
TDDA69	Data	and	Program	Structure

Declarative	Concurrency
Cyrille	Berger

2	/	53

Lectures
1Introduction

2Concepts	and	models	of	programming	languages

3Declarative	Computation	Model

4Declarative	Programming	Techniques

5Declarative	Computation	Implementation

6Declarative	Concurrency

7Message	Passing	Concurrency

8Explicit	State	and	Imperative	Model

9Imperative	Programming	Techniques

10Imperative	Programming	Implementation

11Shared-State	Concurrency

12Relational	Programming

13Constraint	Programming

14Macro

15Running	natively	and	JIT

16Garbage	Collection

17Summary

3	/	53

Lecture	content
Data-driven	concurrent	model

Lazy	execution

MapReduce

Stream

4	/	53

Concurrency
Natural	for	some	applications:
GUI:	event	thread,	computation	threads...

Games:	graphics	thread,	ai	thread...

Operating	Systems:	driver	threads...

Data	processing...

Distributed	applications:	client-

server



5	/	53

Declarative	Concurrency

No	observable	nondeterminism
The	result	is	only	dependent	of	the	inputs

Communication	through	shared

dataflow	variables

6	/	53

Programming	Paradigm

Data-driven	concurrent	model

8	/	53

Sequential	Model

x:	10

y:	'hello'

z	=	{...}

w

u

(global)I
Semantic	Stack



9	/	53

Concurrent	Model

x:	10

y:	'hello'

z	=	{...}

w

u

(global)I
Semantic	Stack	1

Semantic	Stack	N

10	/	53

Extension	to	the	syntax	of	KL

STATEMENT	:=	(...|THREAD)

THREAD	:=	'thread'	'('	(EXPR	(,	EXPR)+))	|	()	')'	('->'

IDENTIFIER)	BLOCK

Example:

11	/	53

Basic	concepts
The	model	allows	multiple	statements	to

execute	"at	the	same	time"

Reading	and	writing	different	variables

can	be	done	simultaneously	by	different

threads,	as	well	as	reading	the	same

variable

What	about	writting	to	the	same	variable?

12	/	53

Deterministic	vs	Nondeterministic

An	execution	is	nondeterministic	if	there	is	a

computation	step	in	which	there	is	a	choice

what	to	do	next

Nondeterminism	appears	naturally	when

there	are	multiple	concurrent	states

A	declarative	language	needs	to	be

deterministic



13	/	53

Example	of	non	determinism

The	first	thread	that	bind	x	succeed,	the	other	one

fails

Commonly	called	"data	race".

14	/	53

How	to	solve?
Use	exception?

Not	deterministic!

Two	solutions:
Leave	it	as	an	error	to	solve	by	the	programmer

An	alternative	model	is	to	assign	a	value	store	for	each	thread

15	/	53

Multiple	value	stores

x:	thread...

y:	thread...

(global)I

Thread	1 a:	10

b:	'world'

(thread	1)II

Thread	N
a:	15

b:	'hello'

(thread	N)N+1

16	/	53

Thread	synchronisation
Implicit	synchronisation
Wait	for	the	computation	to	be	available

The	main	thread	is	blocked	until	v1	and	v2	are	finished.

v1	and	v2	are	called	dataflow	variable



17	/	53

Dead-lock

But	deterministic...

18	/	53

Sequential	/	Concurrent	Execution

19	/	53

Since	concurrency	is	easy...

Declarative	programs	can	be	easily	made	concurrent

There	is	no	real	drawbacks	(except	cost	of	starting	a	thread)

20	/	53

Execution	of	threaded	fib(6)



Lazy	execution

22	/	53

Lazy	execution
Up	to	now	the	execution	order	of	each	thread	follows	textual

order,	when	a	statement	comes	as	the	first	in	sequence	it

will	execute,	whether	or	not	its	results	are	needed	later

The	execution	scheme	is	called	eager	execution,	or	supply-

driven	execution

Another	execution	order	is	that	a	statement	is	executed	only

if	its	results	are	needed	some	in	the	program

This	scheme	is	called	lazy	evaluation,	or	demand-driven

evaluation

23	/	53

Example

If	f1	and	f2	are	pure,	delay

evaluation	of	B	and	C	until	it	is

needed	to	evaluate	A

24	/	53

Lazy	Evaluation	and	Store

Without

lazy

With	lazy

fib:	function(n)	->	r	{	...	}

a:	55

store	not	lazy

fib:	function(n)	->	r	{	...	}

a:	55

store	lazy



25	/	53

Concurrency

	

	

	

	

	

	

MapReduce

27	/	53

Map/Reduce
Map	is	a	higher-order	function	that

applies	a	given	functor	to	each

element	of	a	list

Reduce	is	a	higher-order	function	that

applies	a	reduction	to	a	data	set

28	/	53

Concurrent	Map
Split	the	dataset



29	/	53

Concurrent	Reduce
Split	the	dataset	and	apply	the	functor	one	more	time

30	/	53

Big	Data	Processing	(1/2)

MapReduce	is	a	framework	for	batch

processing	of	big	data.
Batch	processing:

Big	data:

31	/	53

Big	Data	Processing	(2/2)

The	MapReduce	idea:
Data	sets	are	too	big	to	be	analyzed	by	one

machine

Using	multiple	machines	has	the	same

complications,	regardless	of	the	application/

analysis

Pure	functions	enable	an	abstraction	barrier

between	data	processing	logic	and	coordinating	a

distributed	application

32	/	53

MapReduce	Evaluation	Model	(1/2)

Map	phase:	Apply	a	mapper	function	to	all

inputs,	emitting	intermediate	key-value	pairs
The	mapper	takes	an	iterable	value	containing	inputs,	such

as	lines	of	text

The	mapper	yields	zero	or	more	key-value	pairs	for	each

input



33	/	53

MapReduce	Evaluation	Model	(2/2)

Reduce	phase:	For	each	intermediate	key,	apply	a

reducer	function	to	accumulate	all	values	associated

with	that	key
The	reducer	takes	an	iterable	value	containing	intermediate	key-value

pairs

All	pairs	with	the	same	key	appear	consecutively

The	reducer	yields	zero	or	more	values,	each	associated	with	that

intermediate	key

34	/	53

MapReduce	Execution	Model	(1/2)

35	/	53

MapReduce	Execution	Model	(2/2)

36	/	53

MapReduce	example
From	a	1.1	billion	people

database	(facebook?),	we	want

to	know	the	average	number	of

friends	per	age

In	SQL:

In	MapReduce:
the	total	set	of	users	in	splitted	different

users_set	=	{	user...	}

The	keys	are	shuffled	and	assigned	to	reducers

	

	

	

	

	

	



37	/	53

MapReduce	Assumptions

Constraints	on	the	mapper	and	reducer:
The	mapper	must	be	equivalent	to	applying	a	deterministic	pure	function	to

each	input	independently

The	reducer	must	be	equivalent	to	applying	a	deterministic	pure	function	to

the	sequence	of	values	for	each	key

Benefits	of	functional	programming:
When	a	program	contains	only	pure	functions,	call	expressions	can	be

evaluated	in	any	order,	lazily,	and	in	parallel

In	MapReduce,	these	functional	programming	ideas

allow:
Consistent	results,	however	computation	is	partitioned

Re-computation	and	caching	of	results,	as	needed

38	/	53

MapReduce	Benefits
Fault	tolerance:	A	machine	or	hard	drive

might	crash
The	MapReduce	framework	automatically	re-runs	failed	tasks

Speed:	Some	machine	might	be	slow	because

it's	overloaded
The	framework	can	run	multiple	copies	of	a	task	and	keep	the

result	of	the	one	that	finishes	first

Network	locality:	Data	transfer	is
The	framework	tries	to	schedule	map	tasks	on	the	machines	that

hold	the	data	to	be	processed

Stream

40	/	53

Stream	(1/2)
So	far,	wait	for	the	end	of	the	execution	of	a

thread	to	do	the	next	computation

No	reason	to	wait	for	a	to	be	finished	to	start

on	b	(and	b	for	c...)



41	/	53

Stream	(2/2)
A	stream	is	a	sequence	of	message

A	stream	is	first-in-first-out	(FIFO)

The	producer	augments	the	stream

with	new	messages,	the	consumer

reads	the	messages,	one	by	one

generator map1
...	a₃	a₂	a₁	a₀

map2
...	b₃	b₂	b₁	b₀

42	/	53

Stream	communication

Producer,	that	produces	incremently

the	elements

Transducer(s),	that	transforms	the

elements	of	the	stream

Consumer,	that	accumulate	the

results

producer transducer consumer

43	/	53

Producer	Pattern

44	/	53

Producer	Pattern:	Example



45	/	53

Consumer	Pattern

46	/	53

Consumer	Pattern:	Example

47	/	53

Transducer	Pattern

48	/	53

Transducer	Pattern:	Examples



49	/	53

Limitation	of	eager	stream	processing	streams

The	producer	might	be	much

faster	than	the	consumer

This	will	produce	a	large

intermediate	stream	that

requires	potentially	unbounded

memory	storage

50	/	53

Solutions
Three
1Play	with	the	speed	of	the	different	threads,	i.e.	play	with	the

scheduler	to	make	the	producer	slower

2Create	a	bounded	buffer,	say	of	size	N,	so	that	the	producer	waits

automatically	when	the	buffer	is	full

3Use	demand-driven	approach,	where	the	consumer	activates	the

producer	when	it	need	a	new	element	(Lazy	evaluation)

The	last	two	approaches	introduce	the	notion

of	flow-control	between	concurrent	activities

(very	common)

51	/	53

Applications
Image,	Video,	Sound	processing

Large	numerical	computation,

for	instance,	prime	number

computation

52	/	53

Stream	and	purity
The	full	stream	chain	is	definitely	pure

No-side	effects,	fully	deterministic

But:



53	/	53

Conclusion
Data-driven	concurrency
Dataflow	variables

Implicit	synchronisation

Lazy	execution

Stream


