
TDDA69	Data	and	Program	Structure

Declarative	Computation	Model
Cyrille	Berger

2	/	37

Lectures
1Introduction

2Concepts	and	models	of	programming	languages

3Declarative	Computation	Model

4Declarative	Programming	Techniques

5Declarative	Computation	Implementation

6Declarative	Concurrency

7Message	Passing	Concurrency

8Explicit	State	and	Imperative	Model

9Imperative	Programming	Techniques

10Imperative	Programming	Implementation

11Shared-State	Concurrency

12Relational	Programming

13Constraint	Programming

14Macro

15Running	natively	and	JIT

16Garbage	Collection

17Summary

3	/	37

Lecture	content
Declarative	programming

Evaluation	model
Single	Assignment	Store

Functional	programming
Declarative	programming

5	/	37 6	/	37

Declarative
Expresses	logic	of	computation

without	control	flow:
What	should	be	computed	and	not	how	it	should

be	computed.

Examples:	XML/HTML,	antlr4/yacc/

regular	expressions,	make/ants,	SQL,

...

7	/	37

Declarative	concepts
First-order	functional

programming
record
association	of	a	name	to	a	value

procedure
a	set	of	statements	that	can	be	called	with	a	set	of

arguments

8	/	37

Minimum	declarative	syntax

STATEMENT	:=	(BLOCK	|	DEFINITION	|	CALL	|

ASSIGNMENT)	';'

BLOCK	:=	'{'	STATEMENT*	'}'

DEFINITION	:=	'define'	IDENTIFIER	=	EXPR	|	CALL	|

FUNCTION

CALL	:=	IDENTIFIER	'('	(EXPR	(,	EXPR)*))	|	()	')'

FUNCTION	:=	'function'	'('	(EXPR	(,	EXPR)+))	|	()	')'	('->'

IDENTIFIER)	BLOCK

EXPR	:=	IDENTIFIER	|	NUMBER

ASSIGNMENT	:=	IDENTIFIER	'='	EXPR

9	/	37

Example	of	minimum	declarative	syntax

10	/	37

Predefined	functions
Arithmetic:	add,	sub,	mul,	div...

Control:	cond

cond(test,	value,	elsevalue)

Evaluation	model

12	/	37

Substitution	Model	-	Example	(1/2)

How	to	evaluate:

13	/	37

Substitution	Model	-	Example	(2/2)

To	evaluate:

Evaluate	the	arguments

Fetch	the	value	of	f

Replace	a	by	5

Evaluate	the

Evaluate	the

Fetch	the	value	of	sum_of_squares

and	replace	the	arguments:

And	so

This	is	the	substitution	model	in

the	applicative	order

14	/	37

Applicative	vs	Normal
Recursively	evaluate	all	the	subexpressions,

but	in	what	order?
Applicative	order:	evaluate	the	arguments	and	then	apply.

Evaluate	the	procedure	body	with	every	formal	parameter

replaced	with	the	corresponding	argument	value

Normal	order:	fully	expand	and	then	reduce.	Recursively

expand	every	procedure	until	only	primitive	operators	are

left.	Evaluate	(reduce)	the	result.

15	/	37

Applicative	vs	Normal	-	Example	(1/2)

Applicative	order Normal	order

	

For	procedure	applications	that	can	be	modeled	with	the

substitution	model	that	terminate	with	legitimate	values,

applicative	and	normal	order	produce	the	same	value.

16	/	37

Applicative	vs	Normal	-	Example	(2/2)

Applicative

order

error:	division

by	zero

Normal	order

What	is	the	result?

17	/	37

Normal	order	and	lazy	evaluation

In	practice,	COND	is	usually

special	cased

Single	Assignment	Store

19	/	37

Assignement
Binds	names	to	values

a := 2

Now	a	has	the	value	2
a plus 2

evaluates	to	4

How	to	keep	track	of	the	values?

20	/	37

Single	Assignement	Store	(1/3)

A	single	assignment

store	is	a	store	(set)	of

variables

Initially	the	variables	are

unbound,	i.e.	do	not

have	a	defined	value

Example:	a	store	with

three	variables

x:	unbound

y:	unbound

z:	unbound

store

21	/	37

Single	Assignement	Store	(2/3)

Variables	may	be

bound	to	values

Example:	a	store

with	three	variables

Binding	is	done	with

a	single	assignment

operation

x:	314

y:	[1,	2,	3]

z:	unbound

store

22	/	37

Single	Assignement	Store	(3/3)

A	declarative	variables

starts	unbound

It	can	be	bound	to	exactly

onevalue

Once	bound	it	stays	bound

through	the	computation,

and	is	indistinguishable

from	its	value

x:	314

y:	[1,	2,	3]

z:	unbound

store

23	/	37

Value	Store
A	store	where	all

variables	are	bound

to	values	is	called	a

value	store

This	is	enough	for

most	functional

programming

languages

x:	314

y:	[1,	2,	3]

z:	'Hello'

store

24	/	37

Single	Assignment	Store	and	Function

Global	store

Each	function	has	its

own	store

Arguments	are	binded	in

the	value	store

x:10

(global)I

a:	2

b:	3

r:	5

(f)II

Functional	programming

26	/	37

27	/	37

Procedure	vs	Closure
Procedure
Access	only	to	its	own	store

Closure
Like	a	procedure	but	with	references	to

externally	stored	values

28	/	37

Single	Assignment	Store	and	Closure	(1/2)

Global	store

A	closure	has	its	own

store	with	a	copy	of	the

store	where	it	is	created

When	calling	the

function

x:10
(global)I

x:10

a:	2

r:	12

(f)II

29	/	37

Single	Assignment	Store	and	Closure	(2/2)

x:	10

make_f:	function...	vs=I

f:	function...	vs=II

(global)I

x:10

a:	2

r:	function...	vs=II

(make_f)II

x:10

a:	2

b:	5

s:	52

(f)III

30	/	37

Benefits	of	closures
Parameterized	functions:

Generate	functions	within	functions:

31	/	37

Higher-order	function

A	higher-order	function	takes	t

least	one	of	the	following
takes	one	or	more	function	as	argument

returns	a	function	as	its	result

All	other	functions	are	first-order

32	/	37

Example	of	higher	order	function

33	/	37

Pure	function	(1/3)
A	pure	function	is	a	function	such	as:
No	side	effects

Always	return	the	same	value	given	the	same

arguments

Examples	of	pure	functions:
abs,	pow,	add...

Examples	of	non	pure	function

All	IO	functions

34	/	37

Pure	function	(2/3)
They	are	called

declarative	operations	in

the	book,	and	formally

defined	as
Independent:	depends	only	on

its	arguments,	nothing	else

Stateless:	no	internal	state	is

remembered	between	calls

Deterministic:	call	with	same

operations	always	give	same

results

They	can	be	composed	to	form

other	declarative	operations

	

35	/	37

Pure	function	(3/3)
To	check	if	a	function	is	pure:
Simply	check	if	it	only	calls	pure	functions

Remember,	in	functional	programming

once	bounded	the	value	of	a	variable

cannot	be	changed

36	/	37

Why	pure	function	matters?

The	function	definitions	tells	you	all	about	the

behavior
Specify	exactly	what	is	going	in	and	out

Make	testing/debugging	easier

Reusability,	multithreading...

37	/	37

Conclusion
Declarative	Computation	Model:

Kernel	Syntax	and	Semantic

Subsitution	model:	applicative	and

normal	order

Single	assisgnment	Store

Closure

Pure	functions

