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Lecture	content
Message	passing	concurrency

Reasonning
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Programming	Paradigm
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Client-Server	Architectures

Server	provides	some	services
receives	message	and	replies	to	them

example:	web	server,	mail	server,	...

Clients	know	address	of	server	and	use	service	by

sending	messages

Server	and	client	run	independently
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Peer-to-Peer	Architectures

Similar	to	Client-
every	client	is	also	a	server

communicate	by	sending	messages	to	each	other

We	call	all	these	guys	(client,	server,	peer):	agent

In	the	course	book	this	is	called	port	object

7	/	17

Common	Features
Agents

have	identity	mail	address

receive	messages	mailbox

process	messages	ordered	mailbox

reply	to	messages	pre-addressed	return	letter

Now	how	to	cast	into	a

programming	language	model?
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Message	Sending
Message	data	structure

Address	port

Mailbox	stream	of	messages

Reply	dataflow	variable	in

message
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Port
In	KL	we	define	port	as:

To	create	a	port

To	send	a	message	on	port

Messages	are	received	using	the	stream
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Receiver	Pattern
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Receiver	Pattern:	Example
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Asynchronous	call
Send	is	blocking:

Asynchronous:
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Threaded	Receiver	Pattern
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Distribution
Transparent	distribution

then	the	receiver	can	be	sent	automatically	send

to	an	available	computing	unit	by	the	interpreter

For	TCP	communication
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Reasoning
The	receiver	or	threader_receiver	pattern	are

declarative

As	long	as	Answer	and	Transform	are

declarative
Assuming	that	message	are	received	in	a	given	order,	we

can	use	declarative	reasoning

The	difficulty	is	in	verifying	the	order	of

reception	of	messages
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Message-Passing	Concurrency

Ports	for	message	handling

Client-Server,	Peer-Peer

communication

Introduces	non-determinism
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Conclusion
Data-driven	concurrency

Dataflow	variables

Implicit	synchronisation

Lazy	execution

Stream

Message-Passing	Concurrency


