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Lecture	content
Declarative	programming
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Functional	programming
Declarative	programming
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Declarative
Expresses	logic	of	computation

without	control	flow:
What	should	be	computed	and	not	how	it	should

be	computed.

Examples:	XML/HTML,	antlr4/yacc/

regular	expressions,	make/ants,	SQL,

...
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Declarative	concepts
First-order	functional

programming
record
association	of	a	name	to	a	value

procedure
a	set	of	statements	that	can	be	called	with	a	set	of

arguments
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Minimum	declarative	syntax

STATEMENT	:=	(	BLOCK	|	DEFINITION	|	CALL	|

ASSIGNMENT	)	';'

BLOCK	:=	'{'	STATEMENT*	'}'

DEFINITION	:=	'define'	IDENTIFIER	=	EXPR	|	CALL	|

FUNCTION

CALL	:=	IDENTIFIER	'('	(EXPR	(,	EXPR)*))	|	()	')'

FUNCTION	:=	'function'	'('	(EXPR	(,	EXPR)+))	|	()	')'	('->'

IDENTIFIER)	BLOCK

EXPR	:=	IDENTIFIER	|	NUMBER

ASSIGNMENT	:=	IDENTIFIER	'='	EXPR
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Example	of	minimum	declarative	syntax
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Predefined	functions
Arithmetic:	add,	sub,	mul,	div...

Control:	cond

cond(test,	value,	elsevalue)

Evaluation	model
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Substitution	Model	-	Example	(1/2)

How	to	evaluate:
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Substitution	Model	-	Example	(2/2)

To	evaluate:

Evaluate	the	arguments

Fetch	the	value	of	f

Replace	a	by	5

Evaluate	the

Evaluate	the

Fetch	the	value	of	sum_of_squares

and	replace	the	arguments:

And	so

This	is	the	substitution	model	in

the	applicative	order
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Applicative	vs	Normal
Recursively	evaluate	all	the	subexpressions,

but	in	what	order?
Applicative	order:	evaluate	the	arguments	and	then	apply.

Evaluate	the	procedure	body	with	every	formal	parameter

replaced	with	the	corresponding	argument	value

Normal	order:	fully	expand	and	then	reduce.	Recursively

expand	every	procedure	until	only	primitive	operators	are

left.	Evaluate	(reduce)	the	result.
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Applicative	vs	Normal	-	Example	(1/2)

Applicative	order Normal	order

	

For	procedure	applications	that	can	be	modeled	with	the

substitution	model	that	terminate	with	legitimate	values,

applicative	and	normal	order	produce	the	same	value.
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Applicative	vs	Normal	-	Example	(2/2)

Applicative

order

error:	division

by	zero

Normal	order

What	is	the	result?
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Normal	order	and	lazy	evaluation

In	practice,	COND	is	usually

special	cased

Single	Assignment	Store
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Assignement
Binds	names	to	values

a := 2

Now	a	has	the	value	2
a plus 2

evaluates	to	4

How	to	keep	track	of	the	values?
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Single	Assignement	Store	(1/3)

A	single	assignment

store	is	a	store	(set)	of

variables

Initially	the	variables	are

unbound,	i.e.	do	not

have	a	defined	value

Example:	a	store	with

three	variables

x:	unbound

y:	unbound

z:	unbound

store
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Single	Assignement	Store	(2/3)

Variables	may	be

bound	to	values

Example:	a	store

with	three	variables

Binding	is	done	with

a	single	assignment

operation

x:	314

y:	[1,	2,	3]

z:	unbound

store
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Single	Assignement	Store	(3/3)

A	declarative	variables

starts	unbound

It	can	be	bound	to	exactly

onevalue

Once	bound	it	stays	bound

through	the	computation,

and	is	indistinguishable

from	its	value

x:	314

y:	[1,	2,	3]

z:	unbound

store
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Value	Store
A	store	where	all

variables	are	bound

to	values	is	called	a

value	store

This	is	enough	for

most	functional

programming

languages

x:	314

y:	[1,	2,	3]

z:	'Hello'

store
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Single	Assignment	Store	and	Function

Global	store

Each	function	has	its

own	store

Arguments	are	binded	in

the	value	store

x:10

(global)I

a:	2

b:	3

r:	5

(f)II



Functional	programming
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Procedure	vs	Closure
Procedure
Access	only	to	its	own	store

Closure
Like	a	procedure	but	with	references	to

externally	stored	values
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Single	Assignment	Store	and	Closure	(1/2)

Global	store

A	closure	has	its	own

store	with	a	copy	of	the

store	where	it	is	created

When	calling	the

function

x:10
(global)I

x:10

a:	2

r:	12

(f)II
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Single	Assignment	Store	and	Closure	(2/2)

x:	10

make_f:	function...	vs=I

f:	function...	vs=II

(global)I

x:10

a:	2

r:	function...	vs=II

(make_f)II

x:10

a:	2

b:	5

s:	52

(f)III
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Benefits	of	closures
Parameterized	functions:

Generate	functions	within	functions:

31	/	37

Higher-order	function

A	higher-order	function	takes	t

least	one	of	the	following
takes	one	or	more	function	as	argument

returns	a	function	as	its	result

All	other	functions	are	first-order
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Example	of	higher	order	function
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Pure	function	(1/3)
A	pure	function	is	a	function	such	as:
No	side	effects

Always	return	the	same	value	given	the	same

arguments

Examples	of	pure	functions:
abs,	pow,	add...

Examples	of	non	pure	function

All	IO	functions
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Pure	function	(2/3)
They	are	called

declarative	operations	in

the	book,	and	formally

defined	as
Independent:	depends	only	on

its	arguments,	nothing	else

Stateless:	no	internal	state	is

remembered	between	calls

Deterministic:	call	with	same

operations	always	give	same

results

They	can	be	composed	to	form

other	declarative	operations
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Pure	function	(3/3)
To	check	if	a	function	is	pure:
Simply	check	if	it	only	calls	pure	functions

Remember,	in	functional	programming

once	bounded	the	value	of	a	variable

cannot	be	changed
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Why	pure	function	matters?

The	function	definitions	tells	you	all	about	the

behavior
Specify	exactly	what	is	going	in	and	out

Make	testing/debugging	easier

Reusability,	multithreading...
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Conclusion
Declarative	Computation	Model:

Kernel	Syntax	and	Semantic

Subsitution	model:	applicative	and

normal	order

Single	assisgnment	Store

Closure

Pure	functions


