
TDDA69	Data	and	Program	Structure

Explicit	State	and	Imperative	Model
Cyrille	Berger

2	/	58

Lectures
1Introduction

2Concepts	and	models	of	programming	languages

3Declarative	Computation	Model

4Declarative	Programming	Techniques

5Declarative	Computation	Implementation

6Declarative	Concurrency

7Message	Passing	Concurrency

8Explicit	State	and	Imperative	Model

9Imperative	Programming	Techniques

10Imperative	Programming	Implementation

11Shared-State	Concurrency

12Relational	Programming

13Constraint	Programming

14Macro

15Running	natively	and	JIT

16Garbage	Collection

17Summary

3	/	58

Programming	Paradigms

4	/	58

Lecture	content
Explicit	state

Environment	Model

Expression	evaluation

Function	Execution

Assignment

Environment	and	Programming	Language:

scope
The	Scope	Trap

Mutable	Values



Explicit	state

6	/	58

What	is	a	state?
A	state	is	a	sequence	of	values	in	time	that	contains	the

intermediate	results	of	a	desired	computation.

Implicit	state:

Recursive	calls:

L	and	s	form	an	implicit	state.

7	/	58

Explicit	State
An	explicit	state	in	a	procedure	is	a	state

whose	lifetime	extends	over	more	than	one

procedure	call	without	being	present	in	the

procedure’s	arguments.

Not	possible	with	a	declarative/functional

model

8	/	58

Cell
A	cell	is	an	explicit	state,	it	has
a	name

a	type

explicitely	defined	in	the	language

It	is	stored	outside	the	function

Function	calls	are	not

predictable	anymore



9	/	58

Extension	to	the	syntax	of	KL

STATEMENT:=(...|	CELL)

CELL:='cell'	IDENTIFIER	(=	EXPR);

Environment	Model

11	/	58

Assignment	and	the	substitution	model	(1/2)

12	/	58

Assignment	and	the	substitution	model	(2/2)



13	/	58

Why	doesn’t	the	substitution	model	work	?

Substitution	is	based	on	the	notion	that

symbols	are	names	for	values

Using	set!	changes	symbols	to	places	where

values	can	be	stored

The	value	in	such	a	place	can	change	using

assignment	with	set!

A	new	model	of	evaluation	is	needed:	the

environment	model	of	evaluation.

14	/	58

Environment
From	the	SICP	Book,	section	3.2:

Bindings	associate	variables	to	values	(in	assignment

expression)

A	frame	is	a	set	of	bindings

An	environment	is	a	sequence	of	frames

Environments	describe	contexts	where	expressions	are

evaluated

Every	frame	points	to	the	following	frame	in	the

environment

All	environments	have	a	global	frame	as	the	last	frame

in	the	sequence

The	global	environment	is	a	frame	with	all	predefined

bindings

Scope	the	range	in	which	a	variable	can	be	referenced

nil:...

pi:3.14...

...

(global)	I

a:	6

f:[3	4]

...

II

a:	2

m:	4

...

VI

15	/	58

Environment	Diagram
nil:...

pi:3.14...

...

(global)	I

a:	6

f:[3	4]

...

IIm:	1

y:2

...

III

f:	6

m:	{	'key':	1	}

...

IV
a:	1

...

Va:	2

m:	4

...

VI

16	/	58

Environments	Diagrams

Environment	diagrams

visualize	the	interpreter's

process

nil:...

pi:3.14...

...

(global)	I

a:	6

f:[3	4]

...

II

a:	2

m:	4

...

VI



Expression	evaluation

18	/	58

Evaluation	of	an	expression

Variables	are	defined	in	an	environment
Variables	for	which	there	is	no	binding	in	an	environment

are	said	to	be	unbound

A	variable	can	have	at	most	one	binding	per	frame

But	a	variable	can	have	multiple	bindings	in	an	environment

Expressions	are	associated	to	an

environment
But	how	do	we	get	the	value	of	'a'?

a plus 2

19	/	58

Name	look-up	(1/2)
If	several	bindings	exist	for	the

same	variable	in	an	environment
then	the	variable	is	associated	to	the

closest	binding

that	binding	is	said	to	shadow	the	other

bindings	of	the	variable

20	/	58

Name	look-up	(2/2)
nil:...

a:3...

...

(global)	I

a:	6

f:	2

...

IIm:	1

y:2

...

III

f:	6

m:	{	'key':	1	}

...

IV
a:	1

...

Va:	2

m:	4

...

VI

In	frame

What	is	the	value	of	a,	f	and

m?In	frame

What	is	the	value	of	a,	f	and

m?



Function	Execution

22	/	58

User	defined	functions

A	function	is	stored	as	a	lambda

associated	with	the	frame	where

the	function	was	created

23	/	58

Calling	User-Defined	Functions	(1/2)

Procedure	for	calling	user-

defined	functions:
Add	a	local	frame

Bind	the	function's	formal	parameters	to	its

arguments	in	that	frame

Execute	the	body	of	the	function	in	that

new	frame

24	/	58

Calling	User-Defined	Functions	(2/2)



25	/	58

Recursion
The	same	function	is	called	multiple

time

Different	frames	keep	track	of	the

different	arguments	in	each	call.

What	n	evaluates	to	depends	upon

which	is	the	current	context.

26	/	58

Recursion	in	Environment	Diagram

mul:	func	mul(...)

square:	func	square(...)

(global)	I

n:	3
(fact)	II

n:	2
(fact)	III

n:	1
(fact)	IV

n:	0
(fact)	V

Assignment

28	/	58

Assignment	Statement

Start	in	a	clean

state

a	=	1

b	=	2

b,	a	=	a	+	b,	b

a=2

b=3

(global)	I



29	/	58

In	which	frame	to	bind?

We	are	in	Frame	II:

Where	should	the

binding	of	a	and	b

be	done?

a:	0

c:	34

(global)	I

b:	3
II

30	/	58

In	KL

Environment	and	Programming	Language:	scope

32	/	58

Functions-scope	vs	Block-scope

Python,	JavaScript	(var),	Lisp...	have	function-

scope

C,	C++,	Java,	JavaScript	(let),	KL...	have	block-

scope

For	instance	in	C++:



33	/	58

C++	and	environments
a:	A...

...

(global)	I(main(...))	II

c:	1.0

(class	A)	III
a:	2

c:	1.0

i:...

d:...

(lambda...)	VII

a:	2

b:3

(A::f)	IV

j:	...

V

i:	...

VI

34	/	58

In	JavaScript

35	/	58

Local	vs	Global	(1/4)
f:	func	f(...)

s:	'World'

(global)	I

(f)	II

36	/	58

Local	vs	Global	(2/4)
f:	func	f(...)

s:	'World'

(global)	I

s:	'Hello'

(f)	II



37	/	58

Local	vs	Global	(3/4)

UnboundLocalError:	local

variable	's'	referenced

before	assignment

f:	func	f(...)

s:	'World'

(global)	I

s:	undefined

(f)	II

38	/	58

Local	vs	Global	(4/4)
f:	func	f(...)

s:	'Hello'

(global)	I

(f)	II

The	Scope	Trap

40	/	58

The	Scope	trap

What	is	printed?



41	/	58

Calling	User-Defined	Functions	(2/2)

42	/	58

Out	of	the	Scope	Trap

43	/	58

Calling	User-Defined	Functions	(2/2)

44	/	58

With	let...	(1/2)



45	/	58

With	let...	(2/2)

46	/	58

The	Scope	Trap	in	C++

In	C++,	captured	variables	are	copied	in	the	lambda	frame

(global)	I

i:	1

(for(...))	II

i:	1

([i]()	{	...	})	I

Mutable	Values

48	/	58

States
An	assignment	changes	the	value	of	a

variable

All	names	are	affected	by	the	mutation



49	/	58

Mutation	within	a	function	call	(1/2)

(global)	I

s->	array

(f)	II

50	/	58

Mutation	within	a	function	call,	always?	(1/2)

(global)	I

s:	2

(f)	II

51	/	58

Mutation	within	a	function	call,	always?	(2/2)

(global)	I

s:	[1,	2,	3,	4]

(f)	II

52	/	58

Mutation	within	a	function	call	(2/2)

(global)	I

(f)	II



53	/	58

Drawbacks	of	mutability

What	happen	if	you	do	this?

54	/	58

Mutable	Default	arguments

f:	func	(...)
(global)	I

s:	[5]

(f)	II

s:	[5,	5]

(f)	II

s:	[5,	5,	5]

(f)	II

55	/	58

Comparison	(1/2)
In	Python:

Value	comparison

Identity	comparison

56	/	58

Comparison	(2/2)
In	JavaScript:

Value	comparison

Identity	comparison



57	/	58

Mutable	Functions
A	function	whose	behavior

varies	over	time

Example:

withdraw:	func	(...)

(global)	I

balance:	25

(make_withdraw)	II

amount:	25

(withdraw)	III

58	/	58

Conclusion
Cell

Environment	model

Problems	with	scopes	and	global

Mutation


