Lectures

1Introduction

2Concepts and models of programming languages

3Declarative Computation Model

4Declarative Programming Techniques

T D DA6 9 D ata a n d P ro g ra m St r u Ct u re SDeclarative Computation Implementation

6Declarative Concurrency

7Message Passing Concurrency

8Explicit State and Imperative Model

9Imperative Programming Techniques

Cyr’//e Berger 10Imperative Programming Implementation
11Shared-State Concurrency

12Relational Programming

13Constraint Programming

14Macro

15Running natively and JIT

16Garbage Collection

17Summary
II LINKOPING
o UNIVERSITY

Lecture content Concurrenc

® Data-driven concurrent model ® Natural for some applications:
L Lazy execution “ GUIL event thread, computation threads...
“ Games: graphics thread, ai thread...

“ Operating Systems: driver threads...

® MapReduce

® Stream ° Data processing...
® Distributed applications: client-
server

Declarative Concurrency

® No observable nondeterminism
“ The result is only dependent of the inputs

® Communication through shared
dataflow variables

II INKOPINC
o UN IT

Data-driven concurrent model

II LINKOPING
L) UNIVERSITY

record

s Lhe principal programming paradigms

declarative
programming . . .
) ""More is not better (or worse) than less, just different."
Data structures only S—expression

V1.08 © 2008 by Peter Van Roy

+ cell (state) [

(equality) (unfor; constant)

+ cell
(state)

ADT
functional

+ port
(channel)

Scheme, ML Haskell, ML,E__ | CLU, OCaml, Oz

+ thread

+ single assign- + nondeterministic + port
e F— Y duice (channel)

programming | !

dataflow ‘Multi-ag
programming | 1 dataflow | dataflow
Declarative ! ! ro
concurrent f Concurrent logic 1 Oz, Alice, AKL
CLP, ILOG Solver PLOSIANMIING] | |
Silirend 0z Alice, Curry, Excel,

+ thread
+ single assignment

AKL, FGHC, FCP

Pipes, MapReduce
+ by-need
synchronization

+ synch. on partial termination

Nondet. state

| message passing Message passing
' Named state
1] ;

Unnamed state (seq. or conc.)
|

Lazy, ! [Functional reactive | |
LIFE, AKL dataflow | programming (FRP) | ! Smalltalk, Oz,
Ll i | Weak synchre ! Java, Alice
+ by—need synchronization = ! carsynchonouss | 5 ng
A : programming i g + log
il ! FrTime, SL CSP, Occam,
i | " ! . E, Oz, Alice,
= = ! publish/subscribe, 1
0z, Alice, Curr; Oz, Alice, Cur ! | Strong synchronous i r
s 4 Y s > Lurry 3 pn%g) 5 tuple space (Linda) QL embeddings
p— Esterel, Lustre, Signal Dataflow and

T T T T Less declarative

|
U

(global)l

Semantic Stack

x: 10
y: 'hello’
z={.}

INKOBIN(
N IT

Concurrent Model Extension to the syntax of KL

¢ STATEMENT :=(...| THREAD)

) (global)l ® THREAD :='thread' '(' (EXPR (, EXPR)+)) | ())" ('->'
Semantic Stack 1 IDENTIFIER) BLOCK
x: 10 ® Example:
y: 'hello’ define my_thread = thread(a) -> b {
z=1{.} b = fib(a);
= i
= define vi = my_thread(1000);
Semantic Stack N define v2 = my_thread(2000);

std.print(vl + v2);

Basic concepts

® The model allows multiple statements to ® An execution is nondeterministic if there is a
execute "at the same time" computation step in which there is a choice
® Reading and writing different variables what to do next
can be done simultaneously by different ¢ Nondeterminism appears naturally when
threads, as well as reading the same there are multiple concurrent states

® A declarative language needs to be
deterministic

variable
® What about writting to the same variable?

Example of non determinism

define X;
thread() {
k= ds

1(0);

thread()
X, = 2

HOF

® The first thread that bind x succeed, the other one

fails
® Commonly called "data race".

How to solve?

® Use exception?

define x;

thread() {
catch(x = 1);

10);

thread() {
catch(x = 3);

1(0);

® Not deterministic!

¢ Two solutions:
© Leave it as an error to solve by the programmer
© An alternative model is to assign a value store for each thread

Multiple value stores

(thread 1)II
Thread 1 ~ el
b: 'world'
x: thread...
y: thread...
(thread N)N+1
a: 15

Thread N " b: 'hello’

hw

Thread synchronisation

¢ Implicit synchronisation

Wait for the computation to be available

define my_thread = thread(a) -> b {
b = fib(a);

}i

define vl = my_thread(1000);

define v2 = my_thread(2000);

std.print(vl + v2);

The main thread is blocked until v1 and v2 are finished.

®v1 and v2 are called dataflow variable

hw

Sequential / Concurrent Execution

Dead-lock

thread() {

define thread_1

srEhread: 2y i)

} () ;' 't execution, multiple stores
define thread_2

thread() {

< thread @3

3O0;
® But deterministic...

execution, single stores

Since concurrency is easy... Execution of threaded fib(6)
® Declarative programs can be easily made concurrent f2)
® There is no real drawbacks (except cost of starting a thread) f(3)ﬂ f(1) \
edefine fib = function(n) -> v {)\ m
v = cond(n <= 2, 1, f(4)ﬁf(2)

fib(x-1) + fib(x-2)); f(2)

} “(/’///
edefine fib = function(n) -> v { f(5) f(3)?| (1) \ synchronisation

v = cond (i <= 2, 1,
(thread() -> v { v = fib(x-1) })() f(2)

+ Fib(x-2))=
} f(3)7' f(1) \
f(6) f(4)ﬂ f(2))\ >

hw hw

Lazy execution

® Up to now the execution order of each thread follows textual
order, when a statement comes as the first in sequence it
will execute, whether or not its results are needed later

® The execution scheme is called eager execution, or supply-
driven execution

® Another execution order is that a statement is executed only
if its results are needed some in the program

® This scheme is called lazy evaluation, or demand-driven
evaluation

Lazy execution

LINKOPING
II." UNIVERSITY

| a7v Fuyahiiatinn and Star.

Py define B — fi(x) ; ® Without store not lazy
; _ . | fib: function(n) ->r { ...}
define C = fZ(X) ’ ad§¥ine fib = a:55
deflne A - B i C; '}Ifl.mction(n) E 2t o T
° define a = fib(10);
If f1 and f2 are pure, delay ° With lazy ctore lazy
evaluation of B and C until it is Farotion(n) -> r ¢ ... [T
} :55
needed to evaluate A define a = fib(10); ’
a

hw hw

Conclirrencv

define my_ thread = define v1 =

gligeadia) - iy fib(1000);

},b::flb(a); define v2 =

g fib(2000);

define vi = std.print(vl + v2);

my_thread(1000); ' a p e u Ce
define v2 =

my_thread(2000);
std.print(vl + v2);

LINKOPING
II." UNIVERSITY

Map/Reduce Concurrent Map

® Map is a higher-order function that * Split the dataset
. ; e function tmap(list, functor) -> value {
applies a given functor to each define rest = cond(length(list) == 0,
1 []r
element of a list (ERRETIE & el
map([1, 2i 3, 4, 5], square) -> [1, 4, value = tmap(list[1:], functor);
Sy 8 25 1O
® Reduce is a higher-order function that i MLEleh s et LESEIRUE 5 Besk)

applies a reduction to a data set
reduce([1, 2, 3, 4, 5], add) -> 15

Concurrent Reduce

° Split the dataset and apply the functor one more time

e functi
cond
va

{

1)

}

Big Data Processing (2/2)

on treduce(list, functor) -> value {
(length(list) == 2,
lue = functor(list[e©], list[1]),

define threduce = thread(list) -> value

&
value = treduce(list, functor);
}
define half = length(list) / 2;
define vl1 = threduce(list[0:half - 1])
define v2 = threduce(list[half:length(list)]);
value = functor(vl, v2);

’

® The MapReduce idea:

° Data sets are too big to be analyzed by one
machine

“ Using multiple machines has the same
complications, regardless of the application/

d
°p

between data processing logic and coordinating a

d

hw

nalysis
ure functions enable an abstraction barrier

istributed application

Big Data Processing (1/2)

® MapReduce is a framework for batch
processing of big data.

° Batch processing:
- (1)

“ Big data:

MapReduce Evaluation Model (1/2)

® Map phase: Apply a mapper function to all

inputs, emitting intermediate key-value pairs

“ The mapper takes an iterable value containing inputs, such
as lines of text

° The mapper yields zero or more key-value pairs for each

input
Google MapReduc 0:2 %
ogle MapReduce] » mapper : i1 o
Is a Big Data framework]] 4 3: 1 a4 0:2
For batch processing] I e e: 3 ET e il
' = e

hw

MapReduce Evaluation Model (2/2)

® Reduce phase: For each intermediate key, apply a
reducer function to accumulate all values associated
with that key

© The reducer takes an iterable value containing intermediate key-value
pairs

© All pairs with the same key appear consecutively

© The reducer yields zero or more values, each associated with that
intermediate key

a: da: c l—L
a> reducer .
1 pas

Eleine:
y 1
9 reducer ’ e5

II. \H H

| Map Task 1 - . Map Task 2 \ . Map Task 3 |
I 1 1 ! 1 !
! [1 [[| |
I 1 1 ! 1 !
I 1 1 ! 1 !
1 1 1 ! 1 !
1 1 1 ! 1

([ke kivas] [xiv v ks [avksy i W[k T kivis [v
1 ‘ Partitioning Function |I 1 | Partitioning Function || 1 | Partitioning Function | 1

1

|

| I

| |

| Iz

| |

| I =

| I

|

|

|

|

=

|

| |
dEp g

5 |

oll e

,£| I

<7, K

. I

L

MapReduce Execution Model (1/2)

toput | | | | |

¢ ! ' v 'y

P PP O » G

Interrnedmte| kl:vkl:vk2:wv | ‘ kl:v | k3:v kv ‘ kv k5:v | kv | kl:v k3:v ‘

Group by Key

Grouped |kl vvvv|k2v|k3vv|k4vvv|k5v

$E0TY

Output |

\H H

ManRediice examnle¢

° The keys are shuffled and assigned to reducers

° -
Froma 1.1 bI”IOI'] people function average_friends(age,
database (facebook?), we want friends_counts):
to know the average number of var r = reduce(friends_counts, ¢,
friends per age function(friends_count, s) -> r

r = friends_count.size + s

®In SQL: 1

SELECT age, AVG(friends) FROM send(age, r / friends.size);
users GROUP BY age }

® In MapReduce:

° the total set of users in splitted different
users_set = {user... }
function age_to_friends(user)
{
send(user.age,
user.friends.size);

MapReduce Assumptions

® Constraints on the mapper and reducer:

° The mapper must be equivalent to applying a deterministic pure function to
each input independently

© The reducer must be equivalent to applying a deterministic pure function to
the sequence of values for each key

® Benefits of functional programming:

°When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel

® In MapReduce, these functional programming ideas
allow:

© Consistent results, however computation is partitioned
© Re-computation and caching of results, as needed

Stream

LINKOPING
UNIVERSITY

MapReduce Benefits

® Fault tolerance: A machine or hard drive

might crash
° The MapReduce framework automatically re-runs failed tasks

® Speed: Some machine might be slow because
it's overloaded

° The framework can run multiple copies of a task and keep the
result of the one that finishes first
® Network locality: Data transfer is

° The framework tries to schedule map tasks on the machines that
hold the data to be processed

Stream (1/2

® So far, wait for the end of the execution of a

thread to do the next computation
define a = generator(X);
define b = mapi(a, Y);
define ¢ = map2(b, Z);

® No reason to wait for a to be finished to start
on b (and b forc...)

II INXOBINC
o UNIVERSITY

Stream (2/2

® A stream is a sequence of message

® A stream is first-in-first-out (FIFO)

® The producer augments the stream
with new messages, the consumer
reads the messages, one by one

Producer Pattern

thread producer(State, More, Produce, Transform) -> ret

{

generato”

define s = stream();
ret = s.ouput();
function p(State)

¥
p

cond(More(State), {
s.send(Produce(State));
p(Transform(State));

(State);

Stream communication

® Producer, that produces incremently
the elements

® Transducer(s), that transforms the
elements of the stream

® Consumer, that accumulate the
results

producer ———— transduce: ———{ consumer

Producer Pattern: Example

define p = generate([0, N],
function(State)
{ return(State[0] <
State[1]),; }, // More
function(State)
{ return(State[0]); }, //
Produce
function(State)
{ return([State[0] + 1,
State[1]]); }); // Transform

Consumer Pattern

thread consumer(State, Input, Final, Consume) -> ret

{
define r = Input.reader();
function c(State)
i

cond(r.wait(),

c(Consume(r.next(), State)),

ret = Final(State));

3
c(State);

define s = stream();
r

function t(State)

cond(r.wait(), {
var nsState = Transform(r.next(), State);
cond{not More or More(State), {
s.send(Produce(nState));

t(nstate)}) 1)

t(State);

hw

ice, Transform) -> ret

Consumer Pattern: Example

define ¢ = consume(0, I,
function(State) {

return(State); 1},
function(Next, State) {

return(State + Next); });

Transducer Pattern: Examples

define tl1 = transducer(null, I, null,
function(State) { return 2 * State; },
function(Next, State) { return Next;

1)

define t2 = transducer(null, I,
function(State) { return State < 5; 1},
function(State) { return State; 1},
function(Next, State) { return Next;

2)i

hw

Limitation of eager stream processing streams

® The producer might be much
faster than the consumer

® This will produce a large
intermediate stream that
requires potentially unbounded
memory storage

® Image, Video, Sound processing

® Large numerical computation,
for instance, prime number
computation

® Three

1Play with the speed of the different threads, i.e. play with the
scheduler to make the producer slower

2Create a bounded buffer, say of size N, so that the producer waits
automatically when the buffer is full

3Use demand-driven approach, where the consumer activates the
producer when it need a new element (Lazy evaluation)

® The last two approaches introduce the notion
of flow-control between concurrent activities
(very common)

Stream and purit

® The full stream chain is definitely pure
function my_stream(...) -> ret

{

define p1 = producer(...);

define t1 = transducer(..., p1, ...);
define t2 = transducer(..., t1, ...);
ret = consumer{..., t2, ...);

}
® No-side effects, fully deterministic

® But:

thread f(...) -> ret

{
var s = stream();
ret = s.ouput();
s.send(...); // side-effect?

Conclusion

® Data-driven concurrency
~ Dataflow variables
“ Implicit synchronisation

® Lazy execution
® Stream

