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What is recursion?

A function is called recursive if
the body of that function calls
itself, either directly or indirectly.

Factorial: the classical example (1/2)

® Factorial in Haskel:

factorial :: Integral -> Integral
factorial 0 = 1

factorial n = n * factorial (n-1)
® Factorial in Common LISP:
(define (factorial n)
(cond ((= n 0) 1)
(t (* n (factorial
(- n1))))))

Factorial: the classical example (2/2)

® With a loop:
function factorial(n)

{
var r = 1;
for(var i = 2; i <= n; ++i)
{ .
[l 1
}

return r;
}
® With a recursive call:
define factorial = function (n) -> r

{

r = cond(n == 0, 1, n * factorial(n-1))

Recursion vs loops

e while(expression)
{
do_something();

}

e define loop_something = function (args...) -> ret

{

cond(expression, { do_something(); ret =
loop_something(args...); }, ret = null);
¥

e (define (loop_something args...)
(cond (expression) value)
(t (do_something) (loop_something

args...))




Function calls Tail-call

¢ Calling a function is usually more expensive than a ® A tail-call is a call to an other function
loop . performed as the last statement in a function
® In many programming language, the number of ® Are those tail-call?
function call is limited by the size of the stack fiictson fooe(dat-a) (
ofactorial(1000) a(data);
RecursionError: maximum recursion depth exceeded in comparison ’
osys.getrecursionlimit() return b(data);
1000 )
osys.setrecursionlimit(1003) function fool(data) {
©factorial(1000) return a(data) + 1;
4023872600770937735437024339.....00000 }

® Tail-call optimisation
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Python 36 Print output (drag lower right corner to resize)
o O . ~ =4 1 def factorial(n):
2 def factorial_ iter(product, 1
[ail-call optimisation S ez :
s_l return product s Objects
5 else:
° 3 . 6 return factorial_itel
In case of a tail-call, the execution does not need to return to the 7 return factorial_iter(1, n)
function, there is no need to save the function call on the stack 8
® Recursion without tail-call 10
define factorial = function (n) -> r 11 print(factorial(5s))
4 L3
r = cond(n == 0, 1, n * factorial(n-1)) line that just executed
¥ == nextline to execute
® Recursion with tail-call 0
define factorial = function (n) -> r
{ Step 1 of 26

define factorial_iter = funetion (product, n) -> r
Rendered by Python Tutor

Customize visualization (NEW!)

r = cond{n < 2, product, factorial_iter(product * n, n-1}))

r = factorial_iter(1, n))

}




® Can we have state when we cannot
change a value in the store?

° IQE(I:itciiEnstfa(tSe), consider Fu N Ct| on com pOS |t| on
; T{5+1);
}
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Function composition

. . function lower_case(text) -> r
® Many operations on lists (or L T e
Iterables) are Very Slmllar iunction lower_case_iter(text, idx) ->r
“ modification, filtering, accumulation... {

For each elements (1/2)

r = cond(r < length(text), lower(text[idx]) +
lower_case_iter(text, idx + 1), "")




For each elements (2/2)

When closure matters

function lower_case(text) -> r

{ ® Filter a list:
= f h(text, 1 ; : . :

eI SRl function filter_small(list,
function for_each(val, func) -> r Value) = W
: # h (val, f ) {

r = for_each_iter(val, func, 0); _ _ .
} r = filter(list, function(x) ->
function for_each_iter(val, func, idx) -> r r {
{

r = cond(r < length(val), func(text[idx]) + r = X < value;
lower_case_iter(text, idx + 1), "") }) .
} ) d

Correctness

® How can we tell a program is
correct?

Ve I"Ifl Catl O n “ Test a few selected values, ie, unit

®In general, we need:
“ a mathematical

“ a specification of the
“ to reason using the model and
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Proving properties in functional programming

Verification and proving

® To prove a program correct, we must
consider everything a program depends on

¢ In pure functional programs, dependence on
any data structure is explicit

® The program can be correct but still give

wrong results!

“ We need to verify compiler, run-time system, operating
system, hardware!

hw

>roving properties in imperative programming

e function power(b, n) {
int result = 1;
for(int i = 0; i < n; ++i)
{
result *= b;
}
return result;

}

® Devise a loop invariant;
2 (n=i) A (result = bi)
° Prove that it is true for the first loop iteration
° Prove that each loop iteration preserves it
Assume that (n = i) A (result = b')
Prove that (n 2 j) A (result =bi) withj=i+1

hw

edefine power = function(b, n) -> r
{
r = cond(n == 0, 1, b * power(b, n-1));
b
® Claim: for any integer n =0 and any number b,
power(b, n) = b"
® Proof:

© 1) Verify the base case: power(b,0)
© 2) Assume that power (b, n - 1)) is correct

© 3) Verify that power(b, n) is correct assuming that power(b, n - 1)) is
correct

hw

Declarative Components (1/2)

® Declarative components are written using

only pure functions

“ A declarative component can be written, tested, and
proved correct independent of other components and of
its own past history.

° Programs written in the declarative model are much easier
to reason about than programs written in more expressive
models (e.g., an object-oriented model).

hw



Declarative Components (2/2)

Conclusion

® Since declarative components are mathematical functions, () -
algebraic reasoning is possible i.e. substituting equals for Performa NCE ISSUES
equa|S . o e . . . .
Given f(a)=a2, we can replace f(a) in other equations, b=7f(x)*2 becomes Ve rlfl Catl O n IS ea S I e r I n
b=7x"4 . .
® The declarative model of chapter 4 guarantees that all fU nctiona l p rog rammin g
programs written are declarative [ Decla rative com ponents

® Declarative components can be written in programming
models that allow stateful data types, but there is no

guarantee
int f(int x) { return x * x; }
° constexpr in C++ allows to offer the guarantee




