Lectures

1Introduction
2Concepts and models of programming languages
3Declarative Computation Model
4Declarative Programming Techniques
5Declarative Computation Implementation
6Declarative Concurrency
7Message Passing Concurrency
8Explicit State and Imperative Model
9Imperative Programming Techniques

10Imperative Programming Implementation

11Shared-State Concurrency

12Relational Programming

13Constraint Programming

14Macro

15Running natively and JIT

16Garbage Collection

17Summary

TDDA69 Data and Program Structure

Cyrille Berger

II LINKOPING
o UNIVERSITY

s The principal programming paradigms
pmm;;;i ""More is not better (or worse) than less, just different."
Data structures only S—expression

Lecture conten

® Relational Programming

+ unification +name !

(equality)

+ by—need

synchron.
Prolog, SQL
embeddings

CLP, ILOG Solver
+ thread

LIFE, AKL

+ thread
+ single assignment

+ thread

+ nondeterministic *

port
(channel)

dataflow

programming

+ by—need
synchronization

Pipes, MapReduce

+ single assign:
i /\v choice |

Functional reactive
programming (FRP)

0z, Alice, Curry, Excel,
AKL, FGHC, FCP

+ synch. on p‘am‘al

‘Multi
=

+ local cell
Active obj_sct

g
Smalltalk, Oz,

+ by—need synchronization || Weak synchronous |} S Cctacinetiy Java; Blics
! JREOEEHINIITIE] | + [0}
I FrTime, SL CSP, Occam,
; : : i ! E, Oz, Alice,
- = = I | publish/subscribe,)
Oz, Alice, Curry 0z, Alice, Curry 1| Strong synchronous | ! i >
2 3 'y s : i | tuple space (Linda) SQL embeddings
. | Esterel, Lustre, Signal | Dataflow and
- Functional ' ! message passing Message passing
L 1 1
. Nondet. state

Unnamed state (seq. or conc.)
1

More declarati t

Named state
|

. (unforgeable constant)
3] + cell
[® SQL And Databases
e Scheme,ML | Haskell, ML,E | CLU,OCaml, Oz

“ Interpreting SQL

+ solver programming | | dataflow dataflow Java, OCaml
Haskell Declarative ' i ogrammin; - thread M M
e | | e] ey ® Lo gic Pro gramming

Relational Programming

® A relational programming
language is a declarative language

Relational Prog ramming b]ch!t around the relational model
of data:

° Defines
“ Defines relations between

® Examples: SQL

LINKOPING
II." UNIVERSITY

Relational Syntax

Relational vs Functional

® In Functional, outputs are functions of ¢ Syntax, introduce /et and ask
let soft(beige),; let soft(coral)

the inputs let hard(mauve); let hard(ochre);
f(1,2) let contrast(soft, hard);
® In Relational, arguments can be let contrast(hard, soft);

value color;
ask contrast(beige, color);

inputs or outputs
f(?answer, 1) f(2, ?question) f(2, 3) f(2, 4)...
7answer = @ ?question=3or 4

Database Management Systems

® A Database is a collection of table

® Atable is a collection of records

® Arecord is a row with a value for each column
® A column has a name and a type

P T ——

SQL And Databases T

..

® The Structured Query Language (SQL) is the most widely used
programming language for accessing DBMS

II LINKOPING
@' UNIVERSITY

Select Statements Project Existing Tables

SQL Examples

® Select statements: ® Table creation

SELECT [columns] FROM [table] WHERE [condition] ORDER BY [order] create table cities as

¢ A select statement can specify an input table using a from clause selact 30 ax latituds, 127 as langitude, “Borkeley” ax hame undom
SELECT parent, child FROM parents; select 42, 71, "Cambridge”
. . union
® A subset of the rows of the input table can be selected using a select 45, 93,

"Minneapolis";

where clause
SELECT parent, child FROM parents WHERE parent='fillmore’; (2T | I""'*"”| o0 [Z=n | (=0
38 122 Berkeley westcoast Berkeley

® An ordering over the remaining rows can be declared using an - 5 j o

order by clause 45 93 Wmespols| oer | Combridge
SELECT parent, child FROM parents ORDER BY parent A
® Data retrieval

® Column descriptions determine how each input row is projected
select "west coast" as region, name from cities where longitude ==

to a result row 115 union
SELECT child FROM parents ORDER BY parent select "other", name from cities where longitude < 115;

hw hw

Multiple Tables

® Multiple tables can be joined to yield all combinations
of rows from each

create table grandparents as

select a.parent as grandog, b.child as granpup
from parents as a, parents as b

where b.parent = a.child;

® Select all grandparents with the same fur as their I nte rp reti n g S Q L

grandchildren

select grandog from grandparents, dogs as c, dogs as
d

where grandog c.name and

granpup = d.name and
c.hur = d.fur;

Ilo JRERIT Ilo" LINKOPING

UNIVERSITY

Table representation in Python A naive first implementation of select

® The namedtuple function returns a new sub-class of tuple ® One correct (but not always efficient) implementation
from collections import namedtuple .
City = namedtuple('City', ['latitude', 'longitude', 'name']) of select uses sequence Operatlons
cities = [City(38, 122, 'Berkeley'), ®
City(42, 71, 'Cambridge'), Example of query:

City(43, 93, 'Minneapolis')]

F : : z i SELECT name, 60*abs(latitude-38) AS distance FROM cities WHERE name !
[city.latitude for city in cities]

= 'Berkeley';
->[38, 42, 43] Distance = namedtuple('Row', ['name', 'distance’'])
® Attribute names are accessible as the _fields attribute of HEffee i bl :
A A latitude, longitude, name = city
an instance of Clty return Distance(name, 60*abs(latitude-38))
print(cities[0]) def condition(city):
print(cities[0]._fields) latitude, longitude, name = city
. return name != 'Berkeley'
OUtp_Ut‘ . . for row in map(columns, filter(condition, cities)):
-> City(latitude=38, longitude=122, name='Berkeley') print (row)
-> ('latitude', 'longitude', 'name')

-> Row(name='Cambridge', distance=240)
-> Row(name='Minneapolis', distance=300)

SQL Interpretation Example A Select Class

. . . H
® SQL Queries: The SQL parser creates an instance of the Select class for each select
CREATE TABLE cities AS statement
SELECT 28 AS lat, 122 AS lon, 'Berkeley' AS name UNION class Select:
1 -] """select [columns] from [tables] where [conditiom]."""
SELECT 42, 71, c‘?‘mbrldge_ UNION def _ init_ (self, columns, tables, condition):
SELECT 45, 93, 'Minneapolis'; self.columns = columns
SELECT 60*(lat-38) AS north FROM cities WHERE name != 'Berkeley'; 221?'Eiﬁéiiiéntfbiiﬁdimn
[) . self:make_ruw = create_make_row(self.columns)
In Python' def execute(self, env):
City = namedtuple('City’, ['lat’, 'lon’, 'name']) e TIoee m A e ENN NS 1 eotimr: ™
cities = [City(38, 122, 'Berkeley'), filtered_rows = filter(self.filter_fn, from_rows)
City(42, 71, 'Cambridge'), return map(self.make_row, filtered rows)
City(43, 93, ‘inneapolis’)] e e Tt)
s = Select('60*(lat-38) as north', 'cities', 'name != "Berkeley"') return eval(self.condition, row)
for row in s.execute({'cities': cities}): else:

i return True
print(row)

hw hw

Creating Row Classes Dynamically

® Each select statement creates a table with new columns, represented ® Joining creates a dictionary with all names and aliases
by anew class for each combination of rows

def create_make_row(description):
from itertools import product

Return a function from an input environment (dict) to an output row. £ o 1 :
description -- a comma-separated list of [expression] as [column name] def join(tables, env):
B """Return an iterator over dictionaries from names to values in a

columns = description.split(', ") row. """

expressions, names = [], 3 s F ; i

for column in columns: names = tables.split(', ')
if ' as ' in column: , sany : joined_rows = product(*[env[name] for name in names])

’ B . t s
else?“"eﬂuon fame = column:SpllEE™as ™) return map(lambda rows: make_env(rows, names), joined_rows)
expression, name = column, column def make_env(rows, names):

expressions .append (expression) """Create an environment of names bound to values."""
names.append (name) e i

row = namedtuple('Row', names) env = dict(zip(names, rows))

return lambda env: row(*[eval(e, env) for e in expressions]) for row in rows:

for name in row._fields:
env[name] = getattr(row, name)
return env

hw hw

Query Plannino

® The manner in which tables are filtered, sorted, and joined
affects execution time
® Select the parents of curly-furred dogs:

select parent from parents, dogs
where child = name and fur = 'curly';

® Four different possibilities:
“ Join all rows of parents to all rows of dogs, filter by child = name and fur =
‘curly’
“ Join only rows of parents and dogs where child = name, filter by fur = 'curly’

° Filter dogs by fur = 'curly', join result with all rows of parents, filter by child =
name

Logic Programming

° Filter dogs by fur = 'curly', join only rows of result and parents where child =
name

LINKOPING
II." UNIVERSITY

Logic Proarammino Predicate loqic

® Based on Formal logic: ¢ Predicate logic can be used to capture
expressing facts and rules facts and rules:

° “ declare facts as ground clauses.
Exa m pleS: PrO|Og E.g., Son(Gustaf, Carl), Daughter (Carl, Victoria), ...

“rules as horn clauses:
VY xy, z Son(x, y) A Daughter (y, z) O GrandFather (x, 2)
“ One can then submit queries and retrieve further
facts:

3 x GrandFather (Gustaf, x)

hw hw

Query answering system

Pattern matching and unification

® Knowledge is stored in a database and is

represented:
© explicitly as facts
© or implicitly as rules

® An inference machine infers new facts from known
ones

® Programs submit queries
° A query is simple or composed of simple queries and the
connectives and, or, not

© Queries are compared against the knowledge in the database by
pattern matching for the facts and by unification for the rules

Unification algorithm

® Pattern matching

° Match a query with variables to facts without variables
(query (parent abraham ?child))
(fact (parent abraham barack))

® In Unification:

° Unification is a generalization of pattern matching.
(query (grandparent abraham ?grandchild)
(fact (parent barack lincoln))
(rule (grandparent ?x ?z) (parent ?x ?y) (parent ?y 72z)

° Unification finds bindings for variables.
° Avariable occurring several times will be bound to the same value
°In unification, a variable can be bound to another expression or variable

Unification Algorithm

® Unification is a generalization of pattern matching that
attempts to find a mapping between two expressions
that may both contain variables.

® Example:
(?x ?x) can match ((a ?y c) (a b ?z2))
(@bc)(abce)

¢ Unification identifies this solution via the following
steps:
© To match the first element of each pattern, the variable ?x is bound to the
expression (a ?y c).
° To match the second element of each pattern, first the variable ?x is replaced
by its value. Then, (a ?y c) is matched to (a b ?z) by binding ?y to b and ?z to c.

unify(e, f,
1) Both inputs e and f are replaced by their values if they are
variables.
2) If e and f are equal, unification succeeds.
3) If e is a variable, unification succeeds and e is bound to f.
4) If fis a variable, unification succeeds and fis bound to e.
5) If neither is a variable, both are not lists, and they are not equal,
then e and f cannot be unified, and so unification fails.
6) If none of these cases holds, then e and f are both pairs, and so
unification is performed on both their first and second
corresponding elements.

Unification Algorithm - Example

interpreter

. unify((zx 20, (@ 7y c) (@ b 72)) ® The query interpreter performs a
u?':fy(a(;;(’c)(a v search in the space of all possible
® unify(?x, (a b ?2)) facts
ify(a?yc), (ab? . - :
univ(a #y o (2 b 72) ® Unification is the primitive operation

¢ unifiy(a, a)

® unifiy(?y, b) that pattern matches two expressions
y=b ® T+ . .

* unifiy(c, 72) It is a recursive algorithm
7z=c

Search Algorithm Conclusion

® The process of attempting to demonstrate an [i i
assertion (answer a query) is a systematic depth-first Relational Prog rammi ng
search of facts. ¢ LOgIC programming

def search(clauses, env):
R “and how to infer new facts

for fact in facts:
fact = rename_varilables(fact, get_unique_id(}))
env_head = new environment that extends env
if unify(fact.first, clauses.first, env_head):
for env_rule in search(fact.second, env_head, depth+1):
for result in search(clauses.second, env_rule,

depth+1):

yield result

