
TDDA69	Data	and	Program	Structure

Message	Passing	Concurrency
Cyrille	Berger

2	/	17

Lectures
1Introduction

2Concepts	and	models	of	programming	languages

3Declarative	Computation	Model

4Declarative	Programming	Techniques

5Declarative	Computation	Implementation

6Declarative	Concurrency

7Message	Passing	Concurrency

8Explicit	State	and	Imperative	Model

9Imperative	Programming	Techniques

10Imperative	Programming	Implementation

11Shared-State	Concurrency

12Relational	Programming

13Constraint	Programming

14Macro

15Running	natively	and	JIT

16Garbage	Collection

17Summary

3	/	17

Lecture	content
Message	passing	concurrency

Reasonning

4	/	17

Programming	Paradigm



5	/	17

Client-Server	Architectures

Server	provides	some	services
receives	message	and	replies	to	them

example:	web	server,	mail	server,	...

Clients	know	address	of	server	and	use	service	by

sending	messages

Server	and	client	run	independently

6	/	17

Peer-to-Peer	Architectures

Similar	to	Client-
every	client	is	also	a	server

communicate	by	sending	messages	to	each	other

We	call	all	these	guys	(client,	server,	peer):	agent

In	the	course	book	this	is	called	port	object

7	/	17

Common	Features
Agents

have	identity	mail	address

receive	messages	mailbox

process	messages	ordered	mailbox

reply	to	messages	pre-addressed	return	letter

Now	how	to	cast	into	a

programming	language	model?

8	/	17

Message	Sending
Message	data	structure

Address	port

Mailbox	stream	of	messages

Reply	dataflow	variable	in

message



9	/	17

Port
In	KL	we	define	port	as:

To	create	a	port

To	send	a	message	on	port

Messages	are	received	using	the	stream

10	/	17

Receiver	Pattern

11	/	17

Receiver	Pattern:	Example

12	/	17

Asynchronous	call
Send	is	blocking:

Asynchronous:



13	/	17

Threaded	Receiver	Pattern

14	/	17

Distribution
Transparent	distribution

then	the	receiver	can	be	sent	automatically	send

to	an	available	computing	unit	by	the	interpreter

For	TCP	communication

15	/	17

Reasoning
The	receiver	or	threader_receiver	pattern	are

declarative

As	long	as	Answer	and	Transform	are

declarative
Assuming	that	message	are	received	in	a	given	order,	we

can	use	declarative	reasoning

The	difficulty	is	in	verifying	the	order	of

reception	of	messages

16	/	17

Message-Passing	Concurrency

Ports	for	message	handling

Client-Server,	Peer-Peer

communication

Introduces	non-determinism



17	/	17

Conclusion
Data-driven	concurrency

Dataflow	variables

Implicit	synchronisation

Lazy	execution

Stream

Message-Passing	Concurrency


