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How	is	a	program	interpreted?
Source	code Parser

Parser

Abstract	Syntax	Tree Tree	visitor

Generator Source	code ...

Bytecode Virtual	Machine

Assembler Assembly Operating	System CPU
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What	is	a	type	system?
A	type	system	defines	how	a	type	is	associated	to	a

variable

Variables	are	stored	as	bits	in	memory
	1011101010011100011...

A	type	give	meaning	to	a	set	of	bits

In	a	program,	a	value	is	associated	to	at	least	one

type
C	has	void,	assembly	has	no	type
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Type-Checking
Static-type	checking
Types	are	checked	at	compilation

from	static	analysis

Usually	variables	have	a	single

type

Polymorphism	allows	for

dynamicity

Support	from	downcasting

Dynamic-type
Types	are	checked	at	runtime

Usually	the	type	of	a	variable	can	change

Gradual
Allow	both	to	specify	and	not	specify	the

type

Unchecked
Example:	machine	code
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Static-type	checking
Allow	for	optimization
No	need	to	check	for	types	at

Program	verification
Can	work	better	than	unit-

But	downcasting	cannot	be	verified	with	static
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Static-type	vs	Dynamic-type

Trade-off

The	number	of	actual	errors	found

through	static	typing	is	debatable
Easier	polymorphism

Dynamic	typing	allows	for	faster

development	and	faster	compilation
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Implicit	static-type	system	(1/2)

C++,	Java	are	explicit

Crystal	is	implicit
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Implicit	static-type	system	(2/2)

This	approach	mix	benefits	of	dynamic	and	static

checking
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Gradual-type	checking
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Implementing	static-typing
With	an	AST	visitor!

Instead	of	returning	a	value,	return	a	type
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Implementing	dynamic-typing
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Strong	vs	Weak	typing
A	language	is	said	to	be	strongly	typed	when	it

requires	explicitely	casting
Example:	ADA

A	language	is	said	to	be	weakly	typed	when	it

allows	non-explicit	casting
For	instance,	from	strings	to	integers	to	floating	points	to

strings

Example:	TCL

Native	Code	Generation
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Performance	of	Virtual	Machines

Virtual	Machines	are	faster	than	tree

visitors	interpreter...

...but	still	slower	than	native	code
C++	is	an	average	15	times	faster	than	Python

C++	is	an	average	5	times	faster	than	JavaScript	V8

Source:	http://benchmarksgame.alioth.debian.org/

Just-In-Time,	Ahead-Of-Time
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Just-In-Time,	Ahead-Of-Time

Ahead-Of-Time
classical	type	of	compilation

Code	is	translated	to	native	code	beforebefore	running	the

application

GCC,	VisualStudio	C++,	ART...

Just-In-Time	(JIT)
Code	is	translated	to	native	code	whilewhile	running	the

application

Java	VM,	.NET,	Dalvik...
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Ahead-Of-Time
Compiled	before	distribution
Simple

Examples:	GCC,	Visual	Studio...

Compiled	at	installation
The	program	is	optimised	for	the	platform

More	complex	installation

Examples:	ART...
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Just-In-Time
Dynamic	recompilation
The	Virtual	Machine	recompiles	part	of	the	program	during

execution

Adaptive	optimization
Optimization	depending	on	the	current	context

Profile-guided	optimization

For	dynamic	programming	language,	it	can

optimize	for	the	different	types
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Adaptive	optimization

a()	can	be	inlined	in

a()	cannot	be	inlined	in

From	Bytecode	to	Native	code
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Stack	Machine	to	register	machine

Use	the	registers	as	local	cache

Example:
Lets	translate	the	following	on	a	three	registers	machine:

One	register	contains	a	pointer	to	the	stack,	the	other	two	are	for	arithmetic

operations

PUSH	1			→			SET_A	1																																										[	1	]	≍	[	A	]

PUSH	2			→		SET_B	2																																											[	1	2	]	≍	[	A	B	]

ADD								→	ADD_A_B																																										[	3	]	≍	[	A	]

PUSH	4			→	SET_B	4																																												[	3	4	]	≍	[	A	B	]

PUSH5			→	MEM_SET_C_A;	INC_C;	SET_A_5				[	3	4	5	]	≍	[	C[0]	B	A	]

MUL								→	MUL_B_A																																									[	3	20	]	≍	[	C[0]	B	]

DIV										→	DEC_C;	MEM_GET_A_C;	DIV_B_A	[	0	]	≍	[	B	]
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Native	code	for	static	typing
Generating	native	code	for	static	typing	is	straight

forward

Which	function	to	call	is	known
int	a	=	2;

f(a);

Which	operators	to	call	is	known
float	b	=	2.0;

float	c	=	2.0;

f(b+c);
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Native	code	for	dynamic	typing	(1/3)

What	is	the	type	of	a?
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Native	code	for	dynamic	typing	(2/3)

Treat	all	variables	as	a

pointer	to	an	object
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Native	code	for	dynamic	typing	(3/3)

Treat	all	variables	as	a	pointer	to	an	object

Treat	all	variables	as	32/64bits	integers
If	the	first	bit	is	1,	then	the	value	is	an	object

If	the	first	bit	is	0,	then	the	value	is	a	31/63bits	integer

Dynamic	recompilation,	compile	a	version

of	function	for	each	types	when	needed



V8	Case	Study
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V8	Case	Study
V8	is	the	JavaScript	engine	used	in

Google	Chrome	and	node.js

Implements	a	JIT	compiler
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Object	Representation	in	V8	(1/2)

Does	not	use	a	dictionnary!

Instead	create	a	hidden	class	definition
function	Point(x,	y)

{

		this.x	=	x;

		this.y	=	y;

}

var	p	=	new	Point(11,22);

var	q	=	new	Point(33,44);

p:	[11,	22]

q:	[33,	44]

Point	layout

name:	offset

x:	0

y:	1
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Object	Representation	in	V8	(1/2)

What	happen	when	adding	a

dynamic	member?

p:	[11,	22]

q:	[33,	44]

Point	layout

name:	offset

Point	layout

name:	offset

x:	0

Point	layout

name:	offset

x:	0

y:	1
Point	layout

name:	offset

x:	0

y:	1

z:	2
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Code	generation
Generate	one	native	function	per	parameter	type

q.z	=	55

norm(q)

Will	generate	one	native	function	for	the	two	layouts

In	this	case	the	compiler	can	easily	guess	the	types	of	the	variables	based

on	the	arguments
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The	problem	of	global	variables

What	happen	if	doSomethingElse()	change	the	type	of

base?

An	other	difficulty	caused	by	side	effects
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Implementing	JIT	in	a	programming	language

Implementing	a	JIT	is	hard,	it	requires	lot	of	low-level

knowledge

Solution,	use	an	exist	VM	with	JIT	support,	like	JVM	or

CIL?
But	it	is	generally	slower	than	no-JIT!	Source:	https://

pybenchmarks.org/

Pypy	propose	to	use	meta-tracing	JIT	instead	to	build

JITable	VM	in	RPython

Tracing	JIT
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Tracing	JIT
Traditional	JIT	are	method	JIT,	full

methods	are	JITed

Tracing	JIT	hot	loops	are	identified	and

JITed
Remove	control	structure,	inline	function...

Output	a	linear	set	of	instructions	(no	branching)

Add	guard	to	check	if	the	trace	is	valid
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Tracing	JIT	-	Execution	Flow
Interpretation

with

profiling

Interpretation

with

tracing

Optimize	and

emit	machine

code

execute

machine

code

new	hot	loop	identified

loop	finishedguard	failure entering	loop

with	existing

machine	code
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Tracing	JIT:	example	(1/2)
User	Program Trace	when	x	is	set	to	6
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Tracing	JIT:	example	(2/2)
User	Program Optimised	Trace
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Tracing	JIT	for	a	bytecode	interpreter	(1/2)

We	have	a	hot	loop:
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Tracing	JIT	for	a	bytecode	interpreter	(2/2)

Example	of	program

MOV_A_R					0			#	i	=	a

MOV_A_R					1			#	copy	of	’a’

#	4:

MOV_R_A					0			#	i--

DECR_A

MOV_A_R					0

MOV_R_A					2			#	res	+=	a

ADD_R_TO_A		1

MOV_A_R					2

MOV_R_A					0			#	if	i!=0:	goto	4

JUMP_IF_A			4

MOV_R_A					2			#	return	res

RETURN_A

Example	of	trace:

What	we	want	is	a	trace	of	the	executed	bytecode,

not	of	the	interpreter!

The	guards	are	most	likely	to	fail	after	each

instrucion
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Meta-tracing	JIT
Pypy	and	RPython	use	a	Meta-tracing	JIT
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Pypy/RPython	JIT
greens=...	indicates	state	of

the	interpreter

reds=...	indicates	state	of	the

user	program

jit_merge_point()	indicates

where	to	start	when	the

guards	fail

can_enter_jit()	indicates

where	JIT	can	be	emited
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Advantages/Inconvenients	of	Ahead-Of-Time

Advantages
Program	is	ready	to	use	after	installation

Inconvenients
Static	optimization	give	slower	code
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Advantages/Inconvenients	of	Just-In-Time

Advantages
Adaptive	optimization

More	suitable	for	dynamic	programming	language

Inconvenients
Slow	down	during	execution	due	to	compilation

Debetable	if	the	adaptive	optimization	gives	a	noticeable

performance	improvments	for	static	typed	programming

language
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Native	Code	Generation	-	Summary

Benefits:
Faster	to	execute

Inconvenients
Complexity

Less	portable


