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Programming	with	states:	imperatively
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Imperative	vs	declarative

Declarative
No	state

Expresses	logic	of	computation	without	control

flow

Imperative
States

Describes	computation	in	term	of	statements	that

change	the	internal	state
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Imperative	syntax	construction

A	state	is	a	sequence	of	values	in	time	that

contains	the	intermediate	results	of	a	desired

computation.

Would	not	it	make	sense	to	express

computation	also	as	a	sequence?

Syntax	abstractions	to	manipulate	state:

loop,	if
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Loops
With	a	loop:
function	factorial(n)

{

		var	r	=	1;

		for(var	i	=	2;	i	<=	n;	++i)

		{

				r	*=	i;

		}

		return	r;

}

With	a	recursive	call:
function	factorial(n)

{

		return	(n===0)	?	1	:	n	*	factorial(n-1)

}
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Side-effects
Generally	no-pure	functions	in	imperative	programming,

but:
function	factorial(n)

{

		var	r	=	1;

		for(var	i	=	2;	i	<=	n;	++i)

		{

				r	*=	i;

		}

		return	r;

}

No	side-effect,	always	return	the	same	result	for	the	same

arguments
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Random	function
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Reasoning	with	state
In	the	general	case,	we	cannot	ignore	side-effects,

how	can	we	reason?

Simple	with	simple	programs,	impossible	with	larger

ones

What	if	a	state	is	visible	through	the	entire	program?
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Reasoning	with	state:	invariant

An	invariant	is	a	condition	that	is	assumed	to

hold	at	a	specific	point	in	the	program

Invariants	are	relationships	among	the

variables	of	a	program	that	always	hold.

Avoid	unwanted	side	effects!
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Loop	invariants
A	loop	invariant	is	a	relationship	among	the

variables	in	a	loop	that	holds	at	the	begining

and	at	the	end	of	every	iteration.
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Proving	properties	in	imperative	programming

Also	used	for	proving:

Devise	a	loop	invariant:
(n	≥	i)	⋀	(result	=	bⁱ)

Prove	that	it	is	true	for	the	first	loop	iteration

Prove	that	each	loop	iteration	preserves	it

Assume	that	(n	≥	i)	⋀	(result	=	bⁱ)

Prove	that	(n	≥	j)	⋀	(result	=	bʲ)	with	j	=	i	+	1
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Data	structure	invariant

Data	structure	invariants	are	the	invariant	

relations	among	the	fields	of	any	object	of	a	

particular	class

List:
operations	for	creating,	empty,	append,	prepend:	no

invariant

operations	for	head	of	list,	pop:	invariant	is	that	the	list	is

non	empty
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Encapsulation
How	to	get	protection	from	side-

effects

In	the	rand	function,	only	rand

can	update	the	state

It	is	called	encapsulation!

Data	abstraction
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The	goals	of	data	abstraction

Encapsulation
Hide	internals	from	the	interface

Compositionality
Combine	parts	to	make	new	parts

Instantiation/invocation
Create	new	instances	of	parts
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Program	Organizing	Techniques

Non-structured	Programming

Structured	Programming

Modular	Programming

Object-Oriented	Programming
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Non-structured	Programming

The	main	program	directly	operates	on	global

data

main	program	/	data
Program

Impractical	when	the	program	gets

sufficiently	large

The	same	statement	sequence	must	be	copied	if

it	is	needed	several	times
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Procedural	Programming
Combine	a	sequence	of	statements	into	a	procedure	with	calls	and

returns

The	main	program	coordinates	calls	to	procedures	and	hands	over

appropriate	data	as	parameters

main	program	/	data
Program

Procedure	1 Procedure	2 Procedure	3

Tasks	are	a	collection	of	states,	structures	and	procedures
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Limitations	of	Structured	Programming

Unrestricted	access	to	global	data
Global	data	1 Global	data	2 Global	data	3

Procedure	1 Procedure	2 Procedure	3 Procedure	4

Attributes	and	behaviors	are

seperated

Not	extensible
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Modular	Programming
Procedures	of	a	common	functionality	are	grouped	together	into

separate	modules.

The	main	program	coordinates	calls	to	procedures	in	separate

modules	and	hands	over	data	as	parameters.

main	program	/	data
Program

Module	1	data	+	data	1

Procedure	1 Procedure	2

Module	2	data	+	data	2

Procedure	3

Modular	Programming
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Encapsulation
Hide	internals	from	the	interface
Can	be	implemented	by	bundling	of	data	with	methods

It	provides	abstraction

Two	common	levels	of	hiding:
Private:	only	accessible	to	the	object

Public:	accessible	to	the	world

How	to	implement	abstraction	in	KL?
+state+closure
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Linked-list
No

encapsulation
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Bundling	data	with	methods

No

encapsulation
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Private	data,	attempt	#1

No

encapsulation:
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Encapsulation	in	C
Using	int_list_t*:

Internaly:
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Private	data,	attempt	#2

Does	not	work:
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Private	data,	attempt	#3
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Private	data,	alternative

Object	Oriented	Programming



Object-Oriented	Concepts
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What	is	an	Object?
Real-world	objects	are	composed

of	attributes	and	behaviors
Attributes:	color,	size,

Behaviors:	accelerate,	brake,

Program	objects
Attributes	are	states/

Behaviors	are
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Object-Oriented	Concepts

Class
Instantiation/invocation

Encapsulation
Compositionality

Polymorphism

Inheritance
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Class
An	object	is	a	specific	instance	(ie	this	car,	this

computer...)

A	class	is	a	type	of	object	(ie	a	car,	a	computer...)
It	is	a	blueprint	of	object

The	class	defines:
The	default	set	of	variables

The	default	set	of	functions

An	initialisation	function	(called	constructor

The	object	is	an	instance	of	a	class
It	points	to	a	specific	memory	location	with	the	actual	values	for

variables
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Class	Car
class	Car:
attributes:
color	can	be	red,	green,	blue...

speed	from	0	to	max_speed

max_speed	and	max_acceleration	are	constant

functions:
accelerate	increase	speed	with	max_acceleration

brake	decrease	speed	with	max_acceleration

object:
red_audi	:=	{	color:'red',	max_speed:	200,	max_acceleration:	10	}

blue_volvo	:=	{	color:'blue',	max_speed:	180,	max_acceleration:	7

}
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Inheritance
Some	classes	have	common	part
Audi	is	a	car,	Volvo	is	a	car,	but	Volvo	and	Audi	are	two

different	type	of	cars

Inheritance	allows	to	define	a	class	in

term	of	an	other	super-class

Sub-classes
can	add	new	variables	and	functions

override	variables	and	functions	from	the	super-class
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Inheritance	from	the	class	Car

class	Car:	color,	speed,	max_speed	and

max_acceleration

class	Audi:	class	Car	with	max_speed	:=

200	and	max_acceleration	:=	10

class	Volvo:	class	Car	with	max_speed

:=	180	and	max_acceleration	:=	7
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Encapsulation
Encapsulation	with	inheritance

Three	common	levels	of	hiding:
Private:	only	accessible	to	the	object

Protected:	only	accessible	to	the	object	and

through	inheritance

Public:	accessible	to	the	world
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Car	example
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Convenient	object	creation

A	new	operator:
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Inheritence
For	inheritance,	all	we	need	is	to	call	the

super	class	constructor
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Polymorphism
polymorphism	is	the	ability	to	appear	in	many	forms

It	is	the	ability	to	call	a	function	on	an	data	structure

that	will	execute	different	code	for	different	data

structure

Define	generic	interface
Example:

List	push,	pop

Stack	push,	pop

It	is	one	way	to	define	generic	and	composable	code

With	KL,	it	is	achieved	through	a	dynamic	type	system
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Polymorphism	in	practise

Just	overwrite	function	in	the	child	class
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Class	syntax
A	nicer	syntax	for	class	definition	would	be:

Can	be	achieved	with	macros	(future	lecture)
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Encapsulation	in	Python	(1/2)

Protection	against	'accident',	but	still	possible	to	break	encapsulation
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Encapsulation	in	Python	(2/2)
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Closure	in	C++	pre	11
If	Object-Orientation	is	defined	as	+state+closure,	does	that

means	that	all	object-oriented	programming	language

support	closure?

Closure	is	a	reference	to	a	function	that	has	an	embedded,

persistent,	hidden	and	unseparable	context

The	following	define	a	closure	(with	a	state):
Memory	and	threading
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Memory	Management
Value	store	is	an	abstract	concept,

during	execution	the	value	of	a

binding	can	be	replaced	immediately

With	state,	comes	the	need	to	track

when	a	value	is	needed	or	not
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Concurrency	and	state

No	failure,	but	what	is	the	value	of	x?

In	some	programming	languages,	can	lead	to	random

crashes
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Conclusion
Conscequence	of	adding	state

Data	abstraction
Encapsulation

Compositionality	with	polymorphism

Instantiation/invocation


