TDDA69 Data and Program Structure

Cyrille Berger

II LINKOPING
o UNIVERSITY

Lecture content

® Recursion
® Function composition
® Verification

Lectures

2Concepts and models of programming languages
3Declarative Computation Model
4Declarative Programming Techniques
SDeclarative Computation Implementation
6Declarative Concurrency
7Message Passing Concurrency
8Explicit State and Imperative Model
9Imperative Programming Techniques

10Imperative Programming Implementation

11Shared-State Concurrency

12Relational Programming

13Constraint Programming

14Macro

15Running natively and JIT

16Garbage Collection

17Summary

II INXOBINC
o UNIVERSITY

Recursion

LINKOPING
II." UNIVERSITY

What is recursion?

A function is called recursive if
the body of that function calls
itself, either directly or indirectly.

Factorial: the classical example (1/2)

® Factorial in Haskel:

factorial :: Integral -> Integral
factorial 0 = 1

factorial n = n * factorial (n-1)
® Factorial in Common LISP:
(define (factorial n)
(cond ((= n 0) 1)
(t (* n (factorial
(- n1))))))

Factorial: the classical example (2/2)

® With a loop:
function factorial(n)

{
var r = 1;
for(var i = 2; i <= n; ++i)
{ .
[l 1
}

return r;
}
® With a recursive call:
define factorial = function (n) -> r

{

r = cond(n == 0, 1, n * factorial(n-1))

Recursion vs loops

e while(expression)
{
do_something();

}

e define loop_something = function (args...) -> ret

{

cond(expression, { do_something(); ret =
loop_something(args...); }, ret = null);
¥

e (define (loop_something args...)
(cond (expression) value)
(t (do_something) (loop_something

args...))

Function calls Tail-call

¢ Calling a function is usually more expensive than a ® A tail-call is a call to an other function
loop . performed as the last statement in a function
® In many programming language, the number of ® Are those tail-call?
function call is limited by the size of the stack fiictson fooe(dat-a) (
ofactorial(1000) a(data);
RecursionError: maximum recursion depth exceeded in comparison ’
osys.getrecursionlimit() return b(data);
1000)
osys.setrecursionlimit(1003) function fool(data) {
©factorial(1000) return a(data) + 1;
4023872600770937735437024339.....00000 }

® Tail-call optimisation

II INXOBINC II INXOBINC
o UNIVERSITY o UNIVERSITY

Python 36 Print output (drag lower right corner to resize)
o O . ~ =4 1 def factorial(n):
2 def factorial_ iter(product, 1
[ail-call optimisation S ez :
s_l return product s Objects
5 else:
° 3 . 6 return factorial_itel
In case of a tail-call, the execution does not need to return to the 7 return factorial_iter(1, n)
function, there is no need to save the function call on the stack 8
® Recursion without tail-call 10
define factorial = function (n) -> r 11 print(factorial(5s))
4 L3
r = cond(n == 0, 1, n * factorial(n-1)) line that just executed
¥ == nextline to execute
® Recursion with tail-call 0
define factorial = function (n) -> r
{ Step 1 of 26

define factorial_iter = funetion (product, n) -> r
Rendered by Python Tutor

Customize visualization (NEW!)

r = cond{n < 2, product, factorial_iter(product * n, n-1}))

r = factorial_iter(1, n))

}

® Can we have state when we cannot
change a value in the store?

° IQE(I:itciiEnstfa(tSe), consider Fu N Ct| on com pOS |t| on
; T{5+1);
}

LINKOPING
II." UNIVERSITY

Function composition

. . function lower_case(text) -> r
® Many operations on lists (or L T e
Iterables) are Very Slmllar iunction lower_case_iter(text, idx) ->r
“ modification, filtering, accumulation... {

For each elements (1/2)

r = cond(r < length(text), lower(text[idx]) +
lower_case_iter(text, idx + 1), "")

For each elements (2/2)

When closure matters

function lower_case(text) -> r

{ ® Filter a list:
= f h(text, 1 ; : . :

eI SRl function filter_small(list,
function for_each(val, func) -> r Value) = W
: # h (val, f) {

r = for_each_iter(val, func, 0); _ _ .
} r = filter(list, function(x) ->
function for_each_iter(val, func, idx) -> r r {
{

r = cond(r < length(val), func(text[idx]) + r = X < value;
lower_case_iter(text, idx + 1), "") }) .
}) d

Correctness

® How can we tell a program is
correct?

Ve I"Ifl Catl O n “ Test a few selected values, ie, unit

®In general, we need:
“ a mathematical

“ a specification of the
“ to reason using the model and

LINKOPING
II." UNIVERSITY

Proving properties in functional programming

Verification and proving

® To prove a program correct, we must
consider everything a program depends on

¢ In pure functional programs, dependence on
any data structure is explicit

® The program can be correct but still give

wrong results!

“ We need to verify compiler, run-time system, operating
system, hardware!

hw

>roving properties in imperative programming

e function power(b, n) {
int result = 1;
for(int i = 0; i < n; ++i)
{
result *= b;
}
return result;

}

® Devise a loop invariant;
2 (n=i) A (result = bi)
° Prove that it is true for the first loop iteration
° Prove that each loop iteration preserves it
Assume that (n = i) A (result = b')
Prove that (n 2 j) A (result =bi) withj=i+1

hw

edefine power = function(b, n) -> r
{
r = cond(n == 0, 1, b * power(b, n-1));
b
® Claim: for any integer n =0 and any number b,
power(b, n) = b"
® Proof:

© 1) Verify the base case: power(b,0)
© 2) Assume that power (b, n - 1)) is correct

© 3) Verify that power(b, n) is correct assuming that power(b, n - 1)) is
correct

hw

Declarative Components (1/2)

® Declarative components are written using

only pure functions

“ A declarative component can be written, tested, and
proved correct independent of other components and of
its own past history.

° Programs written in the declarative model are much easier
to reason about than programs written in more expressive
models (e.g., an object-oriented model).

hw

Declarative Components (2/2)

Conclusion

® Since declarative components are mathematical functions, () -
algebraic reasoning is possible i.e. substituting equals for Performa NCE ISSUES
equa|S . o e
Given f(a)=a2, we can replace f(a) in other equations, b=7f(x)*2 becomes Ve rlfl Catl O n IS ea S I e r I n
b=7x"4 . .
® The declarative model of chapter 4 guarantees that all fU nctiona l p rog rammin g
programs written are declarative [Decla rative com ponents

® Declarative components can be written in programming
models that allow stateful data types, but there is no

guarantee
int f(int x) { return x * x; }
° constexpr in C++ allows to offer the guarantee

