
TDDA69	Data	and	Program	Structure

Imperative	Programming	Techniques
Cyrille	Berger

2	/	53

Lectures
1Introduction

2Concepts	and	models	of	programming	languages

3Declarative	Computation	Model

4Declarative	Programming	Techniques

5Declarative	Computation	Implementation

6Declarative	Concurrency

7Message	Passing	Concurrency

8Explicit	State	and	Imperative	Model

9Imperative	Programming	Techniques

10Imperative	Programming	Implementation

11Shared-State	Concurrency

12Relational	Programming

13Constraint	Programming

14Macro

15Running	natively	and	JIT

16Garbage	Collection

17Summary

3	/	53

Lecture	content
Programming	with	states:

imperatively

Data	abstraction

Modular	Programming

Object	Oriented	Programming
Object-Oriented	Concepts

Memory	and	threading

Programming	with	states:	imperatively



5	/	53

Imperative	vs	declarative

Declarative
No	state

Expresses	logic	of	computation	without	control

flow

Imperative
States

Describes	computation	in	term	of	statements	that

change	the	internal	state

6	/	53

Imperative	syntax	construction

A	state	is	a	sequence	of	values	in	time	that

contains	the	intermediate	results	of	a	desired

computation.

Would	not	it	make	sense	to	express

computation	also	as	a	sequence?

Syntax	abstractions	to	manipulate	state:

loop,	if

7	/	53

Loops
With	a	loop:
function	factorial(n)

{

		var	r	=	1;

		for(var	i	=	2;	i	<=	n;	++i)

		{

				r	*=	i;

		}

		return	r;

}

With	a	recursive	call:
function	factorial(n)

{

		return	(n===0)	?	1	:	n	*	factorial(n-1)

}

8	/	53

Side-effects
Generally	no-pure	functions	in	imperative	programming,

but:
function	factorial(n)

{

		var	r	=	1;

		for(var	i	=	2;	i	<=	n;	++i)

		{

				r	*=	i;

		}

		return	r;

}

No	side-effect,	always	return	the	same	result	for	the	same

arguments



9	/	53

Random	function

10	/	53

Reasoning	with	state
In	the	general	case,	we	cannot	ignore	side-effects,

how	can	we	reason?

Simple	with	simple	programs,	impossible	with	larger

ones

What	if	a	state	is	visible	through	the	entire	program?

11	/	53

Reasoning	with	state:	invariant

An	invariant	is	a	condition	that	is	assumed	to

hold	at	a	specific	point	in	the	program

Invariants	are	relationships	among	the

variables	of	a	program	that	always	hold.

Avoid	unwanted	side	effects!

12	/	53

Loop	invariants
A	loop	invariant	is	a	relationship	among	the

variables	in	a	loop	that	holds	at	the	begining

and	at	the	end	of	every	iteration.



13	/	53

Proving	properties	in	imperative	programming

Also	used	for	proving:

Devise	a	loop	invariant:
(n	≥	i)	⋀	(result	=	bⁱ)

Prove	that	it	is	true	for	the	first	loop	iteration

Prove	that	each	loop	iteration	preserves	it

Assume	that	(n	≥	i)	⋀	(result	=	bⁱ)

Prove	that	(n	≥	j)	⋀	(result	=	bʲ)	with	j	=	i	+	1

14	/	53

Data	structure	invariant

Data	structure	invariants	are	the	invariant	

relations	among	the	fields	of	any	object	of	a	

particular	class

List:
operations	for	creating,	empty,	append,	prepend:	no

invariant

operations	for	head	of	list,	pop:	invariant	is	that	the	list	is

non	empty

15	/	53

Encapsulation
How	to	get	protection	from	side-

effects

In	the	rand	function,	only	rand

can	update	the	state

It	is	called	encapsulation!

Data	abstraction



17	/	53

The	goals	of	data	abstraction

Encapsulation
Hide	internals	from	the	interface

Compositionality
Combine	parts	to	make	new	parts

Instantiation/invocation
Create	new	instances	of	parts

18	/	53

Program	Organizing	Techniques

Non-structured	Programming

Structured	Programming

Modular	Programming

Object-Oriented	Programming

19	/	53

Non-structured	Programming

The	main	program	directly	operates	on	global

data

main	program	/	data
Program

Impractical	when	the	program	gets

sufficiently	large

The	same	statement	sequence	must	be	copied	if

it	is	needed	several	times

20	/	53

Procedural	Programming
Combine	a	sequence	of	statements	into	a	procedure	with	calls	and

returns

The	main	program	coordinates	calls	to	procedures	and	hands	over

appropriate	data	as	parameters

main	program	/	data
Program

Procedure	1 Procedure	2 Procedure	3

Tasks	are	a	collection	of	states,	structures	and	procedures



21	/	53

Limitations	of	Structured	Programming

Unrestricted	access	to	global	data
Global	data	1 Global	data	2 Global	data	3

Procedure	1 Procedure	2 Procedure	3 Procedure	4

Attributes	and	behaviors	are

seperated

Not	extensible

22	/	53

Modular	Programming
Procedures	of	a	common	functionality	are	grouped	together	into

separate	modules.

The	main	program	coordinates	calls	to	procedures	in	separate

modules	and	hands	over	data	as	parameters.

main	program	/	data
Program

Module	1	data	+	data	1

Procedure	1 Procedure	2

Module	2	data	+	data	2

Procedure	3

Modular	Programming

24	/	53

Encapsulation
Hide	internals	from	the	interface
Can	be	implemented	by	bundling	of	data	with	methods

It	provides	abstraction

Two	common	levels	of	hiding:
Private:	only	accessible	to	the	object

Public:	accessible	to	the	world

How	to	implement	abstraction	in	KL?
+state+closure



25	/	53

Linked-list
No

encapsulation

26	/	53

Bundling	data	with	methods

No

encapsulation

27	/	53

Private	data,	attempt	#1

No

encapsulation:

28	/	53

Encapsulation	in	C
Using	int_list_t*:

Internaly:



29	/	53

Private	data,	attempt	#2

Does	not	work:

30	/	53

Private	data,	attempt	#3

31	/	53

Private	data,	alternative

Object	Oriented	Programming



Object-Oriented	Concepts

34	/	53

What	is	an	Object?
Real-world	objects	are	composed

of	attributes	and	behaviors
Attributes:	color,	size,

Behaviors:	accelerate,	brake,

Program	objects
Attributes	are	states/

Behaviors	are

35	/	53

Object-Oriented	Concepts

Class
Instantiation/invocation

Encapsulation
Compositionality

Polymorphism

Inheritance

36	/	53

Class
An	object	is	a	specific	instance	(ie	this	car,	this

computer...)

A	class	is	a	type	of	object	(ie	a	car,	a	computer...)
It	is	a	blueprint	of	object

The	class	defines:
The	default	set	of	variables

The	default	set	of	functions

An	initialisation	function	(called	constructor

The	object	is	an	instance	of	a	class
It	points	to	a	specific	memory	location	with	the	actual	values	for

variables



37	/	53

Class	Car
class	Car:
attributes:
color	can	be	red,	green,	blue...

speed	from	0	to	max_speed

max_speed	and	max_acceleration	are	constant

functions:
accelerate	increase	speed	with	max_acceleration

brake	decrease	speed	with	max_acceleration

object:
red_audi	:=	{	color:'red',	max_speed:	200,	max_acceleration:	10	}

blue_volvo	:=	{	color:'blue',	max_speed:	180,	max_acceleration:	7

}

38	/	53

Inheritance
Some	classes	have	common	part
Audi	is	a	car,	Volvo	is	a	car,	but	Volvo	and	Audi	are	two

different	type	of	cars

Inheritance	allows	to	define	a	class	in

term	of	an	other	super-class

Sub-classes
can	add	new	variables	and	functions

override	variables	and	functions	from	the	super-class

39	/	53

Inheritance	from	the	class	Car

class	Car:	color,	speed,	max_speed	and

max_acceleration

class	Audi:	class	Car	with	max_speed	:=

200	and	max_acceleration	:=	10

class	Volvo:	class	Car	with	max_speed

:=	180	and	max_acceleration	:=	7

40	/	53

Encapsulation
Encapsulation	with	inheritance

Three	common	levels	of	hiding:
Private:	only	accessible	to	the	object

Protected:	only	accessible	to	the	object	and

through	inheritance

Public:	accessible	to	the	world



41	/	53

Car	example

42	/	53

Convenient	object	creation

A	new	operator:

43	/	53

Inheritence
For	inheritance,	all	we	need	is	to	call	the

super	class	constructor

44	/	53

Polymorphism
polymorphism	is	the	ability	to	appear	in	many	forms

It	is	the	ability	to	call	a	function	on	an	data	structure

that	will	execute	different	code	for	different	data

structure

Define	generic	interface
Example:

List	push,	pop

Stack	push,	pop

It	is	one	way	to	define	generic	and	composable	code

With	KL,	it	is	achieved	through	a	dynamic	type	system



45	/	53

Polymorphism	in	practise

Just	overwrite	function	in	the	child	class

46	/	53

Class	syntax
A	nicer	syntax	for	class	definition	would	be:

Can	be	achieved	with	macros	(future	lecture)

47	/	53

Encapsulation	in	Python	(1/2)

Protection	against	'accident',	but	still	possible	to	break	encapsulation

48	/	53

Encapsulation	in	Python	(2/2)



49	/	53

Closure	in	C++	pre	11
If	Object-Orientation	is	defined	as	+state+closure,	does	that

means	that	all	object-oriented	programming	language

support	closure?

Closure	is	a	reference	to	a	function	that	has	an	embedded,

persistent,	hidden	and	unseparable	context

The	following	define	a	closure	(with	a	state):
Memory	and	threading

51	/	53

Memory	Management
Value	store	is	an	abstract	concept,

during	execution	the	value	of	a

binding	can	be	replaced	immediately

With	state,	comes	the	need	to	track

when	a	value	is	needed	or	not

52	/	53

Concurrency	and	state

No	failure,	but	what	is	the	value	of	x?

In	some	programming	languages,	can	lead	to	random

crashes



53	/	53

Conclusion
Conscequence	of	adding	state

Data	abstraction
Encapsulation

Compositionality	with	polymorphism

Instantiation/invocation


