

type

Polymorphism	allows	for

dynamicity

Support	from	downcasting

Dynamic-type
Types	are	checked	at	runtime

Usually	the	type	of	a	variable	can	change

Gradual
Allow	both	to	specify	and	not	specify	the

type

Unchecked
Example:	machine	code

8	/	47

Static-type	checking
Allow	for	optimization
No	need	to	check	for	types	at

Program	verification
Can	work	better	than	unit-

But	downcasting	cannot	be	verified	with	static

9	/	47

Static-type	vs	Dynamic-type

Trade-off

The	number	of	actual	errors	found

through	static	typing	is	debatable
Easier	polymorphism

Dynamic	typing	allows	for	faster

development	and	faster	compilation

10	/	47

Implicit	static-type	system	(1/2)

C++,	Java	are	explicit

Crystal	is	implicit

11	/	47

Implicit	static-type	system	(2/2)

This	approach	mix	benefits	of	dynamic	and	static

checking

12	/	47

Gradual-type	checking

13	/	47

Implementing	static-typing
With	an	AST	visitor!

Instead	of	returning	a	value,	return	a	type

14	/	47

Implementing	dynamic-typing

15	/	47

Strong	vs	Weak	typing
A	language	is	said	to	be	strongly	typed	when	it

requires	explicitely	casting
Example:	ADA

A	language	is	said	to	be	weakly	typed	when	it

allows	non-explicit	casting
For	instance,	from	strings	to	integers	to	floating	points	to

strings

Example:	TCL

Native	Code	Generation

17	/	47

Performance	of	Virtual	Machines

Virtual	Machines	are	faster	than	tree

visitors	interpreter...

...but	still	slower	than	native	code
C++	is	an	average	15	times	faster	than	Python

C++	is	an	average	5	times	faster	than	JavaScript	V8

Source:	http://benchmarksgame.alioth.debian.org/

Just-In-Time,	Ahead-Of-Time

19	/	47

Just-In-Time,	Ahead-Of-Time

Ahead-Of-Time
classical	type	of	compilation

Code	is	translated	to	native	code	beforebefore	running	the

application

GCC,	VisualStudio	C++,	ART...

Just-In-Time	(JIT)
Code	is	translated	to	native	code	whilewhile	running	the

application

Java	VM,	.NET,	Dalvik...

20	/	47

Ahead-Of-Time
Compiled	before	distribution
Simple

Examples:	GCC,	Visual	Studio...

Compiled	at	installation
The	program	is	optimised	for	the	platform

More	complex	installation

Examples:	ART...

21	/	47

Just-In-Time
Dynamic	recompilation
The	Virtual	Machine	recompiles	part	of	the	program	during

execution

Adaptive	optimization
Optimization	depending	on	the	current	context

Profile-guided	optimization

For	dynamic	programming	language,	it	can

optimize	for	the	different	types

22	/	47

Adaptive	optimization

a()	can	be	inlined	in

a()	cannot	be	inlined	in

From	Bytecode	to	Native	code

24	/	47

Stack	Machine	to	register	machine

Use	the	registers	as	local	cache

Example:
Lets	translate	the	following	on	a	three	registers	machine:

One	register	contains	a	pointer	to	the	stack,	the	other	two	are	for	arithmetic

operations

PUSH	1			→			SET_A	1																																										[1]	≍	[A]

PUSH	2			→		SET_B	2																																											[1	2]	≍	[A	B]

ADD								→	ADD_A_B																																										[3]	≍	[A]

PUSH	4			→	SET_B	4																																												[3	4]	≍	[A	B]

PUSH5			→	MEM_SET_C_A;	INC_C;	SET_A_5				[3	4	5]	≍	[C[0]	B	A]

MUL								→	MUL_B_A																																									[3	20]	≍	[C[0]	B]

DIV										→	DEC_C;	MEM_GET_A_C;	DIV_B_A	[0]	≍	[B]

25	/	47

Native	code	for	static	typing
Generating	native	code	for	static	typing	is	straight

forward

Which	function	to	call	is	known
int	a	=	2;

f(a);

Which	operators	to	call	is	known
float	b	=	2.0;

float	c	=	2.0;

f(b+c);

26	/	47

Native	code	for	dynamic	typing	(1/3)

What	is	the	type	of	a?

27	/	47

Native	code	for	dynamic	typing	(2/3)

Treat	all	variables	as	a

pointer	to	an	object

28	/	47

Native	code	for	dynamic	typing	(3/3)

Treat	all	variables	as	a	pointer	to	an	object

Treat	all	variables	as	32/64bits	integers
If	the	first	bit	is	1,	then	the	value	is	an	object

If	the	first	bit	is	0,	then	the	value	is	a	31/63bits	integer

Dynamic	recompilation,	compile	a	version

of	function	for	each	types	when	needed

V8	Case	Study

30	/	47

V8	Case	Study
V8	is	the	JavaScript	engine	used	in

Google	Chrome	and	node.js

Implements	a	JIT	compiler

31	/	47

Object	Representation	in	V8	(1/2)

Does	not	use	a	dictionnary!

Instead	create	a	hidden	class	definition
function	Point(x,	y)

{

		this.x	=	x;

		this.y	=	y;

}

var	p	=	new	Point(11,22);

var	q	=	new	Point(33,44);

p:	[11,	22]

q:	[33,	44]

Point	layout

name:	offset

x:	0

y:	1

32	/	47

Object	Representation	in	V8	(1/2)

What	happen	when	adding	a

dynamic	member?

p:	[11,	22]

q:	[33,	44]

Point	layout

name:	offset

Point	layout

name:	offset

x:	0

Point	layout

name:	offset

x:	0

y:	1
Point	layout

name:	offset

x:	0

y:	1

z:	2

33	/	47

Code	generation
Generate	one	native	function	per	parameter	type

q.z	=	55

norm(q)

Will	generate	one	native	function	for	the	two	layouts

In	this	case	the	compiler	can	easily	guess	the	types	of	the	variables	based

on	the	arguments

34	/	47

The	problem	of	global	variables

What	happen	if	doSomethingElse()	change	the	type	of

base?

An	other	difficulty	caused	by	side	effects

35	/	47

Implementing	JIT	in	a	programming	language

Implementing	a	JIT	is	hard,	it	requires	lot	of	low-level

knowledge

Solution,	use	an	exist	VM	with	JIT	support,	like	JVM	or

CIL?
But	it	is	generally	slower	than	no-JIT!	Source:	https://

pybenchmarks.org/

Pypy	propose	to	use	meta-tracing	JIT	instead	to	build

JITable	VM	in	RPython

Tracing	JIT

37	/	47

Tracing	JIT
Traditional	JIT	are	method	JIT,	full

methods	are	JITed

Tracing	JIT	hot	loops	are	identified	and

JITed
Remove	control	structure,	inline	function...

Output	a	linear	set	of	instructions	(no	branching)

Add	guard	to	check	if	the	trace	is	valid

38	/	47

Tracing	JIT	-	Execution	Flow
Interpretation

with

profiling

Interpretation

with

tracing

Optimize	and

emit	machine

code

execute

machine

code

new	hot	loop	identified

loop	finishedguard	failure entering	loop

with	existing

machine	code

39	/	47

Tracing	JIT:	example	(1/2)
User	Program Trace	when	x	is	set	to	6

40	/	47

Tracing	JIT:	example	(2/2)
User	Program Optimised	Trace

41	/	47

Tracing	JIT	for	a	bytecode	interpreter	(1/2)

We	have	a	hot	loop:

42	/	47

Tracing	JIT	for	a	bytecode	interpreter	(2/2)

Example	of	program

MOV_A_R					0			#	i	=	a

MOV_A_R					1			#	copy	of	’a’

#	4:

MOV_R_A					0			#	i--

DECR_A

MOV_A_R					0

MOV_R_A					2			#	res	+=	a

ADD_R_TO_A		1

MOV_A_R					2

MOV_R_A					0			#	if	i!=0:	goto	4

JUMP_IF_A			4

MOV_R_A					2			#	return	res

RETURN_A

Example	of	trace:

What	we	want	is	a	trace	of	the	executed	bytecode,

not	of	the	interpreter!

The	guards	are	most	likely	to	fail	after	each

instrucion

43	/	47

Meta-tracing	JIT
Pypy	and	RPython	use	a	Meta-tracing	JIT

44	/	47

Pypy/RPython	JIT
greens=...	indicates	state	of

the	interpreter

reds=...	indicates	state	of	the

user	program

jit_merge_point()	indicates

where	to	start	when	the

guards	fail

can_enter_jit()	indicates

where	JIT	can	be	emited

45	/	47

Advantages/Inconvenients	of	Ahead-Of-Time

Advantages
Program	is	ready	to	use	after	installation

Inconvenients
Static	optimization	give	slower	code

46	/	47

Advantages/Inconvenients	of	Just-In-Time

Advantages
Adaptive	optimization

More	suitable	for	dynamic	programming	language

Inconvenients
Slow	down	during	execution	due	to	compilation

Debetable	if	the	adaptive	optimization	gives	a	noticeable

performance	improvments	for	static	typed	programming

language

47	/	47

Native	Code	Generation	-	Summary

Benefits:
Faster	to	execute

Inconvenients
Complexity

Less	portable

