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Client-Server Architectures

® Server provides some services
© receives message and replies to them
L

“ example: web server, mail server, ...

® Clients know address of server and use service by
sending messages

® Server and client run independently

Peer-to-Peer Architectures

¢ Similar to Client-
° every client is also a server
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® We call all these guys (client, server, peer): agent
® In the course book this is called port object

Common Features

® Agents
“ have identity mail address
“ receive messages mailbox
“ process messages ordered mailbox
“ reply to messages pre-addressed return letter

® Now how to cast into a

programming language model?

® Message data structure

® Address port

® Mailbox stream of messages

® Reply dataflow variable in
message




Port Receiver Pattern

® In KL we deﬁne port as: Ehread receiver(State, Answer, Transform) -> ret
port(stream); g::igepiri(z‘;ream()

®To create a port define reader = s.reader()
define s = stream() function p(State)
p = port(s) J

cond(reader.wait(), {

® To Send a message on port define msg = reader.next()
: = . s.send(Answer(State, msq))
define answer = p.send(...);

p(Transform(State, msg))
® Messages are received using the stream

3
p(State)
s.next() }

Receiver Pattern: Example

define add_server = receiver([],

functign (state, msg) -> ret{ ¢ Send |S blOCk|ng:
},"Et = SR define answer = p.send(...);
‘E“?ZE‘:“éiéi‘Zei)msm -> ret ® Asynch Fonous.
S SRR e ] define answer = (thread() -> ret
{
ret = p.send(...);
QO
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Threaded Receiver Pattern

Distribution

thread threaded_receiver(State, Answer, Transform) -> . . .
ret : ) ® Transparent distribution
{ define s = strean() define r = receiver(...)
ret = port(s) then the receiver can be sent automatically send

define reader = s.reader()

sl to an available computing unit by the interpreter

® For TCP communication

cond(reader.wait(), {

reader .next () define p = tcp_client('example.com:
s.send(receiver(State, Answer, Transform)) 2314');
P() define s = tcp_stream(2314)

E,() define p port(s)

Message-Passing Concurrency

Reasoninc

® The receiver or threader_receiver pattern are ® Ports for message ha nd“ng

declarative
[ i - _
® As long as Answer and Transform are Client Server, Peer-Peer
declarative communication
“ Assuming that message are received in a given order, we .
can use declarative reasoning ¢ IntrOd uces non'd eterminism

® The difficulty is in verifying the order of
reception of messages




Conclusion

® Data-driven concurrency
“ Dataflow variables
“ Implicit synchronisation
“ Lazy execution
 Stream

® Message-Passing Concurrency




