TDDA69 Data and Program Structure

Cyrille Berger

II LINKOPING
o UNIVERSITY

Lecture content

® Message passing concurrency
® Reasonning

I u INXOBINC
UN IT

Lectures

1Introduction
2Concepts and models of programming languages
3Declarative Computation Model
4Declarative Programming Techniques
5Declarative Computation Implementation
6Declarative Concurrency
7Message Passing Concurrency
8Explicit State and Imperative Model
9Imperative Programming Techniques

10Imperative Programming Implementation

11Shared-State Concurrency

12Relational Programming

13Constraint Programming

14Macro

15Running natively and JIT

16Garbage Collection

17Summary

record

s Lhe principal programming paradigms

XML, ""More is not better (or worse) than less, just different.”
Data structures only S—expression

+ unification
(equality) o (unfor

+ search

Haskell, ML, E CLU, OCaml, Oz

+ by—need

+ nondeterministic

synchron. + port
Prolog, SQL } choice I (channel)
embeddings ! 5 1 Multi-ag 7
+ solver programming | | ; dataflow i Java, OCaml
Declarative ! | ro; in
concurrent | Concurrent logic ! Oz, Alice, AKL
CLP, ILOG Solver programming | ZY |

Oz, Alice, Curry, Excel,
AKL, FGHC, FCP

+ synch. on partial

+ thread Pipes, MapReduce
+ thread"\ (+ by—need
+ single assignment synchronization

Functional reactive I
LIFE, AKL programming (FRP) | Smalltalk, Oz,
+ by-need synchronization Weak synchronous | | Java, Alice
m programming ' + log
FrTime, SL CSP, Occam,
n + i y i E, Oz, Alice,

0Oz, Alice, Curry 0z, Alice, Curry publish/subscribe,

£ Pt
=/

—

Strong synchronous | |
programming :
Esterel, Lustre, Signal | Dataflow and
| message passing Message passing

Unnamed state (seq. or conc.) Rzl it Named state
More declarati { - : T | Less declarative

Client-Server Architectures

® Server provides some services
© receives message and replies to them
L

“ example: web server, mail server, ...

® Clients know address of server and use service by
sending messages

® Server and client run independently

Peer-to-Peer Architectures

¢ Similar to Client-
° every client is also a server

- .
/ AN
- -
AN /

® We call all these guys (client, server, peer): agent
® In the course book this is called port object

Common Features

® Agents
“ have identity mail address
“ receive messages mailbox
“ process messages ordered mailbox
“ reply to messages pre-addressed return letter

® Now how to cast into a

programming language model?

® Message data structure

® Address port

® Mailbox stream of messages

® Reply dataflow variable in
message

Port Receiver Pattern

® In KL we deﬁne port as: Ehread receiver(State, Answer, Transform) -> ret
port(stream); g::igepiri(z‘;ream()

®To create a port define reader = s.reader()
define s = stream() function p(State)
p = port(s) J

cond(reader.wait(), {

® To Send a message on port define msg = reader.next()
: = . s.send(Answer(State, msq))
define answer = p.send(...);

p(Transform(State, msg))
® Messages are received using the stream

3
p(State)
s.next() }

Receiver Pattern: Example

define add_server = receiver([],

functign (state, msg) -> ret{ ¢ Send |S blOCk|ng:
},"Et = SR define answer = p.send(...);
‘E“?ZE‘:“éiéi‘Zei)msm -> ret ® Asynch Fonous.
S SRR e] define answer = (thread() -> ret
{
ret = p.send(...);
QO

hw hw

Threaded Receiver Pattern

Distribution

thread threaded_receiver(State, Answer, Transform) -> . . .
ret :) ® Transparent distribution
{ define s = strean() define r = receiver(...)
ret = port(s) then the receiver can be sent automatically send

define reader = s.reader()

sl to an available computing unit by the interpreter

® For TCP communication

cond(reader.wait(), {

reader .next () define p = tcp_client('example.com:
s.send(receiver(State, Answer, Transform)) 2314');
P() define s = tcp_stream(2314)

E,() define p port(s)

Message-Passing Concurrency

Reasoninc

® The receiver or threader_receiver pattern are ® Ports for message ha nd“ng

declarative
[i - _
® As long as Answer and Transform are Client Server, Peer-Peer
declarative communication
“ Assuming that message are received in a given order, we .
can use declarative reasoning ¢ IntrOd uces non'd eterminism

® The difficulty is in verifying the order of
reception of messages

Conclusion

® Data-driven concurrency
“ Dataflow variables
“ Implicit synchronisation
“ Lazy execution
 Stream

® Message-Passing Concurrency

