
TDDA69	Data	and	Program	Structure

Imperative	Programming	Implementation
Cyrille	Berger

2	/	46

Lectures
1Introduction

2Concepts	and	models	of	programming	languages

3Declarative	Computation	Model

4Declarative	Programming	Techniques

5Declarative	Computation	Implementation

6Declarative	Concurrency

7Message	Passing	Concurrency

8Explicit	State	and	Imperative	Model

9Imperative	Programming	Techniques

10Imperative	Programming	Implementation

11Shared-State	Concurrency

12Relational	Programming

13Constraint	Programming

14Macro

15Running	natively	and	JIT

16Garbage	Collection

17Summary

3	/	46

How	is	a	program	interpreted?

Source	code Parser

Parser

Abstract	Syntax	Tree Tree	visitor

Generator Source	code ...

Bytecode Virtual	Machine

Assembler Assembly Operating	System CPU

4	/	46

Lecture	content
Virtual	Machines
Types	of	virtual/hardware	machines

Bytecode
Simple	instruction	set

From	AST	to	Bytecode

Bytecode	Interpreter



Virtual	Machines

6	/	46

What	is	a	Virtual	Machine?

A	Virtual	Machine	is	a	hardware	or	software

emulation	of	a	real	or	hypothetical	computer	system

A	system	virtual	machine	emulates	a	complete	system

and	is	intented	to	execute	a	complete	operating

system
Examples:	VirtualBox,	VMWare,	Parallels...

A	process/language	virtual	machine	runs	a	single

program	in	a	single	process
Examples:	JVM,	CPython,	V8,	Dalvik...

7	/	46

Language	Virtual	Machine

Source	Code

Compiler

Byte	Code

Virtual	Machine

Windows

Virtual	Machine

Linux

Virtual	Machine

Mac

8	/	46

Native	Environment	vs	Emulated	Environment

Operating	System

Native	Program

Input	/	Output

Hardware

Libraries

Emulated	Program

Virtual	Machine
Emulated

Input	/	Output

Emulated

Hardware	Interface

Bindings

Operating	System

Input	/	Output

Hardware

Libraries



9	/	46

Benefits	of	Virtual	Machines

Portability:	Virtual	Machines	are	compatible

with	various	hardware	platforms	and	Operating

Systems
Isolation:	Virtual	Machines	are	isolated	from

each	other
For	running	incompatible	applications	concurrently

Encapsulation:	computation	is	seperated	from

the	operating	system
Beneficial	for	security

Types	of	virtual/hardware	machines

11	/	46

Types	of	virtual/hardware	machines

Register	Machine

Stack	Machine

12	/	46

Register	Machine:	Formal	definition

A	(in)finite	set	of	registers,	which	holds	a	single	non-

negative	integer

An	instruction	set,	which	defines	the	operation	on

registers
Arithmetic,	control,	input/output...

A	state	register,	which	holds	the	current	instruction

and	its	index

Sequential	list	of	labeled	instructions	which	defines

the	program	to	be	executed



13	/	46

Stack	Machine:	Formal	definition

An	(almost)	infinite	stack,	which	holds	integers

An	instruction	set,	which	defines	the	operation	on

the	stack
Arithmetic	operations	are	always	applied	on	the	top	two	elements	and	the

results	is	stored	in	the	top

A	state	register,	which	holds	the	current	instruction

and	its	index

Sequential	list	of	labeled	instructions	which	defines

the	program	to	be	executed

14	/	46

Stack	Machines	vs	Register	Machines

Stack	Machines	need	more	compact
Arithmetic	instruction	are	smaller

Stack	Machines	have	simpler	compiler,

interpreters	and	a	minimal	processor

Stack	Machines	have	a

performance	disadvantages
More	memory	references,	less	caching	of	temporaries

Higher	cost	of	factoring	out	common	subexpressions
It	has	to	be	stored	as	a	temporary	variable

Most	common	hardware	are	register	machines

15	/	46

Virtual	Machines	for	Dynamic	Typing

Remember:
With	static	typing,	types	are	checked	during

compilation

With	dyamic	typing,	types	are	checked	during

execution

Implication
Stack/Registers	contains	pointer	to	objects

Function	call	convention

Bytecode



17	/	46

Bytecode
For	a	virtual	stack	machine

Instruction	set

Generate	the	bytecode

Interpreting	the	bytecode

Simple	instruction	set

19	/	46

Stack	managment
PUSH	[constant_value]
Push	the	constant	on	the	stack

POP	[number]
Pop	a	certain	numbers	of	variables	from	the	stack

DUP
Duplicate	the	top	of	the	stack

SWAP
Swap	the	first	two	items	on	the	stack

20	/	46

Environment
MAKE_REF	[varname]
Create	a	reference	to	a	value/cell	in	an	environment

STORE
Store	a	value	in	an	environment

DCL_CELL	[varname]
Declare	a	cell	in	an	environment

DEF_VALUE	[varname]
Define	a	value	in	an	environment

ENV
Push	the	current	environment	on	the	stack

NEW_ENV
Create	an	environment	and	set	it	as	the	current	environement

DROP_ENV
Drop	the	current	environment



21	/	46

Jumps
JMP	[idx]
Jump	to	execute	instruction	at	the	given

index

IFJMP	[idx]
Pop	the	value	and	if	true	jump	to	[idx]

UNLESSJMP	[idx]
Pop	the	value	and	if	false	jump	to	[idx]

22	/	46

Functions
CALL	[arguments]
Pop	the	function	object	and	call	it	with	the	given

number	of	arguments

RET
Return

MAKE_FUNC	[#args]
Create	a	new	function	from	the	arguments	name

on	the	stack	and	the	bytecode

23	/	46

Exceptions
TRY_PUSH	[idx]
Indicates	the	begining	of	an	exception	block,	idx

correspond	to	the	instruction	number	where	to	jump

if	an	exception	occurs

TRY_POP
Indicates	the	end	of	the	exception	block

THROW
Throw	the	exception	object	from	the	top	of	the	stack

24	/	46

Common	extensions
Arithmetic	operators
ADD,	MUL...

Array	manipulation

Object	Creation

Call	native	function

...



From	AST	to	Bytecode

26	/	46

From	AST	to	Bytecode
With	a	tree	visitor...

It	can	take	several	pass:
Find	the	variables

Compute	the	jumps

Generate	the	code

The	real	challenge	is	to	map	high	level

language	to	instructions

27	/	46

Computing	jumps
Instructions	are	generated	in	this	order

2IFJMP	?

3...	then	statements	...

4JMP	?

5...	else	statements	...

6...	after	statements	...

Now	we	can	compute	the	jump	indices

28	/	46

Environment	operations

PUSH	1

ENV

DEF_VALUE	'a'

PUSH	1

ENV

DEF_VALUE	'a'

ENV

MAKE_REF'a'

PUSH	2

ENV

MAKE_REF	'a'

STORE

ENV

MAKE_REF	'c'

ENV

MAKE_REF	'a'

MAKE_REF	'b'

STORE



29	/	46

Function	call	(1/2)

PUSH	1

PUSH	2

ENV

MAKE_REF	'func'

CALL	2

30	/	46

Function	call	(2/2)

PUSH	'Hello	world!'

ENV

MAKE_REF	'console'

MAKE_REF	'log'

CALL	1

31	/	46

Cond
ENV

MAKE_REF	'a'

UNLESSJMP	+6

PUSH	'test!'

ENV

MAKE_REF	'console'

MAKE_REF	'log'

CALL	1

...

ENV

MAKE_REF	'a'

IFJMP	+6

PUSH	'world!'

ENV

MAKE_REF	'console'

MAKE_REF	'log'

CALL	1

JMP	+6

PUSH	'hello!'

ENV

MAKE_REF	'console'

MAKE_REF	'log'

CALL	1

...

32	/	46

While	loop

PUSH	10

ENV

DCL_CELL	'a'

ENV

MAKE_REF	'a'

STORE

ENV

MAKE_REF	'a'

PUSH	0

PUSH	gt

CALL	2

UNLESSJMP	+9

ENV

MAKE_REF'a'

PUSH	1

PUSH	sub

ENV

MAKE_REF	'a'

STORE

JMP	-13

...



33	/	46

Binary	representation

2	bytes:	opcode

Arguments:
integers

strings

...

Bytecode	Interpreter

35	/	46

Components	of	bytecode	interpreter

Verifier
Bytecode	may	come	from	buggy	compiler

or	malicious	source

Dynamic	checking	of	types,	array	bounds,

function	arguments...

Instruction	executer

36	/	46

Verification
Verifier	checks	correctness	of

bytecode
Every	instruction	must	have	a	valid	operation

code

Every	instruction	must	have	valid	parameters

Every	branch	instruction	must	branch	to	the	start

of	some	other	instruction,	not	middle	of

instruction



37	/	46

Bytecode	Interpreter
Standard	virtual	machine	interprets

instructions
Perform	run-time	checks	such	as	array	bounds

and	types	and	function	arguments

Possible	to	compile	bytecode	to	native	code	(JIT:

Just-In-Time)

Call	native	methods
Typically	functions	written	in	C

38	/	46

Interpreter	loop	(1/2)
instruction	pointer	(ip):	points	to	current

stack	pointer	(sp):	topmost	item	in	the

operand	stack

current	active	method	or	block

Interpreter
1branch	to	appropriate	bytecode	routine

2fetch	next	bytecode	

3increment	instruction	pointer

4execute	the	bytecode	routine

5return	to	1.

39	/	46

Interpreter	loop	(2/2)
instruction_index	=	0

instructions	=	[	...	]

stack	=	[	]

current_env	=	Environment()

while	instruction_index	<	len(instructions):

		next_instruction	=	instructions[instruction_index]

		switch(next_instruction.opcode):

				case	ADD:

						..

				case	JMP:

						...

40	/	46

Interpreter	Example
Print	the	absolute	value

of	4-1:
1	PUSH	4

2	PUSH	1

3	SUB

4	DUP

5	PUSH	0

6	SUP

7	IFJMP	9

8	NEG

9	LOAD

10	CALL

IP=10

Stack	=	[3,	'print	function']



41	/	46

Function	Call
Recursive	call
For	a	function	call,	instantiate	a	new	interpreter

loop

Stack
Push	on	the	stack	some	information	on	how	to

restore	the	interpreter	when	returning

More	complex	code,	but	higher	performance	and

flexibility

Allow	infinite	recursion

42	/	46

Contexts

43	/	46

Function	Call	-	Stack
instruction_index	=	0

instructions	=	[	...	]

stack	=	[	]

current_env	=	Environment()

while	instruction_index	<	len(instructions):

		next_instruction	=	instructions[instruction_index]

		switch(next_instruction.opcode):

						...

						case	CALL:

								env	=	Environment()

								func	=	stack.pop()

								for	arg	in	func.args:

										value	=	stack.pop()

										env.set(arg.name,	value)

								stack.push(	[	instruction_index,	instructions,

current_env	]	)

								instruction_index	=	0

								instructions	=	func.instructions

								current_env	=	env

						case	RET:

								retval	=	stack.pop()

								info	=	stack.pop()

								stack.push(retval)

								instruction_index	=	info[0]

								instructions						=	info[1]

								current_env							=	info[2]

								

44	/	46

Handling	Exceptions	(1/2)

Use	the	implementation

language	exceptions

Add	exception	information	to

the	stack



45	/	46

Handling	Exceptions	(2/2)
instruction_index	=	0

instructions	=	[	...	]

stack	=	[	]

current_env	=	Environment()

while	instruction_index	<	len(instructions):

		next_instruction	=	instructions[instruction_index]

		switch(next_instruction.opcode):

						...

						case	TRY_PUSH:

								stack.push(Exception(next_instruction.rescue_index,	instructions,	current_env))

						case	TRY_POP:

								stack.pop()

						case	THROW:

								while	True:

										info	=	stack.pop()

										if(info	is	Exception):

												instructions	=	info.instructions

												instruction_index	=	info.rescue_index

												current_env	=	info.environment

46	/	46

Conclusion
Virtual	Machines	for	interpreting

programs

Stack	machines	are	easier	to	implement

but	slower	than	register	machines

Virtual	Machines	introduce	compilation

overhead,	but	are	faster	to	execute


