
TDDA69	Data	and	Program	Structure

Relational	Programming
Cyrille	Berger

2	/	32

Lectures
1Introduction

2Concepts	and	models	of	programming	languages

3Declarative	Computation	Model

4Declarative	Programming	Techniques

5Declarative	Computation	Implementation

6Declarative	Concurrency

7Message	Passing	Concurrency

8Explicit	State	and	Imperative	Model

9Imperative	Programming	Techniques

10Imperative	Programming	Implementation

11Shared-State	Concurrency

12Relational	Programming

13Constraint	Programming

14Macro

15Running	natively	and	JIT

16Garbage	Collection

17Summary

3	/	32 4	/	32

Lecture	content
Relational	Programming

SQL	And	Databases
Interpreting	SQL

Logic	Programming



Relational	Programming

6	/	32

Relational	Programming

A	relational	programming

language	is	a	declarative	language

built	around	the	relational	model

of	data:
Defines

Defines	relations	between

Examples:	SQL

7	/	32

Relational	vs	Functional

In	Functional,	outputs	are	functions	of

the	inputs
f(1,2)

In	Relational,	arguments	can	be

inputs	or	outputs
f(?answer,	1)	f(2,	?question)	f(2,	3)	f(2,	4)...	

?answer	=		∅	?question	=	3	or	4

8	/	32

Relational	Syntax
Syntax,	introduce	let	and	ask



SQL	And	Databases

10	/	32

Database	Management	Systems

A	Database	is	a	collection	of	table

A	table	is	a	collection	of	records

A	record	is	a	row	with	a	value	for	each	column

A	column	has	a	name	and	a	type

The	Structured	Query	Language	(SQL)	is	the	most	widely	used

programming	language	for	accessing	DBMS

11	/	32

Select	Statements	Project	Existing	Tables

Select	statements:

A	select	statement	can	specify	an	input	table	using	a	from	clause

A	subset	of	the	rows	of	the	input	table	can	be	selected	using	a

where	clause

An	ordering	over	the	remaining	rows	can	be	declared	using	an

order	by	clause

Column	descriptions	determine	how	each	input	row	is	projected

to	a	result	row

12	/	32

SQL	Examples
Table	creation

Data	retrieval

	



13	/	32

Joining	Multiple	Tables
Multiple	tables	can	be	joined	to	yield	all	combinations

of	rows	from	each

Select	all	grandparents	with	the	same	fur	as	their

grandchildren

Interpreting	SQL

15	/	32

Table	representation	in	Python

The	namedtuple	function	returns	a	new	sub-class	of	tuple

->	[38,	42,	43]

Attribute	names	are	accessible	as	the	_fields	attribute	of

an	instance	of	City

Output:

16	/	32

A	naive	first	implementation	of	select

One	correct	(but	not	always	efficient)	implementation

of	select	uses	sequence	operations

Example	of	query:



17	/	32

SQL	Interpretation	Example

SQL	Queries:

In	Python:

	

18	/	32

A	Select	Class
The	SQL	parser	creates	an	instance	of	the	Select	class	for	each	select

statement

19	/	32

Creating	Row	Classes	Dynamically

Each	select	statement	creates	a	table	with	new	columns,	represented

by	a	new	class

20	/	32

Joining	Rows
Joining	creates	a	dictionary	with	all	names	and	aliases

for	each	combination	of	rows



21	/	32

Query	Planning
The	manner	in	which	tables	are	filtered,	sorted,	and	joined

affects	execution	time

Select	the	parents	of	curly-furred	dogs:

Four	different	possibilities:
Join	all	rows	of	parents	to	all	rows	of	dogs,	filter	by	child	=	name	and	fur	=

'curly'

Join	only	rows	of	parents	and	dogs	where	child	=	name,	filter	by	fur	=	'curly'

Filter	dogs	by	fur	=	'curly',	join	result	with	all	rows	of	parents,	filter	by	child	=

name

Filter	dogs	by	fur	=	'curly',	join	only	rows	of	result	and	parents	where	child	=

name

Logic	Programming

23	/	32

Logic	Programming
Based	on	Formal	logic:

expressing	facts	and	rules

Examples:	Prolog

24	/	32

Predicate	logic
Predicate	logic	can	be	used	to	capture

facts	and	rules:
	declare	facts	as	ground	clauses.

E.g.,	Son(Gustaf,	Carl),	Daughter	(Carl,	Victoria),	...

rules	as	horn	clauses:
∀	x,y,	z	Son(x,	y)	^	Daughter	(y,	z)	⊃	GrandFather	(x,	z)

One	can	then	submit	queries	and	retrieve	further

facts:

∃	x	GrandFather	(Gustaf,	x)



25	/	32

Query	answering	system

Knowledge	is	stored	in	a	database	and	is

represented:
explicitly	as	facts

or	implicitly	as	rules

An	inference	machine	infers	new	facts	from	known

ones

Programs	submit	queries
A	query	is	simple	or	composed	of	simple	queries	and	the

connectives	and,	or,	not

Queries	are	compared	against	the	knowledge	in	the	database	by

pattern	matching	for	the	facts	and	by	unification	for	the	rules

26	/	32

Pattern	matching	and	unification

Pattern	matching
Match	a	query	with	variables	to	facts	without	variables

In	Unification:
Unification	is	a	generalization	of	pattern	matching.

Unification	finds	bindings	for	variables.

A	variable	occurring	several	times	will	be	bound	to	the	same	value

In	unification,	a	variable	can	be	bound	to	another	expression	or	variable

27	/	32

Unification	algorithm
Unification	is	a	generalization	of	pattern	matching	that

attempts	to	find	a	mapping	between	two	expressions

that	may	both	contain	variables.

Example:
(?x	?x)	can	match	((a	?y	c)	(a	b	?z))

((a	b	c)	(a	b	c))

Unification	identifies	this	solution	via	the	following

steps:
To	match	the	first	element	of	each	pattern,	the	variable	?x	is	bound	to	the

expression	(a	?y	c).

To	match	the	second	element	of	each	pattern,	first	the	variable	?x	is	replaced

by	its	value.	Then,	(a	?y	c)	is	matched	to	(a	b	?z)	by	binding	?y	to	b	and	?z	to	c.

28	/	32

Unification	Algorithm
unify(e,	f,
1)	Both	inputs	e	and	f	are	replaced	by	their	values	if	they	are

variables.

2)	If	e	and	f	are	equal,	unification	succeeds.

3)	If	e	is	a	variable,	unification	succeeds	and	e	is	bound	to	f.

4)	If	f	is	a	variable,	unification	succeeds	and	f	is	bound	to	e.

5)	If	neither	is	a	variable,	both	are	not	lists,	and	they	are	not	equal,

then	e	and	f	cannot	be	unified,	and	so	unification	fails.

6)	If	none	of	these	cases	holds,	then	e	and	f	are	both	pairs,	and	so

unification	is	performed	on	both	their	first	and	second

corresponding	elements.



29	/	32

Unification	Algorithm	-	Example

unify((?x	?x),	((a	?y	c)	(a	b	?z)))

unify(?x,	(a	?y	c))
?x	=	(a	?y	c)

unify(?x,	(a	b	?z))

unify((a	?y	c),	(a	b	?z))

unifiy(a,	a)

unifiy(?y,	b)
?y	=	b

unifiy(c,	?z)
?z	=	c

30	/	32

Query	interpreter
The	query	interpreter	performs	a

search	in	the	space	of	all	possible

facts

Unification	is	the	primitive	operation

that	pattern	matches	two	expressions

It	is	a	recursive	algorithm

31	/	32

Search	Algorithm
The	process	of	attempting	to	demonstrate	an

assertion	(answer	a	query)	is	a	systematic	depth-first

search	of	facts.

32	/	32

Conclusion
Relational	Programming

Logic	programming
and	how	to	infer	new	facts


