
TDDA69	Data	and	Program	Structure
Specialized	Computation	Models

Cyrille	Berger

2	/	24

Lectures
1Introduction
2Concepts	and	models	of	programming	languages
3Declarative	Computation	Model
4Declarative	Programming	Techniques
5Declarative	Computation	Implementation
6Declarative	Concurrency
7Message	Passing	Concurrency
8Explicit	State	and	Imperative	Model
9Imperative	Programming	Techniques

10Imperative	Programming	Implementation
11Shared-State	Concurrency
12Relational	Programming
13Specialized	Computation	Models
14Macro
15Running	natively	and	JIT
16Garbage	Collection
17Summary

3	/	24

Programming	Paradigms

4	/	24

Lecture	content
Constraint	Programming
Specialized	Declarative
Evaluators
Make
Regular	Expressions

Constraint	Programming

6	/	24

Constraint	Programming
Expresses	constraints	between
variables
Examples:	Prolog...

7	/	24

Evaluator
A(X,Y)	:-	X+Y>0,	B(X),	C(Y)
How	to	evaluate?
Brute	force?
Propagate	and	search

8	/	24

Propagate	and	search
Partial	information
Local	decuction
Controlled	search

9	/	24

Applications
Circuit	verification
Real-Time	Control	systems
Spreadsheets
...

Specialized	Declarative	Evaluators

Make

12	/	24

Make
Make	is	a	build	automation	tools	which	specify
how	to	generate	output	files	according	to	a	set
of	rules	and	a	set	of	input	files
Commonly	used	under	Unix	to	build	C/C+
+	program
But	can	be	use	to	control	generation	of
anything,	really	(latex...)
Alternative:	Ants,	nmake,

13	/	24

Makefile
A	Makefile	is	made	of	a	set	of	rules:

The	TARGETS	is	the	output	files
The	PREREQUISITES	is	the	list	of	files	that	you	need	to
generate	the	TARGETS
RECIPE	is	how	to	generate	the	output	from	the	input
Example:

14	/	24

How	to	write	a	Makefile	interpreter	(1/2)

Parse	the	makefile	into	a	set	of
rules
[TARGETS,	[PREREQUISITES],	RECIPE]
	rules	=	[['all',	['a.out'],	''],	['a.out',
['main.cpp'],	'gcc	main.cpp']
phony	=	['all']

15	/	24

How	to	write	a	Makefile	interpreter	(2/2)

Interpreter

16	/	24

To	make	thing	a	bit	more	complicated...

Is	it	convenient	to	write:

	
	
	

It	is	nicer	to

Rules	are	defined
with	template
	

Regular	Expressions

18	/	24

Regular	Expression
A	regular	expression	(regex)	describes	a	set
of	possible	input	strings
They	can	be	used	for	matching	strings	and
for	search	&	replace
They	are	commonly	used	for	simple	parsing
Makefile	rules
Process	natural	languages
Field	validation
...

19	/	24

Basic	Regular	Expression
Concatenation:	aabaab
yes:	'aabaab'
no:	every	other	string
Wildcard:	.u.u.u.
yes:	'cumulus',	'jugulum'...
no:	'succubus',	'tumultuous'...
Union	aa	|	baab
yes:	'aa',	'baab'
no:	every	other	string
Closure	ab*a
yes:	'aa',	'aba',	'abba'...
no:	'ab,	'ababa'...
Parentheses	a(a|b)*aab
yes:	'aaab',	'abbaab',	'ababaab'...
no:	'abcaab',	'acabaab'...

One	or	more	a(bc)+de
yes:	'abcde',	'abcbcde'...
no:	'ade',	'bcde'...

Range	[A-Z][a-z]*
yes:	'Capitalized',	'Word'...
no:	'uncapitalized',	'wOrd'...

Exactly	k	[0-9]{2}(0[0-9]|10|
12)([0-2][0-9]|30|31)-[0-9]{4}
yes:	900431-3234...
no:	902331-3234,	900452-3234...

Negations	[^aeiou]{6}
yes:	rhythm
no:	decade

20	/	24

Deterministic	Finite	Automaton	(DFA)

A	Deterministic	Finite	Automaton	consists	of
Q	a	finite	set	of	states
∑	a	finite	set	of	input	symbols
q₀	a	start	state
F	a	set	of	final	states
δ	a	transition	function	from	Q	x	∑	->	Q

21	/	24

Interpret	a	Deterministic	Finite	Automaton

Take	a	word	composed	of	letters	in	∑
Does	the	word	match	the	DFA?
Treat	the	word	as	a	stream	of	input	symbols
q	is	the	current	state
Start	in	q	=	q₀
Given	c	the	current	input	symbol,	then	q=δ(q,c)
When	no	input	symbols	remain,	if	q	∈	F,	then
accept	otherwise	reject

22	/	24

DFA	and	Regexp
Regexps	are	a	concise	way	to	describe	a	set	of	strings
DFAs	are	machine	to	recongnize	whether	a	given
string	is	in	a	given	set
Theorem:	for	any	DFA,	there	exists	a	regular
expression	to	describe	the	same	set	of	strings,	for	any
regular	expression,	there	exists	a	DFA	that	recognize
the	set
Conscequence:	to	implement	a	regular	expression
matcher,	buid	a	DFA	and	execute	it

23	/	24

DFA	and	Regexp	-	Example
DFA:

Q₀	and	Q₂	are	final	states
Regexp:	(ab*a)*

24	/	24

Conclusion
Constraint	Programming
Make
Regular	Expression

