
TDDA69	Data	and	Program	Structure

Declarative	Programming	Techniques
Cyrille	Berger

2	/	26

Lectures
1Introduction

2Concepts	and	models	of	programming	languages

3Declarative	Computation	Model

4Declarative	Programming	Techniques

5Declarative	Computation	Implementation

6Declarative	Concurrency

7Message	Passing	Concurrency

8Explicit	State	and	Imperative	Model

9Imperative	Programming	Techniques

10Imperative	Programming	Implementation

11Shared-State	Concurrency

12Relational	Programming

13Constraint	Programming

14Macro

15Running	natively	and	JIT

16Garbage	Collection

17Summary

3	/	26

Lecture	content
Recursion

Function	composition

Verification Recursion

5	/	26

What	is	recursion?
A	function	is	called	recursive	if

the	body	of	that	function	calls

itself,	either	directly	or	indirectly.

6	/	26

Factorial:	the	classical	example	(1/2)

Factorial	in	Haskel:

Factorial	in	Common	LISP:

7	/	26

Factorial:	the	classical	example	(2/2)

With	a	loop:

With	a	recursive	call:

8	/	26

Recursion	vs	loops

9	/	26

Function	calls
Calling	a	function	is	usually	more	expensive	than	a

loop

In	many	programming	language,	the	number	of

function	call	is	limited	by	the	size	of	the	stack

RecursionError:	maximum	recursion	depth	exceeded	in	comparison

1000

4023872600770937735437024339.....00000

Tail-call	optimisation

10	/	26

Tail-call
A	tail-call	is	a	call	to	an	other	function

performed	as	the	last	statement	in	a	function

Are	those	tail-call?

11	/	26

Tail-call	optimisation
In	case	of	a	tail-call,	the	execution	does	not	need	to	return	to	the

function,	there	is	no	need	to	save	the	function	call	on	the	stack

Recursion	without	tail-call

Recursion	with	tail-call

12	/	26

13	/	26

State
Can	we	have	state	when	we	cannot

change	a	value	in	the	store?

Implicit	state,	consider Function	composition

15	/	26

Function	composition
Many	operations	on	lists	(or

iterables)	are	very	similar
modification,	filtering,	accumulation...

16	/	26

For	each	elements	(1/2)

17	/	26

For	each	elements	(2/2)

18	/	26

When	closure	matters

Filter	a	list:

Verification

20	/	26

Correctness
How	can	we	tell	a	program	is

correct?
Test	a	few	selected	values,	ie,	unit

In	general,	we	need:
a	mathematical

a	specification	of	the

to	reason	using	the	model	and

21	/	26

Verification	and	proving

To	prove	a	program	correct,	we	must

consider	everything	a	program	depends	on

In	pure	functional	programs,	dependence	on

any	data	structure	is	explicit

The	program	can	be	correct	but	still	give

wrong	results!
We	need	to	verify	compiler,	run-time	system,	operating

system,	hardware!

22	/	26

Proving	properties	in	functional	programming

Claim:	for	any	integer	n	≥	0	and	any	number	b,

power(b,	n)	=	bⁿ

Proof:
1)	Verify	the	base	case:	power(b,0)

2)	Assume	that	power	(b,	n	-	1))	is	correct

3)	Verify	that	power(b,	n)	is	correct	assuming	that	power(b,	n	-	1))	is

correct

23	/	26

Proving	properties	in	imperative	programming

Devise	a	loop	invariant:
(n	≥	i)	⋀	(result	=	bⁱ)

Prove	that	it	is	true	for	the	first	loop	iteration

Prove	that	each	loop	iteration	preserves	it

Assume	that	(n	≥	i)	⋀	(result	=	bⁱ)

Prove	that	(n	≥	j)	⋀	(result	=	bʲ)	with	j	=	i	+	1

24	/	26

Declarative	Components	(1/2)

Declarative	components	are	written	using

only	pure	functions
A	declarative	component	can	be	written,		tested,	and

proved	correct	independent	of	other	components	and	of

its	own	past	history.

Programs	written	in	the	declarative	model	are	much	easier

to	reason	about	than	programs	written	in	more	expressive

models	(e.g.,	an	object-oriented	model).

25	/	26

Declarative	Components	(2/2)

Since	declarative	components	are	mathematical	functions,

algebraic	reasoning	is	possible	i.e.	substituting	equals	for

equals
Given	f(a)=a^2,	we	can	replace	f(a)	in	other	equations,	b=7f(x)^2	becomes

b=7x^4

The	declarative	model	of	chapter	4	guarantees	that	all

programs	written	are	declarative

Declarative	components	can	be	written	in	programming

models	that	allow	stateful	data	types,	but	there	is	no

guarantee	

constexpr	in	C++	allows	to	offer	the	guarantee

26	/	26

Conclusion
Performance	issues

Verification	is	easier	in

functional	programming

Declarative	components

