
TDDA69	Data	and	Program	Structure

Shared-State	Concurrency
Cyrille	Berger

2	/	59

Lectures
1Introduction

2Concepts	and	models	of	programming	languages

3Declarative	Computation	Model

4Declarative	Programming	Techniques

5Declarative	Computation	Implementation

6Declarative	Concurrency

7Message	Passing	Concurrency

8Explicit	State	and	Imperative	Model

9Imperative	Programming	Techniques

10Imperative	Programming	Implementation

11Shared-State	Concurrency

12Relational	Programming

13Constraint	Programming

14Macro

15Running	natively	and	JIT

16Garbage	Collection

17Summary

3	/	59

Lecture	content
Concurrent	Computing	Programming	Models

Shared-state	Concurrency
Multithreaded	Programming
The	States	Problems	and	Solutions

Atomic	actions

Language	and	Interpreter	Design	Considerations

Multiprocess	programming
Multiprocess	programming	in	Python

Single	Instruction,	Multiple	Threads

Programming

Concurrent	Computing	Programming	Models



5	/	59

Concurrent	computing	programming

In	Sequencial	programming:	single	computation

executed	at	a	given	time

In	concurrent	computing:	several	computations

are	executed	at	the	same	time

Three	basic	approach	to	concurrency:
Declarative	concurrency:	streams	in	a	functional	language

Message	passing:	with	active	objects,	used	in	distributed

computing

Shared-State	Concurrency:	on	a	shared	memory,	with	atomic

operation

6	/	59

Programming	Paradigms

7	/	59

Declarative	Concurrency

Extend	functional	programming	with	thread

thread	are	expressions	run	concurrently,

unbound	variable	block	the	execution	of	a

thread

Keep	all	the	benefits	of	pure	functional

8	/	59

Execution	models
Data-driven	concurrency:	a	thread	is

executed	as	soon	as	it	has	all	the	data

Demand-driven	conurrency	(+by-need-

synchronization):	a	thread	is	executed	when

its	result	is	needed

Streams:	each	thread	performs	a

computation	on	a	set	of	streams



9	/	59

Threaded	Fibonacci
Functions	can	create	new

threads:

10	/	59

Message	Passing	Concurrency

In	declartive	concurrent

programming	there	is	no	observable

nondeterminism

Not	applicable	to	client/server

applications
No	knowledge	of	the	clients	(number,...)

No	control	on	when	message	arrive

Shared-state	Concurrency

12	/	59

Parallel	Programming
In	parallel	computing	several	computations

are	executed	at	the	same	time	and	have

access	to	shared	memory

Unit Unit Unit

Memory



Multithreaded	Programming

14	/	59

Singlethreaded	vs	Multithreaded

15	/	59

Multithreaded	Programming	Model

Start	with	a	single	root

thread

Fork:	to	create	concurently

executing	threads

Join:	to	synchronize	threads

Threads	communicate

through	shared	memory

Threads	execute

assynchronously

They	may	or	may	not	execute

on	different	processors

main

sub	0 sub	n...

main

sub	0 sub	n...

main

16	/	59

A	multithreaded	example



The	States	Problems	and	Solutions

18	/	59

Global	States	and	multi-threading

Example:

What	is	the	value	of	a	?

This	is	called	a	(data)	race	condition

Atomic	actions

20	/	59

Atomic	operations
An	operation	is	said	to	be	atomic,	if	it

appears	to	happen	instantaneously
read/write,	swap,	fetch-and-add...

test-and-set:	set	a	value	and	return	the	old

one
To	implement	a	lock:

To	unlock:



21	/	59

Mutex
Mutex	is	the	short	of	Mutual

exclusion
It	is	a	technique	to	prevent	two

threads	to	access	a	shared	resource	at

the	same	time

Example:

Now	a=2

22	/	59

Dependency
Example:

What	is	the	value	of

a	?	4	or	6	?

23	/	59

Condition	variable
A	Condition	variable	is	a	set	of

threads	waiting	for	a	certain

condition

Example:

a	=	6

	

	

	

24	/	59

Deadlock
What	might	happen:

thread1	waits	for	mb,	thread2

waits	for	ma



25	/	59

Advantages	of	atomic	actions

Very	efficient

Less	overhead,	faster	than

message	passing

26	/	59

Disadvantages	of	atomic	actions

Blocking
Meaning	some	threads	have	to	wait

Small	overhead

Deadlock

A	low-priority	thread	can	block	a	high

priority	thread

A	common	source	of	programming

errors

Language	and	Interpreter	Design	Considerations

28	/	59

Common	mistakes
Forget	to	unlock	a	mutex

Race	condition

Deadlocks

Granularity	issues:	too	much

locking	will	kill	the	performance



29	/	59

Forget	to	unlock	a	mutex

Most	programming	language	have,

either:
A	guard	object	that	will	unlock	a	mutex	upon

destruction

A	synchronization	statement

30	/	59

Race	condition
Can	we	detect	potential	race

condition	during	compilation?

In	the	rust	programming	language
Objects	are	owned	by	a	specific	thread

Types	can	be	marked	with	Send	trait
indicate	that	the	object	can	be	moved	between	threads

Types	can	be	marked	with	Sync	trait
indicate	that	the	object	can	be	accessed	by	multiple	threads

safely

31	/	59

Safe	Shared	Mutable	State	in	rust	(1/3)

Gives	an	error:	"capture	of

moved	value:	`data`"

32	/	59

Safe	Shared	Mutable	State	in	rust	(2/3)

Arc	add	reference	counting,	is	movable	and

syncable

Gives		error:	cannot	borrow	immutable

borrowed	content	as	mutable



33	/	59

Safe	Shared	Mutable	State	in	rust	(3/3)

It	now	compiles	and	it	works

34	/	59

Extend	KL	for	safe	shared	cells	(1/2)

No	need	to	extend	the	syntax,	only	change	the	meaning	of	a	cell
Each	cell	is	now	associated	with	a	thread

It	nows	trigger	an	error	because	`a`	belongs	to	the	main	thread	and

cannot	be	used	in	other	threads

35	/	59

Extend	KL	for	safe	shared	cells	(2/2)

The	mutex	takes	ownership	of	`a`,	the	only	way	to	access	it	is	with	`m.lock()`	which	returns

a	cell	owned	by	the	current	thread

36	/	59

Deadlock?
Runtime	detection

Prevention
still	a	hard	problem

lock	hierarchy

wait-for-graph



Multiprocess	programming

38	/	59

Distributed	Programming	(1/2)

In	distributed	computing	several	computations

are	executed	at	the	same	time	and

communicate	through	messages	passing

Unit Unit Unit

Memory Memory Memory

39	/	59

Distributed	Programming	(2/2)

Individual	programs	have

differentiating	roles.

Distributed	computing	for	large-scale

data	processing:
Databases	respond	to	queries	over	a	network.

Data	sets	can	be	partitioned	across	multiple

machines.

Multiprocess	programming	in	Python



41	/	59

Python's	Global	Interpreter	Lock	(1/2)

CPython	can	only	interpret	one	single

thread	at	a	given	time

The	lock	is	released,	when:
The	current	thread	is	blocking	for	I/O

Every	100	interpreter	ticks

True	multithreading	is	not	possible

with	CPython

42	/	59

Python's	Global	Interpreter	Lock	(2/2)

CPython	can	only	interpret	one	single	thread	at	a

given	time
Single-threaded	programms	are	faster	(no	need	to	lock	in	memory

management)

Many	C-library	used	as	extensions	are	not	thread	safe

To	eliminate	the	GIL	Python	developers	have	the

following	requirements:
Simplicity

Do	actually	improve	performance

Backward	compatible

Prompt	and	ordered	destruction

43	/	59

Python's	Multiprocessing	module

The	multiprocessing	package	offers	both

local	and	remote	concurrency,	effectively

side-stepping	the	Global	Interpreter	Lock	by

using	subprocesses	instead	of	threads

It	implements	transparent	message	passing,

allowing	to	exchange	Python	objects

between	processes

44	/	59

Python's	Message	Passing	(1/2)

Example	of	message	passing

Output
hello	bob



45	/	59

Python's	Message	Passing	(2/2)

Example	of	message	passing	with	pipes

Output
[42,	None,	'hello']

Transparent	message	passing	is	possible	thanks	to	serialization

46	/	59

Serialization
A	serialized	object	is	an	object

represented	as	a	sequence	of

bytes	that	includes	the	object’s

data,	its	type	and	the	types	of

data	stored	in	the	object.

47	/	59

pickle
In	Python,	serialization	is	done	with	the	pickle	module
It	can	serialize	user-defined	classes

The	class	definition	must	be	available	before	deserialization

Works	with	different	version	of	Python

By	default,	use	an	ASCII	format

It	can	serialize:
Basic	types:	booleans,	numbers,	strings

Containers:	tuples,	lists,	sets	and	dictionnary	(of	pickable	objects)

Top	level	functions	and	classes	(only	the	name)

Objects	where	__dict__	or	__getstate()__	are	pickable

Example:

48	/	59

Shared	memory
Memory	can	be	shared	between	Python	process	with	a	Value	or	Array.



Single	Instruction,	Multiple	Threads	Programming

50	/	59

SIMD,	SIMT,	SMT	(1/2)
SIMD:	Single	Instruction,	Multiple	Data
Elements	of	a	short	vector	(4	to	8	elements)	are	processed	in	parallel

SIMT:	Single	Instruction,	Multiple	Threads
The	same	instruction	is	executed	by	multiple	threads	(from	128	to	3048	or	more	in	the

future)

SMT:	Simultaneous	Multithreading
General	purpose,	different	instructions	are	executed	by	different	threads

51	/	59

SIMD,	SIMT,	SMT	(2/2)
SIMD:
PUSH	[1,	2,	3,	4]

PUSH	[4,	5,	6,	7]

VEC_ADD_4

SIMT:
execute([1,	2,	3,	4],	[4,	5,	6,	7],	lambda	a,b,ti:	a[ti]=a[ti]	+	max(b[ti],	5))

SMT:
a	=	[1,	2,	3,	4]

b	=	[4,	5,	6,	7]

...

Thread.new(lambda	:	a	=	a	+	b)

Thread.new(lambda	:	c	=	c	*	b)

52	/	59

Why	the	need	for	the	different	models?

Flexibility:
SMT	>	SIMT	>	SIMD

Less	flexibility	give	higher

performance
Unless	the	lack	of	flexibility	prevent	to	accomplish

the	task

Performance:
SIMD	>	SIMT	>	SMT



53	/	59

Single	Instruction,	Multiple	Threads	Programming

With	SIMT,	the	same	instructions

is	executed	by	multiple	threads

on	different	registers

Is	it	a	problem	for	control	flow?

54	/	59

Single	instruction,	multiple	flow	paths	(1/2)

Using	a	masking	system,	it	is	possible	to	support	control

flow
Threads	are	always	executing	the	instruction	of	both	part	of	the	if/else	blocks

Assignement	is	only	performed	according	to	the	mask

55	/	59

Single	instruction,	multiple	flow	paths	(1/2)

Benefits:
Multiple	flows	are	needed	in	many

algorithms

Drawbacks:
Only	one	flow	path	is	executed	at	a	time,	non

running	threads	must	wait

Randomize	memory	access
Elements	of	a	vector	are	not	accessed	sequentially

56	/	59

Programming	Language	Design	for	SIMT

General	purpose	programming	language	are	not

suitable

OpenCL,	CUDA	are	the	most	common
Very	low	level,	C/C++-derivative

Some	work	has	been	done	to	be	able	to	write	in	Python

and	run	on	a	GPU	with	CUDA

with	limitation	on	standard	function	that	can	be	called



57	/	59

Benefits	of	concurrent	computing

Faster	computation

Responsiveness
Interactive	applications	can	be	performing	two	tasks

at	the	same	time:	rendering,	spell	checking...

Availability	of	services
Load	balancing	between	servers

Controllability
Tasks	can	be	suspended,	resumed	and	stopped.

58	/	59

Disadvantages	of	concurrent	computing

Concurrency	is	hard	to	implement	properly

Safety
Easy	to	corrupt	memory

Deadlock
Tasks	can	wait	indefinitely	for	each	other

Non-deterministic

Not	always	faster!
The	memory	bandwidth	and	CPU	cache	is	limited

59	/	59

Summary
Concurrent	programming

Declarative	Concurrent	Programming,

streams

Message	Passing	Concurrent

Programming

The	challenges	of	Shared	State

Concurrent	Programming


