
TDDA69	Data	and	Program	Structure

Macro
Cyrille	Berger

2	/	52

Lectures
1Introduction

2Concepts	and	models	of	programming	languages

3Declarative	Computation	Model

4Declarative	Programming	Techniques

5Declarative	Computation	Implementation

6Declarative	Concurrency

7Message	Passing	Concurrency

8Explicit	State	and	Imperative	Model

9Imperative	Programming	Techniques

10Imperative	Programming	Implementation

11Shared-State	Concurrency

12Relational	Programming

13Specialized	Computation	Models

14Macro

15Running	natively	and	JIT

16Garbage	Collection

17Summary

3	/	52

How	is	a	program	interpreted?

Source	code Parser

Parser

Abstract	Syntax	Tree

Tree	visitor

Transformation

Generator Source	code ...

Bytecode Virtual	Machine

Assembler Assembly Operating	System CPU

4	/	52

Lecture	content
Macros
Decorators

Syntactic	Macros

Macros	in	KL
Implementation

Use	cases

Macros

6	/	52

Macros
A	macro	is	a	rule	or	function	that

map	an	input	to	an	output.

Example:	C	preprocessor,

decorators	in	Python,	sweetjs,

lisp	macro...

7	/	52

Why	macro	?
All	you	need	for	OO	is	state+closure: But	a	class-like	syntax	is	nicer:

8	/	52

C	preprocessor	(1/3)
The	first	step	of	compiling	a	C

program	is:
to	replace	preprocessing	keyword	#include,

#define,	#ifdef...

...

and	apply	#defined	macros

9	/	52

C	preprocessor	(2/3)

10	/	52

C	preprocessor	(3/3)
If	not	careful,	they	lead	to	wrong	or	inconsistent	behaviour:

Decorators

12	/	52

Decorators
What	about	changing	the

behavior	of	a	function	without

changing	its	code?

13	/	52

Memoization	(1/2)
Fibonacci:

14	/	52

Memoization	(2/2)
Manually	rewritten	to:

15	/	52

Memoization	decorator	(1/2)

16	/	52

Memoization	decorator	(2/2)

The	following	is

equivalent	to

17	/	52

No	constants	in	Python
Python	does	not	have	constants

You	can	fake	them	with	properties:

18	/	52

Constants	in	Python	with	a	decorator

19	/	52

Adjustable	decorators

Decorators	can	take	arguments:

is	equivalent	to

20	/	52

Bound-checking

21	/	52

Chain	decorators

Syntactic	Macros

23	/	52

Syntactic	macros
C	macro	works	at	lexical	level

Syntactic	macros	works	on	AST
Mostly	common	in	Lisp-like	languages

24	/	52

Hygienic	macros
Hygienic	macros	are	syntactic	macros,	where	macros	and	user	environment	are	seperate,	so	that	variable

cannot	be	captured	by	macros
Example	of	capture:

2

gcc	-E	test2.c	-o	preprocessed.c

25	/	52

AST	Manipulations
Give	the	possibility	to	write

functions	that	transform	an

expression	into	an	other	before	it

is	evaluated

Macro	expansion	can	take	place:
During

During

26	/	52

Building	AST

27	/	52

Get	AST	of	a	function

ast_tree.body[0].body[0].value.right.n	=	2

	

exec(compile(ast_tree,	__file__,	mode='exec'))

print(func(1))

		

28	/	52

Increment	all	numbers

29	/	52

Template	(1/2)

30	/	52

Template	(2/2)

31	/	52

When	are	AST	manipulations	useful?

In	Python,	AST	manipulations	are	seldom	used

Functions	decorators	cover	most	of	the	need

But	some	time	macros	will	work	better
If	there	is	a	need	to	control	function	return

To	apply	modifier	on	classes	or	expressions	(decorators	only	work	on

functions)

They	can	be	used	for	optimization,	such	as	tail-call	optimization

When	calling	a	function,	all	arguments	are	executed

...only	once

They	can	save	function	call

But	AST	manipulations	are	obfuscated
Python	AST	module	API	can	change	from	version	to	version

No	good	syntax	to	define	rules

Macros	in	KL

33	/	52

Macros	in	KL
Inspired	by	sweet.js
sweet.js	(http://sweetjs.org/)	is	a	JavaScript

library	that	brings	support	for	hiegenic

macro	to	JavaScript

The	old	version,	not	the	new	one

A	template	matching	system

with	generative	rules

34	/	52

Defining	rules	(1/2)

Use	$NAME	to	capture	tokens

Example:

35	/	52

Defining	rules	(2/2)

Use	$NAME()...	for	a	rule	that	repeat

Example:

36	/	52

Hygiene
Hygiene	means	that	an	invocation

of	a	macro	does	not	introduce	or

use	existing	bindings

Two	common	problems	to	solve:
name	clashes	from	a	introducing	a	new

name	clashes	from	using	an	existing

37	/	52

Example	of	hygienic	syntax	(1/4)

It	expands	to:

38	/	52

Example	of	hygienic	syntax	(2/4)

Lets	change	the	macro	to	create	a	new

environment: It	expands	to:

39	/	52

Example	of	hygienic	syntax	(3/4)

But: It	expands	to:

Not	what	we	wanted...

tmp	is	not	changed!	And

foo	has	wrong	value

40	/	52

Example	of	hygienic	syntax	(4/4)

Better	solution	is	for	macro	engine	to

rename	variables	during	expansion:
It	expands	to:

The	usage	of	'$'	is	reserved

to	the	macro	engine

Implementation

42	/	52

Compiler
In	scheme/lisp
lexer	-(token)→	reader	-(s-expression)→	expander/parser	-(AST)→

Commonly	in	JavaScript
lexer	←(feedback/token)→	parser	-(AST)→

Feedback	is	needed	to	distinguish	division	(/)	from	regular	expressions	(/

x/).

In	sweetjs
lexer	-(token)→	reader	-(token-tree)→	expander/parser	-(AST)→

In	KL:
lexer	-(token)→	reader	-(token-tree)→	macro	engine	-(token-tree)→

flatening	-(token)→	parser	-(AST)→

43	/	52

Token	tree	/	Reader
Tokens	for	'{	42	}'	are	['{',	'42',	'}']

Token	tree	match	delimiters:
['{}',	['42']]

Rules	for	building	the	tree:
Identifier/value	token	are	leaf	nodes

Nodes	are	grouped	in	statements	and	expressions

...

The	reader	convert	a	stream	of	tokens	into	a

token-tree

44	/	52

Example	of	token	tree

45	/	52

Macro	engine
The	macro	engine	visit	the	tree:
It	maintain	a	list	of	rules	under	consideration

Tree	matching	algorithm

For	each	node	of	the	tree
For	each	rule	under	consideration,	check	if	the	current

node	satisfy	the	rule,	if	it	doesn't,	discard	the	rule

If	a	rule	matches,	apply	the	transformation,	clear	the

list	of	rules	and	reset	the	macro	engine

46	/	52

Example	of	rule	matching

Use	cases

48	/	52

Class	in	KL	(1/2)
All	you	need	for	OO	is	state+closure: But	a	class-like	syntax	is	nicer:

49	/	52

Class	in	KL	(2/2)

50	/	52

contracts
Macro	can	be	used	to	implement	contract:

51	/	52

Maros	Advantages	/	Inconvenients

Advantages
Allow	to	extend	a	programming	language	without	needs

to	change	the	interpreter

Can	help	code	reusability

Introduce	symbolic	programming	techniques

Incovenients
Need	to	be	well	designed	and	well	supported	by	the

language

Introduce	dialects,	which	might	make	the	code	harder	to

read

52	/	52

Conclusion
Decorators

Macros	and	AST	transformations

